ON TRIGONOMETRIC FOURIER COEFFICIENTS

Shigeru Takahashi

(Received September 29, 1968)

1. Intrducition. In [1] we have proved the

THEOREM A. Let $\left\{n_{k}\right\}$ be a sequence of positive integers and $\left\{a_{k}\right\}$ a sequence of non-negative real numbers satisfying

$$
\begin{aligned}
& n_{k+1} \geqq n_{k}\left(1+c k^{-\alpha}\right), \quad(c>0 \text { and } 0 \leqq \alpha \leqq 1 / 2), \\
A_{N}^{2}= & 2^{-1} \sum_{k=1}^{N} a_{k}^{2} \rightarrow+\infty \text { and } a_{N}=O\left(A_{N} N^{-\alpha}\right), \quad \text { as } N \rightarrow+\infty .
\end{aligned}
$$

Then for any sequence of real numbers $\left\{\alpha_{k}\right\}$ the trigonometric series $\Sigma a_{k} \cos \left(n_{k} x+\alpha_{k}\right)$ diverges a.e. and also is not a Fourier series.

This theorem was first proved by A. Zygmund for the case $\alpha=0$, where $\left\{n_{k}\right\}$ has the Hadamard gap and the condition $a_{N}=O\left(A_{N}\right)$, as $N \rightarrow+\infty$, holds (cf. [2] p. 203).

The purpose of the present note is to prove the following
THEOREM B. Let $r, 1 \leqq r<2$, be any given constants and (c, α) any pair of constants such that

$$
\begin{equation*}
(c>0 \quad \text { and } \quad 0 \leqq \alpha<1) \quad \text { or } \quad(c \geqq 1 \quad \text { and } \alpha=1) . \tag{1.1}
\end{equation*}
$$

If a sequence of positive integers $\left\{n_{k}\right\}$ and a sequence of non-negative real numbers $\left\{a_{k}\right\}$ satisfy the conditions

$$
\begin{equation*}
n_{k+1} \geqq n_{k}\left(1+c k^{-\alpha}\right), \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
A_{N}^{2}=2^{-1} \sum_{k=1}^{N} a_{k}^{2} \rightarrow+\infty \quad \text { and } \quad a_{N}=O\left(A_{N}^{2 /(2-r)} N^{-\alpha}\right),{ }^{1)} \text { as } N \rightarrow+\infty \text {, } \tag{1.3}
\end{equation*}
$$

1) If $r=1, a=1$ and $\lim _{N \rightarrow \infty} a_{N}=0$, the condition $a_{N}=O\left(A_{N}^{2} N^{-1}\right)$, as $N \rightarrow+\infty$, is impossible.
then for any $\left\{\alpha_{k}\right\}$ the series $\sum a_{k} \cos \left(n_{k} x+\alpha_{k}\right)$ is not a Fourier series of a function of $L_{r}(0,2 \pi)$.

Remark. Putting $n_{k}=k$, then $n_{k+1} \geqq n_{k}\left(1+k^{-1}\right)$, for all k.
If $1<r<2$ and $0 \leqq \alpha<1$, there exists $\left\{a_{k}\right\}$ for which the conditions of Theorem B are satisfied and $\Sigma\left|a_{k}\right|^{r /(r-1)}<+\infty$. But if $1<r<2$ and $\alpha=1$, there exists $\left\{a_{k}\right\}$ which does not satisfy the conditions of Theorem B and $\Sigma\left|a_{k}\right|^{r /(r-1)}$ $=+\infty$. (cf. Lemma 3).

On the conditions of Theorem B we can show the following

Proposition. Let $1 \leqq r<2, c>0$ and $0<\alpha \leqq 1 / 2$ and let $\{\boldsymbol{\phi}(n)\}$ be any given sequence of positive numbers with $\lim _{n \rightarrow \infty} \varphi(n)=+\infty$. Then there exist $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$ for which the conditions

$$
\begin{gathered}
n_{k+1} \geqq n_{k}\left(1+c k^{-\alpha}\right), \\
A_{N}^{2}=2^{-1} \sum_{k=1}^{N} a_{k}^{2} \rightarrow+\infty \text { and } a_{N}=O\left(A_{N}^{2 /(2-r)} \varphi(N) N^{-\alpha}\right) \text {, as } N \rightarrow+\infty,
\end{gathered}
$$

are satisfied and the series $\sum a_{k} \cos n_{k} x$ is the Fourier series of a function of $L_{r}(0,2 \pi)$.

By the theorem of W . H. Young it is seen that the above proposition holds for $r=1$ and $n_{k}=k$, that is, $c=1$ and $\alpha=1$ (cf. [2] p. 183 (1.5)).
2. Lemmas of Theorem B. The next lemma is well known.

