SOME FUNCTION-THEORETIC NULL SETS

Akira Sagawa

(Received February 22, 1969)

1. Let E be a totally disconnected compact set in the complex z-plane and let G be the complementary domain of E with respect to the extended z-plane. Consider a domain in G whose relative boundary consists of at most a countable number of analytic curves clustering nowhere in G. Such a domain is called a subregion in G. If for any subregion in G there exists no nonconstant single-valued bounded analytic function whose real part vanishes continuously on its relative boundary, then the set E is said to be in the class N_{B}^{0}.

It is known that if E is of logarithmic capacity zero, then E belongs to the class N_{B}^{0} and that there exists a compact set of positive logarithmic capacity and belonging to N_{B}^{0} (Kuroda [5]).

It is also known that there exists no non-constant single-valued bounded analytic function in the complementary domain of $E \in N_{B}^{0}$, that is, N_{B}^{0} is a subclass of the class N_{B} in the sense of Ahlfors-Beurling [1].

If E is of logarithmic capacity zero, then there exists an Evans-Selberg's potential which is harmonic in G except at $z=\infty$ and whose boundary value at every point of E is positively infinite. Such a function plays an important role to study the covering property of meromorphic functions in G.

In this paper, we shall treat Noshiro's theorem on cluster sets [10] in detail. In §2, by the argument due to Matsumoto [7], we shall give a sufficient condition in order that there exists an analogous function to an Evans-Selberg's potential in the subregion inside G. As its application, in $\S 3$ we shall prove a theorem which is an improvement of Noshiro's theorem [10] on cluster sets under the so-called Hervé's condition. $\S 4$ is devorted to show that in the theorem, Herve's condition can not be dropped. In Appendix, Kuroda's criterion for E to be in the class N_{B}^{0} is proved in a correct form.
2. First we shall prove the following.

THEOREM 1. If E is a compact set of the class N_{B}^{0}, then any closed subset E_{0} of E is also in the class N_{B}^{0}.

Proof. Contrary to the assertion, we suppose that there exists a closed subset E_{0} of E not belonging to N_{B}^{0}.

We denote by G and G_{0} the complementary domains of E and E_{0} with respect to the extended z-plane, respectively. Then there exist a subregion Δ_{0} in G_{0}, whose boundary consists of a closed subset of E_{0} and the relative boundary γ_{0}, and a non-constant single-valued bounded analytic function $f(z)$ in Δ_{0} whose real part vanishes continuously on γ_{0}. We put

$$
\gamma_{0}-\gamma_{0} \cap E=\gamma \quad \text { and } \quad \Delta_{0}-\Delta_{0} \cap E=\Delta .
$$

It is obvious that Δ is a subregion in G with the relative boundary γ and the above function $f(z)$ is also non-constant, single-valued, bounded and analytic in Δ and the real part of $f(z)$ vanishes continuously on γ. Hence the set E does not belong to N_{B}^{0}, which is a contradiction.

Using Theorem 1, we can get the following theorem.
THEOREM 2. If Δ is a subregion in G whose boundary consists of the relative boundary γ and a compact set E^{*} belonging to N_{B}^{0} and if each point of E^{*} belongs to a non-degenerate boundary continuum of Δ, then there exists a positive harmonic function $u(z)$ in $\Delta \cup \gamma$ whose boundary value at each point of E^{*} is positively infinite.

Proof. We denote by $\left\{D_{n}\right\}(n=1,2, \cdots)$ the sequence of such complementary continua of Δ with respect to the extended z-plane that for each n, the boundary of D_{n} contains at least one point of E^{*}. Let $\Delta_{n}(n=1,2, \cdots)$ be the complementary domain of D_{n} with respect to the extended z-plane.

Since D_{n} is a non-degenerate continuum by our assumption, Δ_{n} is a simply connected domain of hyperbolic type containing Δ. The boundary of Δ_{n} consists of a part γ_{n} of γ and a compact subset E_{n} of E^{*} and clearly $E^{*}=\bigcup_{n=1}^{\infty} E_{n}$.

