Tôhoku Math. Journ. 21(1969), 448-450

NOTE ON THE RE-TOPOLOGIZATION OF A SPACE BY A SET OF OPERATORS

Yoshio Itagaki

(Received November 6, 1968)

Let $\{T_i\}$ $(i \in A)$ be a set of linear operators in a locally convex vector space E. In [2], M. Nagumo tried to adopt a new topology on E, which makes each T_i be continuous and makes it possible to extend T_i on all elements of E. His method is a generalization of a so-called Lax's negative norms. As the special cases of it we get Schwartz's distribution space and others. The purpose of this paper is to weaken the condition on E supposed by M. Nagumo. It may be said that our proof corresponds naturally to the technique used in the extension of differential operators.

As J. E. Roberts noted in [4], in particular taking a countable set of closed operators in a Hilbert space, we meet with a countably Hilbert space in the sense of Gel'fand [1]. We note here that the converse is also true, more precisely, that the topology of any countably Hilbert space can be constructed as the projective limit by a set of self-adjoint operators in a Hilbert space.

Let E be a separated locally convex vector space and $\{T_i\}$ $(i \in A)$ be a set of linear operators from E to E. We assume that $D(T_i)$, the domain of each T_i , is dense in E and that the set $\{T_i\}$ contains identity operator I. We shall from now onwards take the set of operators satisfying the following condition:

(C). $F = \bigcap_{i \in A} D(T_i')$ is total over *E*, i.e., the element *x* of *E*, for which $\langle f, x \rangle = 0$ for all *f* of *F*, is zero element. Here by T'_i we denote the transpose of T_i .

If the set $D(T_i)$ is total over E, T_i is a pre-closed operator. Therefore when the above condition is satisfied, all T_i are pre-closed. For the reflexive space E condition (C) means that F is dense in E', the dual space of E. Here the dual space of E is considered under the strong topology $\beta(E', E)$. We shall denote it by E'_{β} later.

Our main problem is to introduce a suitable topology in E and to make any T_i continuous from $D_i = D(T_i)$ to E. In that case, space E under such a topology we denote by \widehat{E} , and write completion of \widehat{E} by \widetilde{E} . Then, under the some condition on $\{T_i\}$, T_i can be uniquely extended to continuous operators on \widetilde{E} .

THEOREM 1. Suppose that E is a quasi-t-space, i.e., every strongly bounded set in E'_{β} is equi-continuous. Then, under the condition (C), we can give a new topology to E, in such a way that all T_i will be continuous from E with the primary topology into \widehat{E} , E with new topology.

We remark here that bornological or barreled space is quasi-t-space. M. Nagumo proved this theorem for the bornological space.

PROOF. Since E is a quasi-t-space, natural embedding π from E to $E'' = (E'_{\beta})'_{\beta}$, the bidual of E, is a topological isomorphism [5, p. 71]. We introduce on F the coarsest convex topology which makes every T'_i to be a continuous operator from F to E'_{β} , and write F with this topology by \widehat{F} . That is, the topology on F is the projective topology with respect to $\{\{E'_{\beta},T'_i\}i \in A\}$ [5, p. 84]. By the assumption that $\{T_i\}$ contains I, the topology of \widehat{F} is finer than that of E'_{β} and so \widehat{F} is separated. Any T''_i , the transpose of T'_i , the operator from E'' to \widehat{F}'_{β} , is strongly continuous. We restrict the domain of T''_i to $\pi(D_i)$. When we identify $\pi(D_i)$ to D_i , T''_i and T_i become algebraically equivalent. This fact is assured by that F is total over E. The space E, considered as a subspace of \widehat{F}'_{β} , is denoted by \widehat{E} . This space satisfies the condition of the theorem.

THEOREM 2. In Theorem 1, let \widehat{D}_i be the space D_i with relative topology induced by \widehat{E} , and assume that for any $i, j \in A$ there exists $k \in A$ satisfying $T_j(T_i)x = T_kx$ for any x of D_i . Then any T_i is a continuous operator from \widehat{D}_i to \widehat{E} , therefore uniquely can be extended to a continuous operator on \widetilde{E} , which denotes the completion of \widehat{E} .

PROOF. As \widehat{F} has the projective limit topology with respect to the mappings $\{\{E'_{\beta}, T'_i\}i \in A\}, T'_i: \widehat{F} \to \widehat{F}$ are continuous if and only if $T'_i, T'_i: \widehat{F} \to \widehat{E}'_{\beta}$ are continuous for all $j \in A$ [5, p. 84]. This latter condition is satisfied by the hypothesis. Thus all T'_i are continuous from \widehat{F} to \widehat{F} , so that all T''_i are also continuous, a fortiori T''_i restricted to \widehat{D}_i .

The validity of last part of the theorem follows from the fact that D_i is dense in E and E is dense in \widetilde{E} , so \widehat{D}_i dense in \widetilde{E} .

THEOREM 3. If \widehat{F} is reflexive and \widehat{F}_{β} is complete, \widetilde{E} is the dual space

of \widehat{F} .

PROOF. \widehat{E} is a linear subspace of \widehat{F}_{β} , and by assumption \widetilde{E} is also a subspace of \widehat{F}_{β} . If $\widetilde{E} \neq \widehat{F}_{\beta}$, there exists f, a non-zero element of $(\widehat{F}_{\beta})' = \widehat{F}$, such that $\langle f, x \rangle = 0$ for all x of \widetilde{E} . But this is impossible since $f \in \widehat{F} \subset E'$ and $E \subset \widetilde{E}$.

It must be remarked that if \widehat{F} is bornological, its dual space \widehat{F}_{β} is complete [5, p. 104]. Fréchet space is bornological, and Fréchet space very well arises in application in the following form [3].

THEOREM 4. Let E be a reflexive Banach space and A be a countable set. Then \widehat{F} constructed above is a reflexive Frèchet space.

PROOF. As the transpose of every T_i is a closed operator and $\{T_i\}$ contains I, \hat{F} is isomorphic to a closed subspace of the product $\prod_{i \in A} E'_i$, where $E'_i = E'_\beta$ [5, p.88]. Since E'_β is a reflexive Banach space, $\prod_{i \in A} E'_i$ is reflexive and therefore \hat{F} is also reflexive Fréchet space.

Acknowledgement. I wish thank Professor M. Fukamiya for useful suggestions and Professor J. E. Roberts who kindly corrected errors in a previous version.

REFERENCES

- [1] I. M. GEL'FAND AND N. YA. VILENKIN, Generalized Functions, Vol. 4, (English translation) Academic Press, 1964.
- [2] M. NAGUMO, Re-topologization of functional space in order that a set of operators will be continuous, Proc. Japan Acad., 37(1961), 550-552.
- [3] M. NAGUMO, Re-topologization for continuity of a set of operators, Sûgaku, 14-3(1963), 164-166.
- [4] J. E. ROBERTS, Rigged Hilbert spaces in quantum mechanics, Comm. Math. Phys., 3(1966), 98-119.
- [5] A.P. AND W. J. ROBERTSON, Topological Vector Spaces, Cambridge, 1967.

DEPARTMENT OF MATHEMATICS MIYAGI UNIVERSITY OF EDUCATION SENDAI, JAPAN

450