Lemma 1. If $f(x) \in L_{r}(0,2 \pi), r \geqq 1$, and $\sigma_{n}(x ; f)$ denotes the n-th $(C, 1)$ mean of the Fourier series of $f(x)$, then $\lim _{n \rightarrow \infty} \sigma_{n}(x ; f)=f(x)$ holds in the sense of L_{r}-norm.

Lemma 2. For any trigonometric series $\Sigma c_{k} \cos \left(k x+\gamma_{k}\right)$ put

$$
D_{0}(x)=\sum_{k \leqq 2} c_{k} \cos \left(k x+\gamma_{k}\right) \text { and } D_{m}(x)=\sum_{k=2^{m}+1}^{2^{m+1}} c_{k} \cos \left(k x+\boldsymbol{\gamma}_{k}\right),(m \geqq 1) .
$$

Then there exists a constant C_{0} such that

$$
\int_{0}^{2 \pi}\left\{\sum_{m=0}^{N} \mid D_{m}(x)\right\}^{4} d x \leqq C_{0} \int^{2 \pi}\left\{\sum_{m=0}^{N} D_{m}^{2}(x)\right\}^{2} d x,(N \geqq 0)
$$

and also the constant C_{0} does not depend on the series.
Lemma 2 is a special case of Theorem (2.1) on p. 224 in [3].
Lemma 3. If $f(x) \in L_{r}(0,2 \pi), 1<r<2$, and $f(x) \sim \Sigma c_{k} \cos \left(k x+\gamma_{k}\right)$, then there exists a constant C_{0} such that

$$
\left(\sum\left|c_{k}\right|^{r /(r-1)}\right)^{(r-1) / r} \leqq C_{0}\left\{\int_{0}^{2 \pi}|f(x)|^{r} d x\right\}^{1 / r} .
$$

Lemma 3 is a part of the well known theorem of Hausdorff and Young.
A sequence of functions $\left\{f_{n}(x)\right\}$ defined over the interval $(0,2 \pi)$ is said to be uniformly integrable on the interval if the sequence $\int_{0}^{2 \pi}\left|f_{n}(x)\right| d x$ is bounded and if $\lim _{n \rightarrow \infty} \int_{E_{n}}\left|f_{n}(x)\right| d x=0$ for every sequence of measurable set $\left\{E_{n}\right\}$ satisfying $\lim _{n \rightarrow \infty}\left|E_{n}\right|=0^{2)}$ and $E_{n} \subset(0,2 \pi)$.

Lemma 4. If a uniformly integrable sequence of functions $\left\{f_{n}(x)\right\}$ defined on the interval $(0,2 \pi)$ converges in measure to 0 , then we have $\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} f_{n}(x) d x$ $=0$.

Proof. Let $\varepsilon>0$, and set $E_{n}=\left\{x ; x \in(0,2 \pi),\left|f_{n}(x)\right|>\varepsilon\right\}$. Since $\lim _{n \rightarrow \infty} f_{n}(x)$ $=0$, in measure, we have $\lim _{n \rightarrow \infty}\left|E_{n}\right|=0$: hence, according to our hypothesis, $\lim _{n \rightarrow \infty} \int_{E_{n}}\left|f_{n}(x)\right| d x=0$. Now we have $\int_{E_{n}^{c}}\left|f_{n}(x)\right| d x \leqq 2 \pi \varepsilon$ and $\int_{0}^{2 \pi}\left|f_{n}(x)\right| d x$ $=\int_{E_{n}}\left|f_{n}(x)\right| d x+\int_{E_{n}^{c}}\left|f_{n}(x)\right| d x$, and this finishes the proof.
3. Preparations for the Proof of Theorem B. In this paragraph we assume that sequences $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$ satisfy the conditions of Theorem B. First we put

[^0]\[

$$
\begin{equation*}
p(0)=0 \text { and } p^{\prime}(k)=\max \left\{m ; n_{m} \leqq 2^{k}\right\},{ }^{3)} k \geqq 1 . \tag{3.1}
\end{equation*}
$$

\]

If $p^{\prime}(k)+1<p(k+1)$, then from the definition of $p^{\prime}(k)$ we have

$$
2>n_{p(k+1)} / n_{p(k)+1} \geqq \prod_{m=p(k)+1}^{p(k+1)-1}\left(1+c m^{-\alpha}\right),
$$

and this implies that

$$
\left\{\begin{array}{l}
2 \geqq 1+c\{p(k+1)-\neq(k)-1\} p^{-\alpha}(k+1), \text { for } \alpha<1 \\
5 / 2 \geqq p^{\prime}(k+1) /\{p(k)+1\}, \text { for } \alpha=1 \text { and } k \geqq k_{0}
\end{array}\right.
$$

Therefore we have

$$
\begin{equation*}
p^{\prime}(k+1)-p(k)=O\left(p^{\alpha}(k)\right), \quad \text { as } k \rightarrow+\infty \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p(k+1)<3 p^{\prime}(k), \quad \text { for } k \geqq k_{0} \tag{3.3}
\end{equation*}
$$