Since E_{n} belongs to N_{B}^{0} from Theorem 1, the harmonic measure of E_{n} with respect to the simply connected domain Δ_{n} vanishes (cf. Kuroda [5]). Therefore, by virtue of a theorem due to F. and M. Riesz [11], there exists a function $u_{n}(z)$ such that $u_{n}(z)$ is positive and harmonic in $\Delta_{n} \cup \gamma_{n}$ and such that the boundary value of $u_{n}(z)$ at every point of E_{n} is positively infinite. Further, we can find a sequence $\left\{c_{n}\right\}(n=1,2, \cdots)$ of positive numbers such that the series $\sum_{n=1}^{\infty} \mathrm{c}_{n} u_{n}\left(z_{0}\right)$ converges at a fixed point z_{0} in Δ.

By Harnack's principle, the series $\sum_{n=1}^{\infty} c_{n} u_{n}(z)$ converges uniformly to a
limiting function $u(z)$ on any compact subset of $\Delta \cup \gamma$. It is evident that $u(z)$ satisfies the condition of the theorem.
3. Let D be a domain on the z-plane, Γ its boundary, E a totally disconnected compact set contained in I^{\prime} and z_{0} a point of E such that $U\left(z_{0}\right) \cap(\Gamma-E) \neq \emptyset$ for every neightorhood $U\left(z_{0}\right)$ of z_{0}. Let $f(z)$ be a nonconstant, single-valued and meromorphic function in D. Suppose that the set $\Omega=C_{D}\left(f, z_{0}\right)-C_{\Gamma-E}\left(f, z_{0}\right)$ is not empty. Here $C_{D}\left(f, z_{0}\right)$ and $C_{\Gamma-E}\left(f, z_{0}\right)$ are the interior cluster set and the boundary cluster set of $f(z)$ at z_{0} (cf. Noshiro [9]).

The following was proved by Tsuji [13]:
If E is of logarithmic capacity zero, then Ω is an open set and $\Omega-R_{D}\left(f, z_{0}\right)$ is at most of logarithmic capacity zero. Here $R_{D}\left(f, z_{0}\right)$ is the range of values of $f(z)$ at z_{0} (cf. Noshiro [9]).

Noshiro [10] considered the case of $E \in N_{B}^{0}$ and proved the following:
If E belongs to the class N_{B}^{0}, then Ω is an open set and $\Omega-R_{D}\left(f, z_{0}\right)$ is an at most countable union of sets of the class N_{B}.

Now we prove the following as an application of Theorem 2.
THEOREM 3. If E belongs to the class N_{B}^{0} and if each point of E belongs to a non-degenerate boundary continuum of D, then the set $\Omega-R_{D}\left(f, z_{0}\right)$ is of logarithmic capacity zero.

REMARK. The second assumption that each point of E belongs to a non-degenerate boundary continuum of D, is called Hervé's condition for E (cf. Hervé [3]).

Proof. We follow an argument due to Noshiro [9].
We denote by $e_{n}(n=1,2, \cdots)$ the set of values in Ω which $f(z)$ does not take in $\left\{z\left|\left|z-z_{0}\right|<1 / n\right\} \cap D\right.$. Then it is easy to see that e_{n} is a closed set with respect to $\Omega, e_{n} \subset e_{n+1}$ and $\Omega-R_{D}\left(f, z_{0}\right)=\bigcup_{n=1}^{\infty} e_{n}$. So, if we suppose the contrary to the assertion, then there exists a set e_{n} of positive logarithmic capacity.

We can find a point $w_{0} \in e_{n}$ such that for any positive number ρ the part of e_{n} contained in the disc $\left|w-w_{0}\right|<\rho$ is of positive logarithmic capacity. We select a positive number r such that the circle $K:\left|z-z_{0}\right|=r$ does not intersect E and $f(z) \neq w_{0}$ on $K \cap D$ and such that w_{0} does not belong to the closure M_{r} of $\bigcup_{\varepsilon} C_{D}(f, \zeta)$ for ζ belonging $(\Gamma-E) \cap(\bar{K})$, where (\bar{K}) denotes
the closure of the interior (K) of K.
We can choose a positive number ρ_{0} less than the distance of w_{0} from M_{r} such that $\left|f(z)-w_{0}\right|>\rho_{0}$ on $K \cap D$. Since $w_{0} \in C_{D}\left(f, z_{0}\right)$, the function $w=f(z)$ takes a value belonging to $(c):\left|w-w_{0}\right|<\rho_{0}$ at $z_{1} \in(K) \cap D$. We consider the component Δ of the inverse image of (c) inside $(K) \cap D$ by $w=f(z)$ which contains the point z_{1}. Obviously, Δ is a subregion in the complementary domain of E with respect to the extended z-plane and the boundary of Δ consists of a closed subset E^{*} of E and at most a countable number of analytic curves γ.

