Tôhoku Math. Journ. 21(1969), 456-466.

SOME FUNCTION-THEORETIC NULL SETS

AKIRA SAGAWA

(Received February 22, 1969)

1. Let E be a totally disconnected compact set in the complex z-plane and let G be the complementary domain of E with respect to the extended z-plane. Consider a domain in G whose relative boundary consists of at most a countable number of analytic curves clustering nowhere in G. Such a domain is called a subregion in G. If for any subregion in G there exists no nonconstant single-valued bounded analytic function whose real part vanishes continuously on its relative boundary, then the set E is said to be in the class N_B° .

It is known that if E is of logarithmic capacity zero, then E belongs to the class N_B^0 and that there exists a compact set of positive logarithmic capacity and belonging to N_B^0 (Kuroda [5]).

It is also known that there exists no non-constant single-valued bounded analytic function in the complementary domain of $E \in N_B^0$, that is, N_B^0 is a subclass of the class N_B in the sense of Ahlfors-Beurling [1].

If E is of logarithmic capacity zero, then there exists an Evans-Selberg's potential which is harmonic in G except at $z=\infty$ and whose boundary value at every point of E is positively infinite. Such a function plays an important role to study the covering property of meromorphic functions in G.

In this paper, we shall treat Noshiro's theorem on cluster sets [10] in detail. In §2, by the argument due to Matsumoto [7], we shall give a sufficient condition in order that there exists an analogous function to an Evans-Selberg's potential in the subregion inside G. As its application, in §3 we shall prove a theorem which is an improvement of Noshiro's theorem [10] on cluster sets under the so-called Hervé's condition. §4 is devorted to show that in the theorem, Hervé's condition can not be dropped. In Appendix, Kuroda's criterion for E to be in the class N_B^0 is proved in a correct form.

2. First we shall prove the following.

THEOREM 1. If E is a compact set of the class N_B^0 , then any closed subset E_0 of E is also in the class N_B^0 .

PROOF. Contrary to the assertion, we suppose that there exists a closed subset E_0 of E not belonging to N_B^0 .

We denote by G and G_0 the complementary domains of E and E_0 with respect to the extended z-plane, respectively. Then there exist a subregion Δ_0 in G_0 , whose boundary consists of a closed subset of E_0 and the relative boundary γ_0 , and a non-constant single-valued bounded analytic function f(z)in Δ_0 whose real part vanishes continuously on γ_0 . We put

$$\gamma_{\scriptscriptstyle 0} - \gamma_{\scriptscriptstyle 0} \cap \, E = \gamma \hspace{0.5cm} ext{and} \hspace{0.5cm} \Delta_{\scriptscriptstyle 0} - \Delta_{\scriptscriptstyle 0} \cap \, E = \Delta \, .$$

It is obvious that Δ is a subregion in G with the relative boundary γ and the above function f(z) is also non-constant, single-valued, bounded and analytic in Δ and the real part of f(z) vanishes continuously on γ . Hence the set E does not belong to N_B^0 , which is a contradiction.

Using Theorem 1, we can get the following theorem.

THEOREM 2. If Δ is a subregion in G whose boundary consists of the relative boundary γ and a compact set E^* belonging to N_B^0 and if each point of E^* belongs to a non-degenerate boundary continuum of Δ , then there exists a positive harmonic function u(z) in $\Delta \cup \gamma$ whose boundary value at each point of E^* is positively infinite.

PROOF. We denote by $\{D_n\}$ $(n = 1, 2, \dots)$ the sequence of such complementary continua of Δ with respect to the extended z-plane that for each n, the boundary of D_n contains at least one point of E^* . Let Δ_n $(n=1, 2, \dots)$ be the complementary domain of D_n with respect to the extended z-plane.

Since D_n is a non-degenerate continuum by our assumption, Δ_n is a simply connected domain of hyperbolic type containing Δ . The boundary of Δ_n consists of a part γ_n of γ and a compact subset E_n of E^* and clearly

$$E^* = \bigcup_{n=1}^{\infty} E_n \, .$$

Since E_n belongs to N_B^0 from Theorem 1, the harmonic measure of E_n with respect to the simply connected domain Δ_n vanishes (cf. Kuroda [5]). Therefore, by virtue of a theorem due to F. and M. Riesz [11], there exists a function $u_n(z)$ such that $u_n(z)$ is positive and harmonic in $\Delta_n \cup \gamma_n$ and such that the boundary value of $u_n(z)$ at every point of E_n is positively infinite. Further, we can find a sequence $\{c_n\}$ $(n = 1, 2, \dots)$ of positive numbers such that the series $\sum_{n=1}^{\infty} c_n u_n(z_0)$ converges at a fixed point z_0 in Δ .

