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1. Intrducition. In [1] we have proved the

THEOREM A. Let {n.} be a sequence of positive integers and {a;} a
sequence of non-negative real numbers satisfying

N = (1+ck™), (¢>0 and 0=a=1/2),
N
=213 ai— +o0 and ay=0(AyN~), as N— +oo.
k=1

Then for any sequence of real numbers {a,} the trigonometric series
3 arcos(mpx+ ) diverges a.e. and also is not a Fourier series.

This theorem was first proved by A. Zygmund for the case a =0, where
{n,} has the Hadamard gap and the condition ay = O(Ay), as N— + oo, holds
(cf. [2] p.203).

The purpose of the present note is to prove the following

THEOREM B. Let r, 1 =r <2, be any given constants and (c, &) any pair
of constants such that

1.1) (c>0 and 0=a<l) or (c=1 and a=1).

If a sequence of positive integers {n.} and a sequence of non-negative real
numbers {a;} satisfy the conditions

1.2) Pgerr = (L +ck™™),

N
(1.3) =213 al—>+oo and ay=0(AY¥*"N-),” as N— + oo,

k=1

1) Ifr=1, a=1 and J!Yim ay=0, the condition ay=0(A%4N-1), as N—+oo, is impossible.
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then for any {a} the series 3 a,cos(mx+ay) is not a Fourier series of a

function of L0, 2n).

REMARK. Putting n, = &, then ny., =n,(1+£7"), for all k.

If 1<»<2 and 0==a <1, there exists {a,} for which the conditions of
Theorem B are satisfied and 3 |a; |77 ™" < + o0, But if 1<7 <2 and a=1, there
exists {a;} which does not satisfy the conditions of Theorem B and 3|a,|7""
=+o0. (cf. Lemma 3).

On the conditions of Theorem B we can show the following

PROPOSITION. Let 1=r<2, ¢>0 and 0<a=1/2 and let {p(n)} be
any given sequence of positive numbers with lim@(n) = +oo. Then there

exist {n,} and {a,} for which the conditions

Npyr = nk(l + Ck‘“),

N
A} =273 @l -+ and ay = O(A¥* "p(N)N™), as N— + oo,
k=1

are satisfied and the series 3 aicosnyx is the Fourier series of a function
of L0, 2x).

By the theorem of W. H. Young it is seen that the above proposition
holds for =1 and n, = k%, that is, c=1 and a=1 (cf. [2] p. 183 (1.5)).

2. Lemmas of Theorem B. The next lemma is well known.

LEMMA 1. If flx)e L(0,27), r=1, and o,(x; f) denotes the n-th (C,1)
mean of the Fourier series of f(x), then lim o(x; )= flx) holds in the sense
of L,-norm.

LEMMA 2. For any trigonometric series 3 cycos(kx+"Y,) put
gmet

Dy(x) =Y crcos(kx+) and Dy(x)= Y cicos(kx+"y), (m=1).

k=2 k=2m+1

Then there exists a constant C, such that
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27 ‘ N 4 - N ’]2

f izl Dm(x)} dzr=C, f {ZD;(;C) dz, (N=0),
0 m=0; m=0 I

and also the constant C, does not depend on the series.
Lemma 2 is a special case of Theorem (2.1) on p.224 in [3].

LEMMA 3. If flx)e L(0,2n), 1 <r<2, and flx)~3 cycos(kx+"y), then
there exists a constant C, such that

1/r

(Z lcklw-“) e <, 1 f A2 ’dx}

Lemma 3 is a part of the well known theorem of Hausdorff and Young.
A sequence of functions {f,(x)} defined over the interval (0, 27) is said to

b7 4
be uniformly integrable on the interval if the sequence j | fa(x)|dx is bounded

0
and if lim f | falx)|dx =0 for every sequence of measurable set {E,} satisfying
"o J g,

lim|E,| =0® and E,c(0, 27).

n—oo

LEMMA 4. If a uniformly integrable sequence of functions {f,(x)} defined
27
on the interval (0, 2m) converges in measure to 0, then we have lim f So(lx)dx
n—oo 0 )
=0.

PROOF. Let €>0, and set E, = {x; x € (0, 27), | fo(x)| > &}. Since limf,(x)

=0, in measure, we have lim|E,| =0 : hence, according to our hypothesis,
2

lim f | fa(x)ldx=0. Now we have f , [fa(x)|dx =27€ and f | falx)| dx

n—o0 £ E,. v . 0 .

= | ful)|dx+ L . | fa(x)|dzx, and this finishes the proof.