Lemma 5. For any given integers k, j, q and h satisfying

$$
\left\{\begin{array}{l}
k \geqq j+3, \quad p(j)+1<h \leqq p(j+1) \\
p^{\prime}(k)+1<q \leqq p(k+1)
\end{array}\right.
$$

the total number of solutions $\left(n_{r}, n_{i}\right)$ of the following equations

$$
n_{q}-n_{r}=n_{h} \pm n_{i}, \text { where } p(j)<i<h \text { and } p(k)<r<q,
$$

is at most $C_{0} 2^{j-k} p^{\alpha}(k)$, where C_{0} does not depend on k, j, q and h.
Proof. For any solutions (n_{r}, n_{i}) of the equations, we have

$$
n_{r}=n_{q}-\left(n_{n} \pm n_{i}\right)>n_{q}-2^{j+2}>n_{q}\left(1-2^{j-k+2}\right) \geqq n_{q}\left(1+2^{j-k+3}\right)^{-1} .
$$

Thus, if m_{1} (or m_{2}) denotes the smallest (or the largest) index of n_{r} 's satisfying either of the equations of the lemma, it is seen that

[^1]\[

$$
\begin{gathered}
1+2^{j-k+3}>n_{q} / n_{n_{1}} \geqq n_{m_{2}+1} / n_{m_{1}} \\
\geqq \prod_{k=m_{1}}^{m_{2}}\left(1+c k^{-\alpha}\right) \geqq 1+c\left(m_{2}-m_{1}+1\right) p^{-\alpha}(k+1) .
\end{gathered}
$$
\]

Hence, by (3.3) we can prove the lemma 3.
Next, we put
(3.4) $\left\{\begin{array}{l}T_{N}(x)=\sum_{m=1}^{p(N+1)}\left\{1-n_{m}\left(n_{p(N+1)}+1\right)^{-1}\right\} a_{m} \cos \left(n_{m} x+\alpha_{m}\right), \\ C_{N}^{2}=2^{-1} \sum_{m=1}^{p(N+1)} a_{m}^{2} \text { and } D_{N}^{2}=C_{N}^{2}-C_{N-1}^{2},\end{array}\right.$
that is, $T_{N}(x)$ is the $n_{p(N+1)}-$ th $(C 1)-$ mean of $\Sigma a_{m} \cos \left(n_{m} x+\alpha_{m}\right)$.
Lemma 6. We have

$$
\int_{0}^{2 x}\left\{T_{N}^{4}(x)\right\} d x=O\left(C_{N}^{(8-2 r) /(2-r)}\right) \text {, as } N \rightarrow+\infty .
$$

Proof. If we put, for $k=0,1,2, \cdots, N$, and $N=1,2, \cdots$,

$$
\begin{equation*}
\Delta_{k, N}(x)=\sum_{m=p(k)+1}^{p(k+1)}\left\{1-n_{m}\left(n_{p(N+1)}+1\right)^{-1}\right\} a_{m} \cos \left(n_{m} x+\alpha_{m}\right), \tag{3.5}
\end{equation*}
$$

then by Lemma 2, it is sufficient to show that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left\{\sum_{k=0}^{N} \Delta_{k, N}{ }^{2}(x)\right\}^{2} d x=O\left(C_{N}^{(8-2 r) /(2-r)}\right), \quad \text { as } N \rightarrow+\infty . \tag{3.6}
\end{equation*}
$$

On the other hand we have, by (1.3) and (3.2),

$$
\begin{aligned}
& \max _{k \leqq N} \max _{x}\left|\Delta_{k, N}(x)\right| \leqq \max _{k \leqq N} \sum_{m=p(k)+1}^{p(k+1)}\left|a_{m}\right| \\
& =O\left(\max _{k \leqq N} C_{k^{2 /(2-r)}} p^{-\alpha}(k)\left\{p^{\prime}(\dot{k}+1)-p^{\prime}(k)\right\}\right)=O\left(C_{N}^{2 /(2-r)}\right), \text { as } N \rightarrow+\infty,
\end{aligned}
$$

and hence

$$
\begin{align*}
& \sum_{k=2}^{N} \sum_{j=k-2}^{k} \int_{0}^{3 \pi} \Delta_{k, N}^{2}(x) \Delta_{j, N}^{2}(x) d x=O\left(C_{N}^{4(2-r)} \sum_{k=2}^{N} \int_{0}^{2 \pi} \Delta_{k, N}^{2}(x) d x\right) \tag{3.7}\\
& =O\left(C_{N}^{4 /(2-r)} \sum_{k=2}^{N} D_{k}^{2}\right)=O\left(C_{N}^{(8-2 r) /(2-r)}\right), \quad \text { as } N \rightarrow+\infty
\end{align*}
$$