By Harnack's principle, the series $\sum_{n=1}^{\infty} c_n u_n(z)$ converges uniformly to a

limiting function u(z) on any compact subset of $\Delta \cup \gamma$. It is evident that u(z) satisfies the condition of the theorem.

3. Let D be a domain on the z-plane, Γ its boundary, E a totally disconnected compact set contained in Γ and z_0 a point of E such that $U(z_0) \cap (\Gamma - E) \neq \emptyset$ for every neighborhood $U(z_0)$ of z_0 . Let f(z) be a non-constant, single-valued and meromorphic function in D. Suppose that the set $\Omega = C_D(f, z_0) - C_{\Gamma - E}(f, z_0)$ is not empty. Here $C_D(f, z_0)$ and $C_{\Gamma - E}(f, z_0)$ are the interior cluster set and the boundary cluster set of f(z) at z_0 (cf. Noshiro [9]).

The following was proved by Tsuji [13]:

If E is of logarithmic capacity zero, then Ω is an open set and $\Omega - R_D(f, z_0)$ is at most of logarithmic capacity zero. Here $R_D(f, z_0)$ is the range of values of f(z) at z_0 (cf. Noshiro [9]).

Noshiro [10] considered the case of $E \in N_B^0$ and proved the following :

If E belongs to the class N_B^0 , then Ω is an open set and $\Omega - R_D(f, z_0)$ is an at most countable union of sets of the class N_B .

Now we prove the following as an application of Theorem 2.

THEOREM 3. If E belongs to the class N_B^0 and if each point of E belongs to a non-degenerate boundary continuum of D, then the set $\Omega - R_D(f, z_0)$ is of logarithmic capacity zero.

REMARK. The second assumption that each point of E belongs to a non-degenerate boundary continuum of D, is called Hervé's condition for E (cf. Hervé [3]).

PROOF. We follow an argument due to Noshiro [9].

We denote by e_n $(n=1, 2, \dots)$ the set of values in Ω which f(z) does not take in $\{z \mid |z-z_0| < 1/n\} \cap D$. Then it is easy to see that e_n is a closed set with respect to Ω , $e_n \subset e_{n+1}$ and $\Omega - R_D(f, z_0) = \bigcup_{n=1}^{\infty} e_n$. So, if we suppose the contrary to the assertion, then there exists a set e_n of positive logarithmic capacity.

We can find a point $w_0 \in e_n$ such that for any positive number ρ the part of e_n contained in the disc $|w-w_0| < \rho$ is of positive logarithmic capacity. We select a positive number r such that the circle $K: |z-z_0| = r$ does not intersect E and $f(z) \neq w_0$ on $K \cap D$ and such that w_0 does not belong to the closure M_r of $\bigcup_{\zeta} C_D(f, \zeta)$ for ζ belonging $(\Gamma - E) \cap (\overline{K})$, where (\overline{K}) denotes

the closure of the interior (K) of K.

We can choose a positive number ρ_0 less than the distance of w_0 from M_r such that $|f(z) - w_0| > \rho_0$ on $K \cap D$. Since $w_0 \in C_D(f, z_0)$, the function w = f(z) takes a value belonging to $(c): |w - w_0| < \rho_0$ at $z_1 \in (K) \cap D$. We consider the component Δ of the inverse image of (c) inside $(K) \cap D$ by w = f(z) which contains the point z_1 . Obviously, Δ is a subregion in the complementary domain of E with respect to the extended z-plane and the boundary of Δ consists of a closed subset E^* of E and at most a countable number of analytic curves γ .

Since, by the assumption, Δ satisfies the condition of Theorem 2, there exists a positive harmonic function u(z) in $\Delta \cup \gamma$ having the positively infinite boundary value at each point of E^* .

Since $(c) \cap e_n$ is of positive logarithmic capacity, we can find a closed subset e of $(c) - e_n$ such that e is of positive logarithmic capacity. So there exists a positive bounded harmonic function $\omega(w)$ in (c)-e which vanishes continuously on the circle $c: |w-w_0| = \rho_0$. We consider the composed function $\omega(f(z))$ in Δ .