En

3. Preparations for the Proof of Theorem B. In this paragraph we
assume that sequences {n,} and {a,} satisfy the conditions of Theorem B.
First we put

2) For any measurable set E, |E| denotes its Lebesgue measure.
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3.1) p(0)=0 and plk)=max{m ; n, =2}, k=1.
If plk)+1< p(k+1), then from the definition of p(k) we have
p(k+1)-1
2> nmpan/Mpn = I L+em™),
m=pk)+1
and this implies that
{ 2=1+c{plk+1)—¢(k)—1}p*(k+1), for a <1,
5/2= plk+1)/{p(k)+1}, for a=1 and k=k,.

Therefore we have

(3.2) P+1)—p(k)=0(p"(k)), as k— +oo
and
3.3) pe+1)<3p(k), for k=k,.

LEMMA 5. For any given integers k, j, q and h satisfying

[ k=j+3, p(N+1<h=p(G+1)
PR)+1<g=plk+1]),

the total number of solutions (n,, n;) of the following equations
n,—n, =n,xn;, where p(j)<i<h and p(k)<r<gq,
is at most C,277%p*(k), where C, does not de}end on k, j, q and h.
PROOF. For any solutions (7,, n;) of the equations, we have
n,=n,—n,xn,)>n,— 22 >n(1 -2 ) =pn (14+2/7k+3)71,

Thus, if m, (or m,) denotes the smallest (or the largest) index of #,’s satisfying
either of the equations of the lemma, it is seen that

3) For some k, p(k) may be equal to p(k+1).
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1427753 >0, /1y Z N1/ Nm,

= ﬁ (A+ck ) =1+c(my—m,+1)p *(k+1).

k=m,

Hence, by (3.3) we can prove the lemma 3.

Next, we put

PN+1)
Ty(x)= Z {(1—n,(npveny + 1) Jancos(nnx +ay),
m=1
(3.4) e
Cy=2"13% a, and Dj=Ci—-GCy,
m=1

that is, Ty(x) is the 7n,u41—th (C 1)—mean of = a,cos(n,x+a,).

LEMMA 6. We have
2z
[ (Ti@)da = OCE+"e), as N +eo.
0

PrROOF. If we put, for £=0,1,2,---, N,and N=1,2,-- -,

p(k+1)

(3.5) A= D0 {1—nu(npwen+1)"}ancos(xr+a,,),

m=p(k)+1

then by Lemma 2, it is sufficient to show that
or (N 2

(3.6) f {Z Ak_NQ(x)} dx = O(C§/e="n), as N— +co.
0 k=0

On the other hand we have, by (1.3) and (3. 2),

p(k+1)
max max|A, x(T)| =max DY |au]
k=N ® = m=p(k)+1

= Olmax CY*="p*(k){plk+1)— p()}) = O(CY*™), as N—> +cs,

and hence
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24 N
Ak_zN(I)A}?N(x)dx = O (C%(z-r) Z

k=240

2

2

CH OB

k=2 j=k-2 Jo

" A(D) dx)

N
— O(C%(z—r) ZD%) :O(C](\l;—zr)/(%-r)), as N— + oo,
k=1
Further, from the definitions of A, y(x) and D,c,r we get

(3.8) f " AZ(@)AN(x) dr =87 DD+ 4 f V@V, x(2)d,
0 0

where

p(k+1) q-1

Vinl@)= > > byybycos(nx+a,)cos(n.x+a,),

q=pk)+2 r=p(k)+1

bm,N = {1 _nin(np(N+l) + 1>—1}aln'

Applying Lemma 5 to Vi n(x)V;n(x), k=j+3, we obtain

f Ve (), x(2)d

Plk+1) PG+
= G277 p*(k) Z |a,|(max|a,|) Z lah](maxl a;|).
q=p(k)+2 p(k)<r<q h=p0)+2 PU)<i<h

Since (1. 3) and (3.2) imply that

p(k+1)
2 lag|(max|a,|)
e=piey+z  PEOIST<C

p(k+1) 1/2
=0 ( 2 la 2) {pk+1)— p(R)}*CY" p=*(k)

g=p(k)+2
= O(D,C/" p=(k)), as k—> + oo,

we have

k-3

>

k=3 Jj=1

j T (Va2 J(

N k-3
=O<C%(2'”Z kaaﬂ(k) sz—kp—a/z(j)Dj)’ as N— 4+ oco.
k=3

Jj=1
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On the other hand from (3.3) it is seen that p(k) <3'"*p(5), for k,<j <k,
and consequently

k-3

22’ P (G)D; O(P“"Z(k)Z(Z/P»“/’)’ *D;)

5=

f k-3 1/2
=O(P_“/2(k){2(2/3“/2)j_kD}} )’ as B— + oo,

Therefore, we have

k-3

2

J=

f V@)V, N(x)dx[

] 1

=0 (C4/(2 r) Z ch kz3 (2/3 /2); sz} 1/2)

o[ cyen ( > D )/{ 293 <2/3“/2>f-kD§} w)

k=3 j=1
N N 1/2
=0 (Cz(\?_”/(z—r) { 2D X (2/3“/2)""‘} = O(Cgn/@-n),
Jj=1 k=j+3

as N— +oo.
Combining (3.7), (3.8) and the above relation we can obtain (3. 6).