Further, from the definitions of $\Delta_{k, N}(x)$ and D_{k}, we get

$$
\begin{equation*}
\int_{0}^{2 \pi} \Delta_{k, N}^{2}(x) \Delta_{j, N}^{2}(x) d x \leqq 8 \pi D_{k}^{2} D_{j}^{2}+4 \int_{0}^{2 \pi} V_{k, N}(x) V_{j, N}(x) d x \tag{3.8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
V_{k, N}(x)=\sum_{q=p(k)+2}^{p(k+1)} \sum_{r=p(k)+1}^{q-1} b_{q, N} b_{r, N} \cos \left(n_{q} x+\alpha_{q}\right) \cos \left(n_{r} x+\alpha_{r}\right), \\
b_{m, N}=\left\{1-n_{m}\left(n_{p(N+1)}+1\right)^{-1}\right\} a_{m} .
\end{array}\right.
$$

Applying Lemma 5 to $V_{k, N}(x) V_{j, N}(x), k \geqq j+3$, we obtain

$$
\begin{aligned}
& \left|\int_{0}^{v \pi} V_{k, N}(x) \mathrm{V}_{j, N}(x) d x\right| \\
& \leqq C_{0} 2^{j-k} p^{\alpha}(k) \sum_{q=p(k)+2}^{p(k+1)}\left|a_{q}\right|\left(\max _{p(k)<r<q}\left|a_{r}\right|\right) \sum_{n=p(j)+2}^{p(j+1)}\left|a_{h}\right|\left(\max _{p(j)<i<h}\left|a_{i}\right|\right) .
\end{aligned}
$$

Since (1.3) and (3.2) imply that

$$
\begin{aligned}
& \sum_{q=p(k)+2}^{p(k+1)}\left|a_{q}\right|\left(\max \left|a_{p(k)<r<q}\right|\right) \\
& =O\left(\sum_{q=p(k)+2}^{p(k+1)}\left|a_{q}\right|^{2}\right)^{1 / 2}\{p(k+1)-p(k)\}^{1 / 2} C_{k}^{2 /(2-r)} p^{-\alpha}(k) \\
& =O\left(D_{k} C_{k}^{2 /(2-r)} p^{-\alpha / 2}(k)\right), \quad \text { as } k \rightarrow+\infty,
\end{aligned}
$$

we have

$$
\begin{aligned}
& \sum_{k=3}^{N} \sum_{j=1}^{k-3}\left|\int_{0}^{2 \pi} V_{k, N}(x) V_{j, N}(x) d x\right| \\
& =O\left(\mathrm{C}_{N}^{4 /(2-r)} \sum_{k=3}^{N} D_{k} p^{\alpha / 2}(k) \sum_{j=1}^{k-3} 2^{j-k} p^{-\alpha / 2}(j) D_{j}\right), \text { as } \quad N \rightarrow+\infty
\end{aligned}
$$

On the other hand from (3.3) it is seen that $p(k)<3^{j-k} p(j)$, for $k_{0}<j<k$, and consequently

$$
\begin{aligned}
& \sum_{j=}^{k-3} 2^{j-k} p^{-\alpha / 2}(j) D_{j}=O\left(p^{-\alpha / 2}(k) \sum_{j=1}^{k-3}\left(2 / 3^{\alpha / 2}\right)^{j-k} D_{j}\right) \\
& \quad=O\left(p^{-\alpha / 2}(k)\left\{\sum_{j=1}^{k-3}\left(2 / 3^{\alpha / 2}\right)^{j-k} D_{j}^{2}\right\}^{1 / 2}\right), \text { as } k \rightarrow+\infty .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{=3}^{N} \sum_{j=0}^{k-3}\left|\int_{0}^{2 \pi} V_{k, N}(x) V_{j, N}(x) d x\right| \\
& =O\left(C_{N}^{4(2-r)} \sum_{k=3}^{N} D_{k}\left\{\sum_{j=1}^{k-3}\left(2 / 3^{/ 2}\right)^{j-k} D_{j}^{2}\right\}^{1 / 2}\right) \\
& =O\left(C_{N}^{4(2-r)}\left(\sum_{k=3}^{N} D_{k}^{2}\right)^{1 / 2}\left\{\sum_{k=3}^{N} \sum_{j=1}^{k-3}\left(2 / 3^{\alpha / 2}\right)^{j-k} D_{j}^{2}\right\}^{1 / 2}\right) \\
& =O\left(C_{N}^{(6-r) /(2-r)}\left\{\sum_{j=1}^{N} D_{j}^{2} \sum_{k=j+3}^{N}\left(2 / 3^{\alpha / 2}\right)^{j-k}\right\}^{1 / 2}=O\left(C_{N}^{(8-2 r) /(2-r)}\right),\right. \\
& \quad \text { as } N \rightarrow+\infty .
\end{aligned}
$$