By the maximum principle, we have

$$\omega(f(z)) \leq rac{u(z)}{\lambda}$$

in Δ for any positive number λ , whence follows that $\omega(f(z)) \equiv 0$ in Δ . Thus we arrive at a contradiction.

4. In the next section we shall show that Herve's condition in Theorem 3 can not be dropped.

For the purpose, first we prepare an example which guarantees the existence of a compact set E of positive logarithmic capacity which belongs to N_B° and of a single-valued meromorphic function f(z) in the complementary domain D of E such that f(z) has an essential singularity at every point of E and such that the set of exceptional values of f(z) in Picard's sense at each point of E is of positive logarithmic capacity but belongs to N_B^0 . This example was used for the other purpose in [6].

Consider a general Cantor set $E(p_1, p_2, \dots)$ on the w-plane. This set is constructed as follows.

Let $p_n \ (n \ge 1)$ be a positive number greater than 1 and delete an open interval with length $1-1/p_1$ from the closed interval $I_0 = \left[-\frac{1}{2}, \frac{1}{2}\right]$ on the real axis of the w-plane so that there remains the closed set I_1 which consists of two closed intervals I_1^i (i=1,2) with equal length $l_1 = 1/2p_1$. In general, if I_n consists of closed intervals I_n^i $(i=1, 2, \dots, 2^n)$ of equal length

every I_n^i so that there remain two closed intervals I_{n+1}^{2i-1} , I_{n+1}^{2i} $(i=1,\dots,2^n)$ with equal length $1/(2^{n+1}p_1\cdots p_{n+1})$.

The set $E(p_1, p_2, \cdots)$ is the set of intersection $\bigcap_{n=1}^{\infty} I_n$. It is known that $E(p_1, p_2, \cdots)$ is of positive logarithmic capacity if and only if

(1)
$$\sum_{n=1}^{\infty} \frac{\log p_n}{2^n} < +\infty$$

(cf. Nevanlinna [8]).

Denote by F the complementary domain of $E(p_1, p_2, \dots)$ with respect to the extended w-plane.

We describe circles

$$K_0^1: |w| = 1, K_n^i: |w - w_n^i| = r_n \quad (n \ge 1, 1 \le i \le 2^n)$$

in F where w_n^i is the middle point of I_n^i , $r_n = \frac{1}{2^n p_0 p_1 \cdots p_{n-1}} \left(1 - \frac{1}{2p_n}\right)$ and $p_0 = 1$.

Clearly K_n^{2i-1} and K_n^{2i} are tangent outside each other and if

(2)
$$1+2p_{n-1}p_n>3p_n \quad (n\geq 2),$$

then K_n^{2i-1} and K_n^{2i} are enclosed by K_{n-1}^i $(1 \leq n, 1 \leq i \leq 2^{n-1})$. Let F_n^i be the doubly connected domain surrounded by three circles K_n^{2i-1} , K_n^{2i} and K_{n-1}^i $(n \geq 1)$ and let F_n be the domain bounded by $\bigcup_{i=1}^{2^n} K_n^i$ and containing the point $z = \infty$ in its interior. We make a slit L_n^i in every F_n^i such that L_n^i is contained in $|w - w_{n-1}^i| \leq 2r_n \ (w_0^1 = 0)$ and such that only one end point of L_n^i lies on $K_n^{2i-1} \cup K_n^{2i}$. We put

$$F^{0} = F - \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i} - L_{0}^{1},$$

$$F_{k}^{1} = F - \bigcup_{n=2}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i} - L_{1}^{k}, (k=1,2^{m}),$$

$$\cdots \cdots ,$$

$$F_{k}^{m} = F - \bigcup_{n=m+1}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i} - L_{m}^{k}, (k=1,\cdots,2^{m}),$$

.

First we connect two replicas of F^0 with each other crosswise across the slit L_0^1 and denote by \widehat{F}^0 the resulting surface which has two free slits corresponding to every L_1^k (k=1,2). Next we take a replica of F_k^1 and connect it with \widehat{F}^0 crosswise across a free slit corresponding to L_1^k (k=1,2). Doing this for every free slits of \widehat{F}^0 corresponding to L_1^k (k=1,2), we get the resulting surface \widehat{F}^1 which has 2(1+2) sheets and 2(1+2) free slits corresponding to each L_2^k $(k=1,\dots,2^2)$. In general, we connect a replica of F_k^n with \widehat{F}^{n-1} crosswise across a free slit corresponding to L_n^k and proceed this for all slits of \widehat{F}^{n-1} corresponding to L_n^k $(k=1,\dots,2^n)$. Thus we get the surface \widehat{F}^n with $\prod_{i=0}^n (1+2^i)$ sheets.