Since, by the assumption, Δ satisfies the condition of Theorem 2, there exists a positive harmonic function $u(z)$ in $\Delta \cup \gamma$ having the positively infinite boundary value at each point of E^{*}.

Since $(c) \cap e_{n}$ is of positive logarithmic capacity, we can find a closed subset e of $(c)-e_{n}$ such that e is of positive logarithmic capacity. So there exists a positive bounded harmonic function $\omega(w)$ in $(c)-e$ which vanishes continuously on the circle $c:\left|w-w_{0}\right|=\rho_{0}$. We consider the composed function $\omega(f(z))$ in Δ.

By the maximum principle, we have

$$
\omega(f(z)) \leqq \frac{u(z)}{\lambda}
$$

in Δ for any positive number λ, whence follows that $\omega(f(z)) \equiv 0$ in Δ. Thus we arrive at a contradiction.
4. In the next section we shall show that Herve's condition in Theorem 3 can not be dropped.

For the purpose, first we prepare an example which guarantees the existence of a compact set E of positive logarithmic capacity which belongs to N_{B}^{0} and of a single-valued meromorphic function $f(z)$ in the complementary domain D of E such that $f(z)$ has an essential singularity at every point of E and such that the set of exceptional values of $f(z)$ in Picard's sense at each point of E is of positive logarithmic capacity but belongs to N_{B}^{0}. This example was used for the other purpose in [6].

Consider a general Cantor set $E\left(p_{1}, p_{2}, \cdots\right)$ on the w-plane. This set is constructed as follows.

Let $p_{n}(n \geqq 1)$ be a positive number greater than 1 and delete an open interval with length $1-1 / p_{1}$ from the closed interval $I_{0}=\left[-\frac{1}{2}, \frac{1}{2}\right]$ on the real axis of the w-plane so that there remains the closed set I_{1} which consists of two closed intervals $I_{1}^{i}(i=1,2)$ with equal length $l_{1}=1 / 2 p_{1}$. In general, if I_{n} consists of closed intervals $I_{n}^{i}\left(i=1,2, \cdots, 2^{n}\right)$ of equal length $l_{n}=1 / 2^{n} p_{1} \cdots p_{n}$, we delete an open interval of length $l_{n}\left(1-1 / p_{n+1}\right)$ from

A. SAGAWA

every I_{n}^{i} so that there remain two closed intervals $I_{n+1}^{2 i-1}, I_{n+1}^{2 i}\left(i=1, \cdots, 2^{n}\right)$ with equal length $1 /\left(2^{n+1} p_{1} \cdots p_{n+1}\right)$.

The set $E\left(p_{1}, p_{2}, \cdots\right)$ is the set of intersection $\bigcap_{n=1}^{\infty} I_{n}$. It is known that $E\left(p_{1}, p_{2}, \cdots\right)$ is of positive logarithmic capacity if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\log p_{n}}{2^{n}}<+\infty \tag{1}
\end{equation*}
$$

(cf. Nevanlinna [8]).
Denote by F the complementary domain of $E\left(p_{1}, p_{2}, \cdots\right)$ with respect to the extended w-plane.

We describe circles

$$
K_{0}^{1}:|w|=1, \quad K_{n}^{i}:\left|w-w_{n}^{i}\right|=r_{n} \quad\left(n \geqq 1,1 \leqq i \leqq 2^{n}\right)
$$

in F where w_{n}^{i} is the middle point of $I_{n}^{i}, r_{n}=\frac{1}{2^{n} p_{0} p_{1} \cdots p_{n-1}}\left(1-\frac{1}{2 p_{n}}\right)$ and $p_{0}=1$.