Combining (3.7), (3.8) and the above relation we can obtain (3.6).
Lemma 7. There exists a positive constant C such that

$$
C_{N}^{-2} \int_{E} T_{N}^{2}(x) d x \leqq C\left\{\int_{E}\left|T_{N}(x)\right|^{r} d x\right\}^{\frac{2}{4-r}}
$$

holds for any measurable set E and $N=1,2, \cdots$.
Proof. We have, by the Hölder inequality,

$$
\int_{E} T_{N}^{2}(x) d x \leqq\left\{\int_{E}\left|T_{N}(x)\right|^{r} d x\right\}^{\frac{2}{4-r}}\left\{\int_{0}^{2 r} T_{N}^{4}(x) d x\right\}^{\frac{2-r}{4-r}}
$$

Therefore, by Lemma 6 we can complete the proof.
4. Proof of Theorem B. Suppose, on the contrary, that the given series
$\sum a_{k} \cos \left(n_{k} x+\alpha_{k}\right)$, for some $\left\{\alpha_{k}\right\}$, is the Fourier series of a function $f(x)$ $\in L_{r}(0,2 \pi)$. Then by the Riemann-Lebesgue lemma, we have

$$
\begin{equation*}
a_{N} \rightarrow 0, \quad \text { as } N \rightarrow+\infty . \tag{4.1}
\end{equation*}
$$

If $r=1,(1.3),(3.2)$ and (4.1) imply that

$$
D_{N}^{2}=o\left(\max _{p(N)<m \leq p(N+1)}\left|a_{m}\right|\right)\{p(N+1)-p(N)\}=o\left(C_{N}^{2}\right) \text {, as } N \rightarrow+\infty \text {, }
$$

and if $1<r<2$, (1.3), (3.2) and Lemma 3 imply that

$$
\begin{aligned}
& D_{N}^{2} \leqq\left(\max _{p(N)<m \leqq p(N+1)}\left|a_{m}\right|^{2-r}\right)\left(\sum_{m=p(N)+1}^{p(N+1)}\left|a_{m}\right|^{r}\right) \\
& =O\left(C_{N}^{2} p^{-\alpha(2-r)}(N)\left(\sum_{m=p(N)+1}^{p(N+1)}\left|a_{m}\right|^{\frac{r}{r-1}}\right)^{r-1}\{p(N+1)-p(N)\}^{2-r}\right. \\
& =o\left(C_{N}^{2}\right), \quad \text { as } N \rightarrow+\infty .
\end{aligned}
$$

Therefore, it is seen that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} C_{N} / C_{N-1}=1 \tag{4.2}
\end{equation*}
$$

Putting

$$
\begin{equation*}
B_{N}^{2}=2^{-1} \sum_{m=1}^{p(N+1)}\left\{1-n_{m}\left(n_{p(N+1)}+1\right)^{-1}\right\}^{2} a_{m}^{2}, \tag{4.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
B_{N}^{2}=(2 \pi)^{-1} \int_{0}^{2 \pi} T_{N}^{2}(x) d x \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{N}^{2}>C_{N-1}^{2} / 4, \quad \text { if } p(N+1)>p(N) \tag{4.5}
\end{equation*}
$$

Therefore, we have, by (4.2) and (4.5),

$$
\begin{equation*}
C_{N} \geqq B_{N} \geqq C_{N} / 3, \quad \text { for } \quad N \geqq N_{0}, \tag{4.6}
\end{equation*}
$$

and consequently, by Lemma 7 , for any set $E \subset(0,2 \pi)$ and $N=1,2, \cdots$,

$$
\begin{equation*}
\int_{E}\left\{T_{N}^{\prime}(x) / B_{N}\right\}^{2} d x \leqq C^{\prime}\left\{\int_{E}\left|T_{N}(x)\right|^{r} d x\right\}^{2 /(4-r)}, \tag{4.7}
\end{equation*}
$$

for some constant C^{\prime} which does not depend on E and N. Since $T_{N}(x)$ is the $n_{p(X+1)}$-th $(C, 1)$-mean of the Fourier series of $f(x)$, we have, from Lemma 1 and the Minkowski inequality,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{E}\left|T_{N}(x)\right|^{r} d x=\int_{E}|f(x)|^{r} d x, \text { uniformly in } E \subset(0.2 \pi) . \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8) it is seen that $\left\{T_{N}(x) / B_{N}\right\}^{2}$ is uniformly integrable over the interval $(0,2 \pi)$. Further $T_{N}^{2}(x) / B_{N}^{2} \rightarrow 0$, in measure, as $N \rightarrow+\infty$. Therefore by Lemma 4, we have

$$
\lim _{N \rightarrow \infty} \int_{0}^{2 \pi}\left\{T_{N}(x) / B_{N}\right\}^{2} d x=0
$$

and this contradicts with (4.4).
5. Lemmas of the Proposition. First we prove the

LEMMA 8. If $\sum_{k=1}^{\infty} b_{k} \cos k x\left(b_{1} \neq 0\right)$ converges in L_{1}-norm, then the series $\Sigma b_{k} B_{k}{ }^{-1} \cos k x$ is the Fourier series of a function of $L_{r}(0,2 \pi)$, for any r, $1 \leqq r<2$, where $B_{v}=\left(2^{-1} \sum_{k=1}^{N} b_{k}\right)^{1 / 2}$.