Continuing the procedure infinitely, we obtain the surface \widehat{F} of planar character which covers no point of the set $E(p_1, p_2, \cdots)$.

This surface \widehat{F} is considered as a limiting surface of \widehat{F}^n and every \widehat{F}^n is a subdomain of \widehat{F} . Denote by \widehat{F}_n the part of \widehat{F}^n lying over F_{n+1} .

It is not so difficult to see that $\{\widehat{F}_n\}_{n=1}^{\infty}$ is an exhaustion of \widehat{F} and that the number N(n) of doubly connected components \widehat{F}_n^i of $\widehat{F}_{n+1} - \overline{\widehat{F}}_n$ equals $2^n \prod_{i=0}^{n-1} (1+2^i).$

Denote $\log \mu_n^i$ the harmonic modulus of \widehat{F}_n^i . Putting $\log \nu_n = \min_i \log \mu_n^i$, we easily have

$$\log \nu_n > \log \frac{r_n}{2r_{n+1}},$$

because \widehat{F}_n^i contains the univalent annulus lying over $2r_{n+2} < |w - w_{n+1}^i| < r_{n+1}$. Therefore, we have

$$\sum_{i=0}^{n} \log \nu_{i} - \log N(n) > \log(p_{1} p_{2} \cdots p_{n+1}) - \frac{n(n+1)}{2} \log 2 + \log \frac{1 - \frac{1}{2p_{1}}}{1 - \frac{1}{2p_{n+2}}}.$$

So, if we take p_n as such as

$$(3) p_n = 2^{(n+1)^2},$$

then (1) and (2) are valid and

$$\lim_{n\to\infty}\left\{\sum_{i=0}^n\log\nu_i-\log N(n)\right\}=+\infty \text{ and } \lim_{n\to\infty}\log\nu_n=+\infty.$$

Hence, by a criterion proved in Appendix, any subregion on the covering surface \widehat{F} carries no non-constant single-valued bounded analytic function with the real part vanishing continuously on its relative boundary provided that (3) holds.

Now we map \widehat{F} onto a domain G on the extended z-plane in a one-to-one conformal manner such that G contains the point $z=\infty$. Denote by $\widehat{f(z)}$ the inverse of this conformal mapping.

By the definition the complementary set E of G with respect to extended z-plane belongs to N_B^0 .

We denote by $w = \varphi(p)$ projection of \widehat{F} on the extended w-plane and we put $w = \varphi(\widehat{f}(z)) = f(z)$. It is easy to see that w = f(z) has an essential singularity at every point of E and has the set $E(p_1, p_2, \dots)$ as the set of exceptional values in Picard's sense in any neighborhood of its essential singularities.

Further, as mentioned already, (1) implies that the set $E(p_1, p_2, \dots)$ is of positive logarithmic capacity, so we see from Nevanlinna's theorem [8] that the set E is also of positive logarithmic capacity.

Thus we see that the set E and the function f(z) satisfy the requirements stated in the beginning of this section.

5. From the above example, we can show the fact that Theorem 3 does not hold if we exclude Herve's condition on E.

In fact, we take a circle $K_m^i = K$ in the above example and denote by S a component of $\widehat{F} - \overline{\widehat{F}}_{m-1}$ whose projection lies on the disc (K) bounded by K. The counter image D of S by $\widehat{f}(z)$ is a subregion in G whose boundary consists of a countable number of closed analytic curves Γ and a compact subset E^* of E. Theorem 1 implies that E^* belongs to N_B^i . Each point z_0 of E^* does not satisfy Hervé's condition, because the circle K does not intersect with $E(p_1, p_1, \cdots)$.

Obviously, $C_D(f, z_0)$ is the closed disc (\overline{K}) and $C_{\Gamma-E^*}(f, z_0)$ is the circle K, so $\Omega = C_D(f, z_0) - C_{\Gamma-E^*}(f, z_0)$ is the open disc (K).

Further $\Omega - R_D(f, z_0)$ coincides with the compact set $(K) \cap E(p_1, p_2, \cdots)$ of positive logarithmic capacity.

