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ON TRIGONOMETRIC FOURIER COEFFICIENTS
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1. Intrducition. In [1] we have proved the

THEOREM A. Let [nk] be a seque?ιce of positive integers a?ιd {ak} a

sequence of non-negative real numbers satisfying

) , (c>0 and 0 ^ t f ^ l / 2 ) ,

N

A^ = 2~ι Σ al ^Λ-oo and aN = O(ANN-a), as N-> + oo.
J f c = l

Then for any sequence of real numbers {oίk} the trigonometric series

Σakcos(nkx-\-cck) diverges a. e. and also is not a Fourier series.

This theorem was first proved by A. Zygmund for the case cί — 0, where

{nk} has the Hadamard gap and the condition aN = O(AN), as N—> +oo? holds

(cf. [2] p. 203).

The purpose of the present note is to prove the following

THEOREM B. Let r, l ^ r < 2 , be any given constants and (c,ά) any pair

of constants such that

(1.1) (c>0 and Ofgtf<l) or (c^l and a — 1).

If a sequence of positive integers {nk} and a sequence of non-negative real

numbers {ak} satisfy the conditions

(1.2) nk+! ^ nk(l + ck~a),

N

(1. 3) A% = 2" 1 Σ, <&-^ + °° <™d aN = O{Aψ2~r)N~a)^ as N-> + oo,

1) I f r = l , α = l and lim aN = 0, the condition aN=O(A2

NN-1), as N^ + °°, is impossible.
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then for any {ak} the series Σakcos(nkx + ak) is not a Fourier series of a
function of L7.(0, 2π).

REMARK. Putting nk = k, then nk+ι^nk(l-\-k'ι)9 for all k.
If l < r < 2 and 0 : g α < l , there exists {ak} for which the conditions of

Theorem B are satisfied and Σ|ak\
r/ { r~ l ) < +00. But if l < r < 2 and a = l9 there

exists {ak} which does not satisfy the conditions of Theorem B and 21 αΛ | r / ( r~υ

= + 00. (c f. Lemma 3).

On the conditions of Theorem B we can show the following

PROPOSITION. Let l ^ r < 2 , c>0 and 0 < t f ^ l / 2 and let [φ{n)} be
any given sequence of positive numbers with lim^( z) = +00. Then there

exist {nk} and {ak} for which the conditions

A*N = 2-1 22 αl -> + 00 and aN = O(Aψ^r)φ(N)N-a\ as N-> + 00,

are satisfied and the series Σakcosnkx is the Fourier series of a function
of Lr(0, 2π).

By the theorem of W. H. Young it is seen that the above proposition
holds for r = 1 and nk = k, that is, c = 1 and a = 1 (c f. [2] p. 183 (1. 5)).

2. Lemmas of Theorem B. The next lemma is well known.

LEMMA 1. // f(x) € Lr(0, 2π)9 r ^ l , and σn(x\f) denotes the n-th (C, 1)
mean of the Fourier series of fix)9 then lim σn(x ; / ) =f(x) holds in the sense

of Lr-norm.

LEMMA 2. For any trigonometric series Σckcos(kx + yk) put

2 O T + 1

D0(x)=Σ Ciccos(kx + Vk) and Dm(x) = Σ

Then there exists a constant Co such that
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)2

Ά(x) dx, (iV^O),
= 0 J

also the constant Co does not depend on the series.

Lemma 2 is a special case of Theorem (2.1) on p. 224 in [3].

LEMMA 3. If f(x) <= Lr(0,2π)> 1 < r < 2, α/zJ /(α:) — Σ
there exists a constant CQ such that

^ " - ^ ' - ^ ^ c 0 J JΓ \f{χ)\rdxj .

Lemma 3 is a part of the well known theorem of Hausdorff and Young.
A sequence of functions {fn(x)} defined over the interval (0, 2π) is said to

Jp2*
\fn(x) I dx is bounded

o

and if lim / \fn(x)\dx = 0 for every sequence of measurable set {En} satisfying

l i m \ E n \ = 02 ) and Enc(0,2τr).