Proof. It is sufficient to consider the case $\mathrm{B}_{N} \rightarrow+\infty$, as $N \rightarrow+\infty$, and $1<r<2$. Putting $S_{N}(x)=\sum_{k=1}^{N} b_{k} \cos k x$, we have, by the Hölder inequality,

$$
\begin{equation*}
\left\|S_{N}\right\|_{r} \leqq\left\|S_{N}\right\|_{1} \frac{2-r}{r}\left\|S_{N}\right\|_{2}^{\frac{2 r-2}{r}}=O\left(B_{N}^{2-\frac{2}{r}}\right), \quad \text { as } N \rightarrow+\infty . \tag{5.1}
\end{equation*}
$$

By the partial summation, it is seen that

$$
\sum_{k=M}^{N} b_{k} B_{k}{ }^{-1} \cos k x=S_{N}(x) B_{N}^{-1}-S_{M-1}(x) B_{M}^{-1}+\sum_{k=M}^{N-1} S_{k}(x)\left(B_{k}^{-1}-B_{k+1}^{-1}\right),
$$

and hence, by the Minkowski inequality and (5.1),

$$
\begin{aligned}
& \left\|\sum_{k=M}^{N} b_{k} B_{k}{ }^{-1} \cos k x\right\|_{r} \leqq\left\|S_{N}\right\|_{r} B_{N}^{-1}+\left\|S_{M-1}\right\|_{r} B_{M}^{-1}+\sum_{k=M}^{N-1}\|S\|_{k r}\left(B_{k}^{-1}-B_{k+1}^{-1}\right) \\
& =o(1)+O\left(\sum_{k=M}^{N-1} b_{k}{ }^{2} B_{k}{ }^{-1-\frac{2}{r}}\right)=o(1), \quad \text { as } M \text { and } N \rightarrow+\infty .
\end{aligned}
$$

Therefore, the series $\Sigma b_{k} B_{k}{ }^{-1} \cos k x$ converges in L_{r}-norm.
Lemma 9. Let $\left\{\rho_{j}\right\}$ be a sequence of positive numbers such that $\left\{\rho_{j}^{-1}\right\}$ is convex, $\rho_{j} \leqq \log j$ for $j \geqq 1$, and $\rho_{j} \uparrow+\infty$, as $j \rightarrow+\infty$. Then there exists a sequence $\left\{\varepsilon_{j}\right\}, \varepsilon_{j}=0$ or 1 , satisfying

$$
\sum \rho_{j}{ }^{2} j^{-1} \varepsilon_{j}<+\infty \text { and } \quad \sum \rho_{j}{ }^{3} j^{-1} \varepsilon_{j}=+\infty .
$$

Proof. Since $\left\{\rho_{j}{ }^{-1}\right\}$ is positive, convex and non-increasing, $j\left(\rho_{j}{ }^{-1}-\rho_{j+1}^{-1}\right) \rightarrow 0$, as $j \rightarrow+\infty$, there exists a positive number c_{0} such that

$$
0<p_{j}=c_{0} j\left(\rho_{j}^{-1}-\rho_{j+1}^{-1}\right) \rho_{j}^{-2}<1, \text { for } j \geqq 1 .
$$

Therefore, we can take a probability space (Ω, \mathscr{F}, P) and asequence of independent random variables $\left\{X_{j}(\boldsymbol{\omega})\right\}$ on it with the following probability distributions;

$$
X_{j}(\omega)= \begin{cases}1, & \text { with probability } p_{j} \\ 0, & \text { with probability } 1-p_{j}\end{cases}
$$

Since $\Sigma\left[E\left\{\left(\rho_{j}{ }^{r} j^{-1} X_{j}\right)^{2}\right\}-\left\{E\left(\rho_{j}{ }^{r} j^{-1} X_{j}\right)\right\}^{2}\right] \leqq \Sigma \rho_{j}{ }^{2 r} j^{-2}<+\infty$, for $r=2$ and 3 , we have, by the well known theorem of Khintchine and Kolmogorov,

$$
\begin{equation*}
P\left[\sum_{j=1}^{\infty}\left\{\rho_{j}{ }^{r} j^{-1} X_{j}-E\left(\rho_{j}^{r} j^{-1} X_{j}\right)\right\} \text { converges }\right]=1,(r=2,3) . \tag{5.2}
\end{equation*}
$$