Clearly $K_{n}^{2 i-1}$ and $K_{n}^{2 i}$ are tangent outside each other and if

$$
\begin{equation*}
1+2 p_{n-1} p_{n}>3 p_{n} \quad(n \geqq 2) \tag{2}
\end{equation*}
$$

then $K_{n}^{2 i-1}$ and $K_{n}^{2 i}$ are enclosed by $K_{n-1}^{i}\left(1 \leqq n, 1 \leqq i \leqq 2^{n-1}\right)$. Let F_{n}^{i} be the doubly connected domain surrounded by three circles $K_{n}^{2 i-1}, K_{n}^{2 i}$ and $K_{n-1}^{i}(n \geqq 1)$ and let F_{n} be the domain bounded by $\bigcup_{i=1}^{2^{n}} K_{n}^{i}$ and containing the point $z=\infty$ in its interior. We make a slit L_{n}^{i} in every F_{n}^{i} such that L_{n}^{i} is contained in $\left|w-w_{n-1}^{i}\right| \leqq 2 r_{n}\left(w_{0}^{1}=0\right)$ and such that only one end point of L_{n}^{i} lies on $K_{n}^{2 i-1} \cup K_{n}^{2 i}$. We put

$$
\begin{aligned}
& F^{0}=F-\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i}-L_{0}^{1}, \\
& F_{k}^{1}=F-\bigcup_{n=2}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i}-L_{1}^{k}, \quad\left(k=1,2^{m}\right), \\
& F_{k}^{m}=F-\bigcup_{n=m+1}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i}-L_{m}^{k},\left(k=1, \cdots, 2^{m}\right),
\end{aligned}
$$

First we connect two replicas of F^{0} with each other crosswise across the slit L_{0}^{1} and denote by $\widehat{F^{0}}$ the resulting surface which has two free slits corresponding to every $L_{1}^{k}(k=1,2)$. Next we take a replica of F_{k}^{1} and connect it with $\widehat{F^{0}}$ crosswise across a free slit corresponding to $L_{1}^{k}(k=1,2)$. Doing this for every free slits of \widehat{F}^{0} corresponding to $L_{1}^{k}(k=1,2)$, we get the resulting surface $\widehat{F^{1}}$ which has $2(1+2)$ sheets and $2(1+2)$ free slits corresponding to each $L_{2}^{k}\left(k=1, \cdots, 2^{2}\right)$. In general, we connect a replica of F_{k}^{n} with \widehat{F}^{n-1} crosswise across a free slit corresponding to L_{n}^{ℓ} and proceed this for all slits of \widehat{F}^{n-1} corresponding to $L_{n}^{k}\left(k=1, \cdots, 2^{n}\right)$. Thus we get the surface \widehat{F}^{n} with $\prod_{i=0}^{n}\left(1+2^{i}\right)$ sheets.

Continuing the procedure infinitely, we obtain the surface \widehat{F} of planar character which covers no point of the set $E\left(p_{1}, p_{2}, \cdots\right)$.

This surface \widehat{F} is considered as a limiting surface of \widehat{F}^{n} and every $\widehat{F^{n}}$ is a subdomain of \widehat{F}. Denote by \widehat{F}_{n} the part of \widehat{F}^{n} lying over F_{n+1}.

It is not so difficult to see that $\left\{\widehat{F}_{n}\right\}_{n=1}^{\infty}$ is an exhaustion of \widehat{F} and that the number $N(n)$ of doubly connected components \widehat{F}_{n}^{i} of $\widehat{F}_{n+1}-\widehat{\widehat{F}}_{n}$ equals $2^{n} \prod_{i=0}^{n-1}\left(1+2^{i}\right)$.

Denote $\log \mu_{n}^{i}$ the harmonic modulus of \widehat{F}_{n}^{i}. Putting $\log \nu_{n}=\min _{i} \log \mu_{n}^{i}$, we easily have

$$
\log \nu_{n}>\log \frac{r_{n}}{2 r_{n+1}}
$$

because \widehat{F}_{n}^{i} contains the univalent annulus lying over $2 r_{n+2}<\left|w-w_{n+1}^{i}\right|<r_{n+1}$.
Therefore, we have

$$
\sum_{i=0}^{n} \log \nu_{i}-\log N(n)>\log \left(p_{1} p_{2} \cdots p_{n+1}\right)-\frac{n(n+1)}{2} \log 2+\log \frac{1-\frac{1}{2 p_{1}}}{1-\frac{1}{2 p_{n+2}}} .
$$