LEMMA 7. There exists a positive constant C such that
=
Cy f T3(x)dxz=C { f | Tn(x)) ’dx} .

holds for any measurable set E and N=1,2,+--

PROOF. We have, by the Holder inequality,

2-

f TY(2)dz = { [ ITN<x)|fdx} { [ T%v(x)dx}“’.

Therefore, by Lemma 6 we can complete the proof.

4. Proof of Theorem B. Suppose, on the contrary, that the given series
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2 a cos(nx+ay), for some {ay;}, is the Fourier series of a function f(x)
€ L(0,27). Then by the Riemann-Lebesgue lemma, we have

4.1) ay—0, as N— +oo.
If r=1, (1.3), (3.2) and (4.1) imply that

¥=o( max |an|){p(N+1)—pN)}=0(C}), as N—> +oo,

P(N)<m=p(N+1)

and if 1<r<2, (1.3), (38.2) and Lemma 3 imply that

DP(N+1)
D% =( max [aml"’")( > Iamlr)

P(N)<m=p(N+1) m=p(N)+1

DPN+1) r

=0(C%P'"‘2“”(N)( > laal™

m=p(N)+1

) (HN+1)— AN
=0o(C}), as N— +oo,

Therefore, it is seen that

(4. 2) }vim CN/CN—l =1.
Putting
D(N+1)
@.3) =27 Y (L= (v +1) Vi
m=1
we have
27
(4. 9) By=(27)" f Ti(x) dx
0
and
(4.5) 2> Cy /4, if p(N+1)> p(N).

Therefore, we have, by (4.2) and (4.5),
(4. 6) Cv=By=Cy/3, for N=N,,

and consequently, by Lemma 7, for any set EC (0,27) and N=1,2,---
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2/(4-71)
@) i {Mx)/zs,v}zdng{ [ lvzv(x)l"dx} ,
E £

for some constant C’ which does not depend on E and N. Since Ty(x) is the
1,w+y-th (C,1)-mean of the Fourier series of f(x), we have, from Lemma 1
and the Minkowski inequality,

(4.8) Ilvimf | Tw(x)| "dx :f | fzx)|"dx, uniformly in EcC(0.27).
“=vE E

From (4.7) and (4.8) it is seen that {Iw(x)/By}? is uniformly integrable over
the interval (0, 27z). Further T%(x)/Bi— 0, in measure, as N— + oco. Therefore
by Lemma 4, we have

2
lim f (Ty(2)/ By} dz =0,
—Jdy

and this contradicts with (4. 4).

5. Lemmas of the Proposition. First we prove the

LEMMA 8. If 3 bycoskx (b, #0) converges in L,-norm, then the series
k=1
3 b.B, 'coskx is the Fourier series of a function of L.0,2mr), for any 7,

N 1/2
1=r<2, where By = (2"‘ 2 W) :
ko1

PrROOF. It is sufficient to consider the case By— + oo, as N— + oo, and

N
1<r<2. Putting Sy(x)=>_ b,coskx, we have, by the Holder inequality,

k=1

2r—-2
[

(5.1) 1Syl = 1Sulh 7 1Suls 7 = OBy 7),  as N +oo.

By the partial summation, it is seen that

N-1

N
> by By 'cos kx = Sy(x) By'— Sy-1(x)Bi* + 2 Si(x)(Bi'— Biit),
k=M k=M

and hence, by the Minkowski inequality and (5. 1),
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N-1

I 3= beBi'cos kx|, =||Syll, B+ 1Syl Bi' + 2 [Sli(Bi*— Biky)
k=M

k=M

N-1
=0o(1)+ 0 (Z b,fB,c‘l“’;') =0(1), as M and N— + oo,
k=M
Therefore, the series ¥ b,B,~! coskx converges in L.-norm.
LEMMA 9. Let {p;} be a sequence of positive numbers such that {p;'}

is convex, p;=log j for j=1, and p; 1 + oo, as j— +oco. Then there exists a
sequence {&;}, & =0 or 1, satisfying

S pli e <400 and D PP TIE = +oo.