On the other hand it is easily seen that

$$
\sum_{j=1}^{\infty} E\left(\rho_{j}{ }^{r} j^{-1} X_{j}\right)\left\{\begin{array}{lll}
<+\infty, & \text { if } & r=2, \tag{5.3}\\
=+\infty, & \text { if } & r=3 .
\end{array}\right.
$$

By (5.2) and (5.3), we can take a point $\omega_{0} \in \Omega$ such that

$$
\sum \rho_{j}{ }^{2} j^{-1} X_{j}\left(\omega_{0}\right)<+\infty \text { and } \sum \rho_{j}{ }^{3} j^{-1} X_{j}\left(\omega_{0}\right)=+\infty .
$$

Putting $\varepsilon_{j}=X_{j}\left(\omega_{0}\right)$, we can prove the lemma.
6. Proof of the Proposition. I. First let us put

$$
\left\{\begin{array}{l}
q(j)=\left[j^{1 / \alpha}\right] \tag{6.1}\\
l(j)=\min \left\{\left[q^{\alpha}(j) / c\right], q(j+1)-q(j)\right\} \\
j_{0}=\min \{j ; l(j) \geqq 1\} .^{4)}
\end{array}\right.
$$

Since $q(j+1)-q(j) \sim \alpha^{-1} j^{(1-\alpha) / \alpha}$ and $q^{\alpha}(j) \sim j$, as $j \rightarrow+\infty,{ }^{5)}$ we have

$$
l(j) \sim \begin{cases}j / c, & \text { if } \quad 0<\alpha<1 / 2 \tag{6.2}\\ j \min (2,1 / c), & \text { if } \quad \alpha=1 / 2\end{cases}
$$

Next we put

$$
n_{1}=1 \text { and } n_{k+1}=\left[n_{k}\left(1+c k^{-\alpha}\right)+1\right], \text { for } k+1 \leqq q\left(j_{0}\right)
$$

and if $n_{q(j)}, j \geqq j_{0}$, is defined, then we put

$$
n_{q(j)+l}= \begin{cases}n_{q(j)}(1+l), & \text { if } 1 \leqq l \leqq l(j), \\ {\left[n_{q(j)+l-1}\left\{1+c q^{-\alpha}(j)\right\}+1\right],} & \text { if } l(j)<l \leqq q(j+1)-q(j) .\end{cases}
$$

Then (6.2) and $q^{\alpha}(j) \sim j$, as $j \rightarrow+\infty$, imply that $n_{k+1} \geqq n_{k}\left(1+c k^{-\alpha}\right)$.
II. It is well known that we can take a sequence $\{\rho(j)\}$ such that $0<\rho(j)$ $<\min \left\{\boldsymbol{\phi}^{1 / 2}(j), \log j\right\},\{1 / \rho(j)\}$ is convex and $\rho(j) \uparrow+\infty$, as $j \rightarrow+\infty$. On the other hand there exists an integrable function $f(x)$ such that $f(x) \sim \sum_{k=1}^{\infty} c_{k} \cos k x$ and

$$
\begin{equation*}
c_{n} \geqq\left\{\rho\left(\left[n^{1 / 2}\right]\right)\right\}^{-1 / 2}, \quad \text { for all } n \geqq 1 \tag{6.3}
\end{equation*}
$$

Further, by Lemma 9 we can take a sequence $\varepsilon_{j}\left(\varepsilon_{j}=0\right.$ or 1$)$ for which

$$
\begin{equation*}
\sum \rho^{2}(j) j^{-1} \varepsilon_{j}<+\infty \text { and } \sum \rho^{3}(j) j^{-1} \varepsilon_{j}=+\infty \tag{6.4}
\end{equation*}
$$

4) For real number $x,[x]$ denotes the integral part of x.
5) For two sequences $\left\{d_{k}\right\}$ and $\left\{e_{k}\right\}, d_{k} \sim e_{k}$, as $k \rightarrow+\infty$, means that $\lim _{k \rightarrow \infty} d_{k} / e_{k}=1$.