So, if we take p_{n} as such as

$$
\begin{equation*}
p_{n}=2^{(n+1)^{2}} \tag{3}
\end{equation*}
$$

then (1) and (2) are valid and

$$
\lim _{n \rightarrow \infty}\left\{\sum_{i=0}^{n} \log \nu_{i}-\log N(n)\right\}=+\infty \quad \text { and } \lim _{n \rightarrow \infty} \log \nu_{n}=+\infty
$$

Hence, by a criterion proved in Appendix, any subregion on the covering surface \widehat{F} carries no non-constant single-valued bounded analytic function with the real part vanishing continuously on its relative boundary provided that (3) holds.

Now we map \widehat{F} onto a domain G on the extended z-plane in a one-to-one conformal manner such that G contains the point $z=\infty$. Denote by $\widehat{f}(z)$ the inverse of this conformal mapping.

By the definition the complementary set E of G with respect to extended z-plane belongs to N_{B}^{0}.

We denote by $w=\varphi(p)$ projection of \widehat{F} on the extended w-plane and we put $w=\varphi(\hat{f}(z))=f(z)$. It is easy to see that $w=f(z)$ has an essential singularity at every point of E and has the set $E\left(p_{1}, p_{2}, \cdots\right)$ as the set of exceptional values in Picard's sense in any neighborhood of its essential singularities.

Further, as mentioned already, (1) implies that the set $E\left(p_{1}, p_{2}, \cdots\right)$ is of positive logarithmic capacity, so we see from Nevanlinna's theorem [8] that the set E is also of positive logarithmic capacity.

Thus we see that the set E and the function $f(z)$ satisfy the requirements stated in the begining of this section.
5. From the above example, we can show the fact that Theorem 3 does not hold if we exclude Herve's condition on E.

In fact, we take a circle $K_{m}^{i}=K$ in the above example and denote by S a component of $\widehat{F-} \widehat{\widehat{F}}_{m-1}$ whose projection lies on the disc (K) bounded by K. The counter image D of S by $\widehat{f}(z)$ is a subregion in G whose boundary consists of a countable number of closed analytic curves Γ and a compact subset E^{*} of E. Theorem 1 implies that E^{*} belongs to N_{B}^{ι}. Each point z_{0} of E^{*} does not satisfy Hervé's condition, because the circle K does not intersect with $E\left(p_{1}, p_{1}, \cdots\right)$.

Obviously, $C_{D}\left(f, z_{0}\right)$ is the closed disc (\bar{K}) and $C_{\Gamma-E^{*}}\left(f, z_{0}\right)$ is the circle K, so $\Omega=C_{D}\left(f, z_{0}\right)-C_{\Gamma-E^{*}}\left(f, z_{0}\right)$ is the open disc (K).

Further $\Omega-R_{D}\left(f, z_{0}\right)$ coincides with the compact set $(K) \cap E\left(p_{1}, p_{2}, \cdots\right)$ of positive logarithmic capacity.

Remark. Hällström-Kametani's theorem [2], [4] can be formulated in the following form.

Let E be a compact set of logarithmic capacity zero contained in a domain D. Suppose that $w=f(z)$ is single-valued meromorphic in $D-E$ and has an essential singularity at every point z_{0} of E. Then the complement of $R_{D-E}\left(f, z_{0}\right)$ is at most of capacity zero.

By our example, it is immediately seen that in the above HällströmKametani's theorem the condition " E is of logarithmic capacity zero" can not be replaced by the condition " E belongs to N_{B}^{0}.

Appendix

A sufficient condition for a compact set E to belong to N_{B}^{0} was stated by Kuroda [5], however, as he pointed out, his statement and the proof were incorrect, so here we state a correct form and its proof given by himself. It is quite similar to the proof of a criterion for $E \in N_{B}$ given in Appendix I of Sario-Noshiro's book [12].

Let E be a totally disconnected compact set in the complex z-plane and let F be the complementary domain of E with respect to the extended z-plane.