REMARK. Hällström-Kametani's theorem [2], [4] can be formulated in the following form.

Let E be a compact set of logarithmic capacity zero contained in a domain D. Suppose that w=f(z) is single-valued meromorphic in D-E and has an essential singularity at every point z_0 of E. Then the complement of $R_{D-E}(f, z_0)$ is at most of capacity zero.

By our example, it is immediately seen that in the above Hällström-Kametani's theorem the condition "E is of logarithmic capacity zero" can not be replaced by the condition "E belongs to N_B^{θ} .

APPENDIX

A sufficient condition for a compact set E to belong to N_B° was stated by Kuroda [5], however, as he pointed out, his statement and the proof were incorrect, so here we state a correct form and its proof given by himself. It is quite similar to the proof of a criterion for $E \in N_B$ given in Appendix I of Sario-Noshiro's book [12].

Let E be a totally disconnected compact set in the complex z-plane and let F be the complementary domain of E with respect to the extended z-plane.

Let $\{F_n\}$ $(n=0,1,\dots)$ be an exhaustion of F such that F_n is compact with respect to F and the boundary Γ_n of F_n consists of a finite number of analytic curves in F and such that each connected component of $F-\overline{F}_n$ is non-compact and further such that $F_n \cup \Gamma_n \subset F_{n+1}$.

The open set $F_n - \overline{F}_{n-1}$ $(n \ge 1)$ consists of a finite number of connected components F_n^k $(k=1, 2, \dots, N(n))$. We denote by $\log \mu_n^k$ the harmonic modulus of F_n^k and we put $\max_{1\le k\le N(n)} \mu_n^k = \log \nu_n$.

THEOREM A. If there exists an exhaustion of the complementary domain of E such that, for a positiv constant δ ,

$$\log \nu_i > \delta$$
 $(j = 1, 2, \cdots)$

and

$$\limsup_{n\to\infty}\left\{\sum_{i=1}^n\log\nu_i-\log N(n)\right\}=+\infty\,,$$

then E belongs to N_B^0 .

PROOF. We denote by $\log \mu_n$ the harmonic modulus of $F_n - \overline{F}_{n-1}$ and consider the graph $0 < u(z) < R = \sum_{n=1}^{\infty} \log \mu_n$, $0 < v(z) < 2\pi$ associated with the exhaustion $\{F_n\}$ $(n=0, 1, \cdots)$ in the sense of Noshiro [9].

The niveau curve $\gamma_r: u(z) = r \ (0 < r < R)$ consists of a finite number of analytic closed curves γ_r^i $(i=1, 2, \dots, m(r))$.

We put

$$\Lambda_i(r) = \int_{\gamma_r^i} dv$$
, $\max_{1 \leq i \leq m(r)} \Lambda_i(r) = \Lambda(r)$ and $\tau_n = \sum_{j=1}^n \log \mu_j$.

Suppose that there exists a non-compact subregion Δ on F with the relative boundary C and a non-constant single-valued bounded analytic function f(z) in Δ whose real part U(z) vanishes continuously at every point on C.

We denote by Δ_r the open subset of Δ , where u(z) < r. The part θ_r of the niveau curve γ_r contained in Δ consists of a finite number of components θ_r^i $(i=1, 2, \dots, n(r))$. We set $\Theta(r) = \max_{1 \le i \le n(r)} \int_{\frac{1}{2}} dv$.

If we denote by D(r) the Dirichlet integral of f(z) taken over Δ_r , then the argument of Kuroda [5] yields

$$e^{2\pi \int_{0}^{r} \frac{dr}{\Theta(r)}} \leq \frac{D(r)}{D(0)}.$$

Since $\Theta(r) \leq \Lambda(r)$, it follows that

$$e^{2\pi \int_0^{\cdot} \frac{dr}{A(r)}} \leq \frac{D(r)}{D(0)}.$$

On the other hand, it holds that

$$\frac{d}{dr}\left(\int_{\ell_{r}}U^{2}dv\right)=2\int_{\theta_{r}}U\frac{\partial U}{\partial u}\,ds=2D(r)$$

for $\tau_{n-1} < r < \tau_n$ $(n=1, 2, \cdots)$, whence follows that

$$\int_{\tau_{n-1}}^{\tau_n} D(r) dr = \lim_{\to \tau_n = 0} \int_{\theta_r} U^2 dv - \lim_{r \to \tau_{n-1} + 0} \int_{\theta_r} U^2 dv \leq 2\pi M^2,$$

where $M = \max_{\mathbf{A}} |U|$.