Using the above defined quantities, we put b_{k} as follows: If $k=q(j)+l$, for $j \geqq j_{0}, 0 \leqq l \leqq l(j)$ and $\varepsilon_{j}=1$, then

$$
\begin{equation*}
b_{k}=\rho^{2}(j) j^{-1}\left[1-(l+1)\{l(j)+1\}^{-1}\right] c_{l+1}, \tag{6.5}
\end{equation*}
$$

and if otherwise, then

$$
b_{k}=k^{-2} .
$$

Then it is seen that if $j \geqq j_{0}$ and $\varepsilon_{j}=1$,

$$
\sum_{l=0}^{l(j)} b_{q(j+}+\cos n_{q(j)+l} x=\rho^{2}(j) j^{-1} \varepsilon_{j} \sigma_{l(j)}\left(n_{q(j)} x ; f\right),
$$

where $\sigma_{n}(x ; f)$ denotes the n-th $(C, 1)$-mean of the Fourier series of $f(x)$. Therefore, putting $S_{n}(x)=\sum_{l=1}^{n} c_{l} \cos l x$ we have

$$
\begin{aligned}
& \max _{m \leqq l(j)} \int_{0}^{2 \pi}\left|\sum_{l=0}^{m} b_{q(j)+l} \cos n_{q(j)+l} x\right| d x \\
& \leqq j^{-1} \rho^{2}(j) \max _{m \leqq l(j)} \int_{0}^{2 \pi}\left|\sum_{l=1}^{m+1}\left[1-l\{l(j)+1\}^{-1}\right] c_{l} \cos l x\right| d x \\
& \leqq j^{-1} \rho^{2}(j) \max _{m \leqq l(\hat{)}}\left[\int_{0}^{2 \pi}\left|S_{m+1}(x)\right| d x+\{l(j)+1\}^{-1} \sum_{l=0}^{m} \int_{0}^{2 \pi}\left|S_{l}(x)\right| d x\right. \\
& =O\left(j^{-1} \rho^{2}(j) \log l(j)\right)=o(1), \quad \text { as } j \rightarrow+\infty,
\end{aligned}
$$

and, if $\varepsilon_{j}=1$, we have, by Lemma 1 ,

$$
\int_{0}^{2 x}\left|\sum_{l=0}^{l(j)} b_{q(j)+l} \cos n_{q(j)+l} x\right| d x<\rho^{2}(j) j^{-1} C_{0}, \text { for some } C_{0}>0 .
$$

Hence, by (6.4) and (6.5'),

$$
\begin{equation*}
\sum b_{k} \cos n_{k} x \text { converges in } L_{1} \text {-norm. } \tag{6.6}
\end{equation*}
$$

Further, we have, by (6.2), (6.3) and (6.4),

$$
\begin{align*}
& 2 B_{q(m)+l(m)}^{2}=\sum_{k=1}^{q(m)+l(m)} b_{k}^{2} \geqq \sum_{j=j_{0}}^{m} \sum_{l=0}^{l(i)} b_{q(j)+l}^{2} \tag{6.7}\\
& \geqq \sum_{j=j_{0}}^{m} \rho^{4}(j) j^{-2} \varepsilon_{j} \sum_{l=0}^{l(j)}\left[1-(l+1)\{l(j)+1\}^{-1}\right]^{2} c_{l+1}^{2} \\
& \geqq \beta \sum_{j=j_{0}}^{m} \rho^{3}(j) j^{-1} \varepsilon_{j} \rightarrow+\infty, \quad \text { as } m \rightarrow+\infty,
\end{align*}
$$

and since $q^{\alpha}(j) \sim j$, as $\quad j \rightarrow+\infty$,

$$
\begin{equation*}
b_{k}=O\left(\rho^{2}(k) k^{-\alpha}\right)=O\left(\boldsymbol{\phi}(k) k^{-\alpha}\right), \quad \text { as } k \rightarrow+\infty . \tag{6.8}
\end{equation*}
$$

III. Putting $a_{k}=b_{k} B_{k}{ }^{-1}$, then Lemma 8 and (6.6) imply that $\Sigma a_{k} \cos n_{k} x$ is the Fourier series of a function of $L_{r}(0,2 \pi), \quad 1 \leqq r<2$, and by (6.7) and (6.8),

$$
\left\{\begin{array}{l}
A_{N}^{2}=2^{-1} \sum_{k=1}^{N} a_{k}^{2}=2^{-1} \sum_{k=1}^{N} b_{k}^{2} B_{k}^{-2} \rightarrow+\infty, \\
\left.a_{N}=o^{\prime}\left(b_{N}\right)=O^{\prime}\left(\boldsymbol{\varphi}(N) N^{-a}\right)=O_{(}^{\prime} A_{N}^{2 /(2-r)} \boldsymbol{P}(N) N^{-\alpha}\right), \quad \text { as } N \rightarrow+\infty
\end{array}\right.
$$

Thus, we can complete the proof of the proposition.

References

[1] S. Takahashi, On the lacunary Fourier series, Tôhoku Math. Journ., 19(1967), 79-85.
[2] A. Zygmund, Trigonometric Series, Vol. I., Cambridge University Press, 1959.
[3] A. Zygmund, Ibid., Vol. II.

[^0]: 2) For any measurable set $E,|E|$ denotes its Lebesgue measure.
[^1]: 3) For some $k, p(k)$ may be equal to $p(k+1)$.