Let $\left\{F_{n}\right\}(n=0,1, \cdots)$ be an exhaustion of F such thch that F_{n} is compact with respect to F and the boundary Γ_{n} of F_{n} consists of a finite number of analytic curves in F and such that each connected component of $F-\bar{F}_{n}$ is non-compact and further such that $F_{n} \cup \Gamma_{n} \subset F_{n+1}$.

The open set $F_{n}-\bar{F}_{n-1}(n \geqq 1)$ consists of a finite number of connected components $F_{n}^{k}(k=1,2, \cdots, N(n))$. We denote by $\log \mu_{n}^{k}$ the harmonic modulus of F_{n}^{k} and we put $\max _{1 \leq k \leqq N(n)} \log \mu_{n}^{k}=\log \nu_{n}$.

ThEOREM A. If there exists an exhaustion of the complementary domain of E such that, for a positiv constant δ,

$$
\log \nu_{j}>\delta \quad(j=1,2, \cdots)
$$

and

$$
\limsup _{n \rightarrow \infty}\left\{\sum_{i=1}^{n} \log \nu_{i}-\log N(n)\right\}=+\infty
$$

then E belongs to N_{B}^{0}.
Proof. We denote by $\log \mu_{n}$ the harmonic modulus of $F_{n}-\bar{F}_{n-1}$ and consider the graph $0<u(z)<R=\sum_{n=1}^{\infty} \log \mu_{n}, 0<v(z)<2 \pi$ associated with the exhaustion $\left\{F_{n}\right\}(n=0,1, \cdots)$ in the sense of Noshiro [9].

The niveau curve $\gamma_{r}: u(z)=r(0<r<R)$ consists of a finite number of analytic closed curves $\gamma_{r}^{i}(i=1,2, \cdots, m(r))$.

We put

$$
\Lambda_{i}(r)=\int_{\gamma_{i}^{i}} d v, \quad \max _{1 \leq i \leq m(r)} \Lambda_{i}(r)=\Lambda(r) \quad \text { and } \quad \tau_{n}=\sum_{j=1}^{n} \log \mu_{j} .
$$

Suppose that there exists a non-compact subregion Δ on F with the relative boundary C and a non-constant single-valued bounded analytic function $f(z)$ in Δ whose real part $U(z)$ vanishes continuously at every point on C.

We denote by Δ_{r} the open subset of Δ, where $u(z)<r$. The part θ_{r} of the niveau curve γ_{r} contained in Δ consists of a finite number of components $\theta_{r}^{i}(i=1,2, \cdots, n(r))$. We set $\Theta(r)=\max _{1 \leq i \leq n(r)} \int_{i} d v$.

If we denote by $D(r)$ the Dirichlet integral of $f(z)$ taken over Δ_{r}, then the argument of Kuroda [5] yields

$$
e^{2 \pi \int_{0}^{r} \frac{d r}{\Theta(r)}} \leqq \frac{D(r)}{D(0)}
$$

Since $\Theta(r) \leqq \Lambda(r)$, it follows that

$$
e^{2 \pi \int_{0}^{\int_{0} \frac{d r}{d(r)}} \leqq \frac{\left.D^{\prime} r\right)}{D(0)} ~}
$$

On the other hand, it holds that

$$
\frac{d}{d r}\left(\int_{e_{r}} U^{2} d v\right)=2 \int_{\theta_{r}} U \frac{\partial U}{\partial u} d s=2 D(r)
$$

for $\boldsymbol{\tau}_{n-1}<r<\boldsymbol{\tau}_{n}(n=1,2, \cdots)$, whence follows that

$$
\int_{\tau_{n-1}}^{\boldsymbol{\tau}_{n}} D(r) d r=\lim _{\rightarrow \tau_{n}-0} \int_{\theta_{r}} U^{2} d v-\lim _{r \rightarrow \tau_{n-1}+0} \int_{\theta_{r}} U^{2} d v \leqq 2 \pi M^{2}
$$

where $M=\max _{\Delta}|U|$.
Therefore, we have

$$
\begin{equation*}
\int_{\tau_{n-1}}^{\tau_{n}} e^{2 \pi \int_{0}^{r} \frac{d r}{\Delta(r)}} d r \leqq \frac{2 \pi M^{2}}{D(0)} \tag{*}
\end{equation*}
$$