Therefore, we have

$$(*) \qquad \qquad \int_{\tau_{n-1}}^{\tau_n} e^{2\pi \int_0^r \frac{dr}{d(r)}} dr \leq \frac{2\pi M^2}{D(0)} \,.$$

It is evident that

$$\Lambda_{i}(r) \leq 2\pi \frac{\log \mu_{j}}{\log \mu_{j}^{k}} \leq 2\pi \frac{\log \mu_{j}}{\log \nu_{j}}$$

for $\gamma_r^i \subset F_j^k$. Hence, we have

$$\int_{0}^{r} \frac{dr}{\Lambda(r)} \geq \frac{1}{2\pi} \sum_{j=1}^{n-1} \log \nu_{j} + \frac{1}{2\pi} \frac{\log \nu_{n}}{\log \mu_{n}} (r - \tau_{n-1})$$

for $au_{n-1} < r < au$, and

$$\int_{\boldsymbol{\tau}_{n-1}}^{\boldsymbol{\tau}_n} e^{\frac{2\pi}{\int_0^r \frac{dr}{\mathcal{A}(r)}}} dr \geq \frac{\log \mu_n}{\log \nu_n} e^{\sum_{j=1}^n \log \nu_j} (1 - e^{-\log \nu_n}).$$

$$\frac{1}{\log \mu_n} = \sum_{k=1}^n \frac{1}{\log \mu_n^k} \leq \frac{N(n)}{\log \nu_n},$$

(**)
$$\int_{\mathbf{\tau}_{i-1}}^{\mathbf{\tau}_{n-2\pi}} e^{\sum_{j=1}^{n} \log \nu_{j} - 1 \mathbf{g} N(n)} (1 - e^{-\delta})$$

By (*), (**) and the assumption of theorem, E belongs to N_{B}° . From the proof of Theorem A, we can get easily the following theorem.

•

THEOREM B. If there exsists an exhaustion of the complementary domain of E such that

$$\limsup_{n\to\infty}\int_{\tau_{n-1}}^{\tau_n} e^{2\pi\int_{t_n}^{\tau} \frac{dr}{dr}} dr = +\infty,$$

then E belongs to N_{B}^{0} .

References

- L. V. AHLFORS AND A. BEURLING, Conformal invariants and function-theoretic null-sets, Acta Math., 83(1950), 101-129.
- [2] G.AF HÄLLSTRÖM, Über meromorphe Funktionen mit mehrfach zusammenhängenden Existenzgebieten, Acta Acad. Abo. Math. et Phys., 12(1939), 5-100.
- [3] M. HERVÉ, Sur les valeurs omises par une fonction méromorphe, C. R. Acad. Sci. (Paris), 240(1955), 718-720.
- [4] S. KAMETANI, The exceptional values of functions with set of essential singularities, Proc. Japan Acad., 17(1941), 429-433.

Since

- [5] T.KURODA, On analytic functions on some Riemann surfaces, Nagoya Math. J., 10(1956), 27-50.
- [6] T. KURODA AND A. SAGAWA, Remark on the Gross property, Tôhoku Math. J., 20(1968), 394-399.
- [7] K. MATSUMOTO, Positively infinite singularities of superhamonic function, Nagoya Math. J., 31(1968), 90-96.
- [8] R. NEVANLINNA, Eindeutige analytishe Funktionen, Springer-Verlag. Berlin-Göttingen-Heidelberg, 1953.
- [9] K. NOSHIRO, Cluster sets, Springer-Verlag. Berlin-Göttingen-Heidelberg, 1960.
- [10] K. NOSHIRO, Some remarks on cluster sets, J. Analyse Math. 19(1967), 283-294.
- [11] F. AND M. RIESZ, Über die Randwerte einer analytischen Funktion, 4. Congr. Math. Scand. Stockholm (1916), 27-47.
- [12] L. SARIO AND K. NOSHIRO, Value distribution theory, D. Van Nostrand company, Inc., 1966.
- [13] M. TSUJI, On the cluster set of a meromorphic function, Proc. Japan Acad., 19(1940), 60-65.

DEPARTMENT OF MATHEMATICS MIYAGI UNIVERSITY OF EDUCATION SENDAI, JAPAN