PROOF. Since {p,”'} is positive, convex and non-increasing, j(p;! —pjt)—0,
as j— +oo, there exists a positive number ¢, such that

0< = coj(p;, ' —pitop; 2 <1, for j=1.

Therefore, we can take a probability space (Q, &, P) and asequence of independent
random variables {X,(w)}on it with the following probability distributions ;

1, with probability p,
Xi(w) =
0, with probability 1— p;.
Since 3 [E{(p,/ 7' X)) — E(p, 7' X)) =32p, 72 < 4+oo, for =2 and 3, we

have, by the well known theorem of Khintchine and Kolmogorov,

(5.2) P[Z {p, 77 X, —E(p, 7' X,)} converges] =1, (r=2,3).

j=1
On the other hand it is easily seen that

v ) < + o0, if r=2,
(5.3) 2 E(Pf]"’Xj){ ,
=1 = +oo, if r=3.

By (5.2) and (5. 3), we can take a point o, € Q such that

Z P’ 7' X (@y) < +oo and Z Pi’i 7 X (@) = + o0,
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Putting & = X,(w,), we can prove the lemma.

6. Proof of the Proposition. I First let us put

1(7) = min{[g*(7)/c], q(G+1)—q()},
Jo=min{j;l(j)=1}.”

q() =11,
&1 {

Since ¢(j+1)—q(j)~a'j% /= and ¢*(j)~j, as j— +0,” we have
(e if 0<a<1/2
(6.2 G~ { j min (2,1/¢), if a=1/2
Next we put
n,=1 and 7., = [n,(1+ck™=)+1], for k+1=q(j,),

and if n,;, j = j,, is defined, then we put

a1 +1), it 1=1=1(),
(71111 +cq™ (N} +1], it 1) <I=q(F+1)—q(j).

Mgy +1 =

Then (6.2) and ¢*(j)~j, as j— +oo, imply that ng., =n,(1+ck™).

IL. It is well known that we can take a sequence {p(y)} such that 0<p(y)
<min {@"%(j), log j}, {1/p(j)} is convex and p(j)1 +oc, as j—+oo. On the

other hand there exists an integrable function f{x) such that flx)~>_ c.coskx
k=1

and
(6.3) = {p([n*])} 2, for all n=1.

Further, by Lemma 9 we can take a sequence &;(é;=0 or 1) for which

(6.4) 2 PG TE < 400 and D pH(j)TIE; = + oo,

4) For real number z, [z] denotes the integral part of z.
5) For two sequences {4z} and {ex}, dix~er, as k—+ oo, means that likrn di/ex=1.
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Using the above defined quantities, we put b, as follows: If k=gq(j)+/, for
jéjo, Oélél(i) and 8, = 1, then

(6.5) by = PP 1=+ D))+ 1} erss
and if otherwise, then
(6. 5,) blc = k_z.

Then it is seen that if j=j, and & =1,
1)

Z baij + €08 Mgy = P77 € 05( Mgy 5 £,

=0

where o,(x;f) denotes the n-th (C,1)-mean of the Fourier series of f{x). Therefore,

putting S,(x)=>_ c,coslx we have

=1

27
max
m=i) J,

=) max f
m=L(j)

0

m

D by €08 Ngjya T }dx
=0

m+1

S [1—1{()+1) 'l]clcoslxl(dx

27

=70 72%[] |Snan(@)| dz+ @)+ S [ 18(@)] dx

=0 JO
= 0@’ (Nlogl(f)=0(1), as j— +oo,
and, if &=1, we have, by Lemma 1,
)

Ik

D by €08 Mgz | dzx < p(j)j~*C,, for some C,>0.
=0

Hence, by (6.4) and (6.5"),
(6.6) > b cos mx converges in L,-norm.

Further, we have, by (6. 2), (6.3) and (6. 4),
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qg(m)+1(m) m (D
{ - 2
(6 7) 2Bt21(M)+l(m) = Z bk2 ; Z Zbﬂ(i)”
k=1 j=jo 1=0

m 16))
=3P X M=+ D) () +1) ' Pety,

J=Jo

=B2_p°()j'&—> +o0,  as m— +oo,

and since g%(j)~j, as  j—+oo,
6.8) b = O(P (") = O(@(B)k~),  as k— +oo.

III. Putting a, = b,B;™", then Lemma 8 and (6. 6) imply th_at 3 ay cos nmpx
is the Fourier series of a function of L,(0,2z), 1=7r<2, and by (6.7)
and (6. 8), ’

N N
A‘;rv___zﬂz ak2:2—1 Zbsz-éz_% + 00,
k=1 k=1
ay = 0(by) = O{@(N)N-%) = O{AY*"p(N)N-%),  as N— +oco.

Thus, we can complete the proof of the proposition.
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