It is evident that

$$
\Lambda_{i}(r) \leqq 2 \pi \frac{\log \mu_{j}}{\log \mu_{j}^{k}} \leqq 2 \pi \frac{\log \mu_{j}}{\log \nu_{j}}
$$

for $\gamma_{r}^{i} \subset F_{j}^{k}$. Hence, we have

$$
\int_{0}^{r} \frac{d r}{\Lambda(r)} \geqq \frac{1}{2 \pi} \sum_{j=1}^{n-1} \log \nu_{j}+\frac{1}{2 \pi} \frac{\log \nu_{n}}{\log \mu_{n}}\left(r-\boldsymbol{\tau}_{n-1}\right)
$$

for $\boldsymbol{\tau}_{n-1}<r<\boldsymbol{\tau}_{n}$, and

$$
\int_{\boldsymbol{\tau}_{n-1}}^{\tau_{n}} e^{2 \pi \int_{0}^{r} \frac{d r}{\Lambda(r)}} d r \geqq \frac{\log \mu_{n}}{\log \nu_{n}} e^{\sum_{j=1}^{n} \log \nu g}\left(1-e^{\left.-\log \nu_{n}\right)} .\right.
$$

Since

$$
\begin{gather*}
\frac{1}{\log \mu_{n}}=\sum_{k=1}^{n} \frac{1}{\log \mu_{n}^{k}} \leqq \frac{N(n)}{\log \boldsymbol{\nu}_{n}}, \\
\int_{\boldsymbol{\tau}_{i-1}}^{\boldsymbol{\tau}_{n}} e^{2 \pi \int_{0}^{f} \frac{d r}{d(r)}} \geqq e^{\sum_{j=1}^{n} \log \nu_{j-1} \operatorname{gN(n)}}\left(1-e^{-\delta}\right) .
\end{gather*}
$$

By (*), ($\because *$) and the assumption of theorem, E belongs to $N_{b}^{\prime \prime}$.
From the proof of Theorem A, we can get easily the following theorem.
THEOREM B. If there exsists an exhaustion of the complementary domain of E such that

$$
\limsup _{n \rightarrow \infty} \int_{\tau_{n,-1}}^{T_{n}} e^{z \pi \int_{0}^{r}} \frac{d r}{A(r)} d r=+\infty
$$

then E belongs to $N_{B}^{\prime \prime}$.

References

[1] L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83(1950), 101-129.
[2] G. AF HÄLlSTRÖM, Über meromorphe Funktionen mit mehrfach zusammenhängenden Existenzgebieten, Acta Acad. Abo. Math. et Phys., 12(1939), 5-100.
[3] M. Hervé, Sur les valeurs omises par une fonction méromorphe, C. R.Acad. Sci. (Paris), 240(1955), 718-720.
[4] S. Kametani, The exceptional values of functions with set of essential singularities, Proc. Japan Acad., 17(1941), 429-433.
[5] T. KURODA, On analytic functions on some Riemann surfaces, Nagoya Math. J., 10(1956), 27-50.
[6] T. Kuroda and A. Sagawa, Remark on the Gross property, Tôhoku Math. J., 20(1968), 394-399.
[7] K. MATsumoto, Positively infinite singularities of superhamonic function, Nagoya Math. J., 31(1968), 90-96.
[8] R. Nevanlinna, Eindeutige analytishe Funktionen, Springer-Verlag. Berlin-GöttingenHeidelberg, 1953.
[9] K. Noshiro, Cluster sets, Springer-Verlag. Berlin-Göttingen-Heidelberg, 1960.
[10] K. Noshiro, Some remarks on cluster sets, J. Analyse Math. 19(1967), 283-294.
[11] F. AND M. RIESZ, Über die Randwerte einer analytischen Funktion, 4. Congr. Math. Scand. Stockholm (1916), 27-47.
[12] L. SARIO AND K. NOSHIRO, Value distribution theory, D. Van Nostrand company, Inc., 1966.
[13] M. Tsuji, On the cluster set of a meromorphic function, Proc. Japan Acad., 19(1940), 60-65.

Department of Mathematics
Mryagi University of Education
SEndaI, JAPAN