LEMMA A. If a uniformly integrable sequence of functions {fn(x)} defined
/*2τc

on the interval (0, 2τr) converges in measure to 0, then we have lim / fn{x)dx

= 0.

PROOF. Let £ > 0 , and set En = [x ;χz (0, 2τr), |/»(Λ:) | > θ } . Since limfn(x)
W->oo

= 0, in measure, we have lim|2£n| = 0 : hence, according to our hypothesis,

lim ί \fn(x)\dx=0. Now we have Γ \fn(x)\dx^2πβ and [ |/n(α;)|Jα:

= / l/n(^)l^+ I \fn(x)\dx9 and this finishes the proof.
JEn

 JEC

n

3. Preparations for the Proof of Theorem B. In this paragraph we
assume that sequences {nk} and [ak] satisfy the conditions of Theorem B.
First we put

2) For any measurable set E, \E\ denotes its Lebesgue measure.
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(3.1) X0) = 0 and p[k) = max{m rcm^2*},3) k^l.

If p'Jk) + l< p(k + ϊ)9 then from the definition of p{k) we have

and this implies that

j 2^l + c{p(k + l)-£{k)-l}p-«(k + l\ίor cί<l,

1 5/2^XA + 1)/{/<*) +1}, for Λ = 1 and >fe^^o.

Therefore we have

(3.2) &k + l)-p(k) = O(p«(k)\ as£->+oo

and

(3. 3) /<* +1)<3ρ(k\ for yfe^k0.

LEMMA 5. For any given integers k, j , q and h satisfying

the total number of solutions (nr9 nt) of the following equations

nq — nr~ nh±.n%, where p(j)<i<h and p(k)<r <q,

is at most C02
j~kpa(k), where Co does not depend on k, j , q and h.

PROOF. For any solutions (τzr, τit) of the equations, we have

Thus, if mx (or m2) denotes the smallest (or the largest) index of nr's satisfying
either of the equations of the lemma, it is seen that

3) For some k, ρ(k) may be equal to
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^l + c(m2-m1 + l)p'\k +1).

Hence, by (3. 3) we can prove the lemma 3.

Next, we put

(3.4)

{l-nm(np(N+ι)

and Dl = ON~CNlu

that is, TN(x) is the np{N+1) — th (C 1) —mean of S amcos(nm

LEMMA 6. We have

Γ {Tltix^dx = O(C$-2r)/(2-r)), as N^ + oo.
Jo

PROOF. If we put, for k = 0,1, 2, , N, and N= 1, 2, ,

(3.5)
m=p(k) +

then by Lemma 2, it is sufficient to show that

( 3 6) Γ I Σ KN
Λ I k=0

dx = O(Crar)/(>-r))> as iV-> + oo.

On the other hand we have, by (1. 3) and (3. 2),

max max I

= O(max
AgiV

k,N(x)\ ̂ m a x Σ \arr
= )n=p(k) + l

as

and hence
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(3.7) Σ. Σ Γ Ak*N(
k=2 j=k-2 Jo

) , as

Further, from the definitions of AkN(x) and Dk, we get

(3. 8)

where

Γ Δ^(Λ:)ΔΛ(Λ:) dx ^ 8τtDlD] + 4 Γ VKN{x)Vj,N{x)dx,
Jo Λ

Vk,N(x)=

Applying Lemma 5 to V]ctN(x)Vj>N(x), ^ ^ j + 3, we obtain

] (max |

Since (1. 3) and (3. 2) imply that

X] i aQ I (max I ar \)

= O
l/2

, as

we have

Σ Σ zx
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On the other hand from (3.3) it is seen that p(k)<3j-kp(j\ for ko<j<k,
and consequently

)Di=O(p - "

as

Therefore, we have

ΣΣ Γ vtMVW
= 3 j = 0 ^O

/ ir f *-s

= o cr~r) Σ A Σ (2/3

( I

cr-r)l

Cg-'M-

1/2

k=3 (j=l

I N \l/2 / JV ft-3

iV iV

\ l/2\

)

J=l fc=j+3

l/2

as iV—> +00.

Combining (3. 7), (3. 8) and the above relation we can obtain (3. 6).

LEMMA 7. There exists a positive constant C such that

'N
2ί T%(x)dx^ \

holds for any measurable set E and N= 1,2,

PROOF. We have, by the Holder inequality,

Therefore, by Lemma 6 we can complete the proof.

4. Proof of Theorem B. Suppose, on the contrary, that the given series
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2 ak cos(nkx + <Xk), for some {oίk}9 is the Fourier series of a function fix)
£ Lr(0,2τr). Then by the Riemann-Lebesgue lemma, we have

(4.1) aN -> 0, as N-> 4- 00.

If r = 1, (1. 3), (3. 2) and (4.1) imply that

D% = o( max \am\){p(N+l)-p(N)}=o(0N\ as N-> +00,
p(iV)<m^p(iV+l)

and if 1 < r < 2, (1. 3), (3. 2) and Lemma 3 imply that

( P(N+1) \

Σ κι r(
m=p(N) + las ΛΓ->+oo.

Therefore, it is seen that

(4. 2) lim CN/CN^ = 1.
2V->oo

Putting

(4.3) &N = 2-1 E {l-^fe^D
m=l

we have

(4.4) B?N=(2"Yl Γ T%(x) dx

Jo

and

(4.5) ΰ^>CWi if p(N+l)>p(N).

Therefore, we have, by (4. 2) and (4. 5),

(4.6) CN^BN^CN/3, for N^N0,

and consequently, by Lemma 7, for any set E c (0,27r) and N= 1, 2,
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(4. 7) J [TN{x)/BNγdx^ C j f I TN(x) \ rdx

for some constant C" which does not depend on E and N. Since TN(x) is the

nv{N+i)-\h (C, l)-mean of the Fourier series of f(x\ we have, from Lemma 1

and the Minkowski inequality,

(4. 8) lim [ ITN(x)\ rdx = f \f(x)\rdx, uniformly in £c(0.2τr).

From (4.7) and (4.8) it is seen that {TN(x)/BN}2 is uniformly integrable over

the interval (0, 2π). Further TN(X)/BN—>0, in measure, as iV->+°o. Therefore

by Lemma 4, we have

ΠrnΓ {TN(x)/BNydx = 0,
v 0

and this contradicts with (4. 4).

5. Lemmas of the Proposition. First we prove the

LEMMA 8. If Σ ^ic^oskx {bi Φ 0) converges in Lγ-norm, then the series

2 bkBk~
γcoskx is the Fourier series of a function of Lr{0,2n), for any r,

/ N V l/2

1 ^ r <2, where BN = ί2"1 Σ bk

2) .

PROOF. It is sufficient to consider the case B^—>+°o? as N—>+ooy and

l<r<2. Putting SN(x) = Σ^/cCθskxy we have, by the Holder inequality,

(5.1) \\SN\\r^ WSNW^ \\SN\\i^ = O(BN*-ϊ ), as N-* + oo.

By the partial summation, it is seen that

kx = SN{x)B-N

i-SM-1{x)B-M

ί+ Σ
k=M

and hence, by the Minkowski inequality and (5. 1),
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b.B^COS kx\\r mSΛrBH1+\[SM.ΛrBi1+ £ \\S\\UBίl - Btix)

lN~λ A
]Γ bk*Bk-

χ-n =o(l\ as M and ΛΓ->
\k=M I

Therefore, the series Σ bkBk~
ι cosέx converges in Lr-norm.

LEMMA 9. Le£ {pj} be a sequence of positive numbers such that {pj1}
is convex, p5^\og j for i i ^ l , and ρ5\ +°o ? as j—> +00. 7%̂ w ίΛ^re exists a
sequence {£,}, €} = 0 or 1, satisfying

PROOF. Since {pf1} is positive, convex and non-increasing, j(pj~
1 — pj+i)-^O,

as j—>+oo? there exists a positive number c0 such that

OKpj^CoJiPj-'-p-^Pj-'Kl, for j ^ l .

Therefore, we can take a probability space (Ω, 3s P) and asequence of independent
random variables {Xj(ω)}on it with the following probability distributions

I I, with probability pj9

0, with probability 1 — pj.

Since Σ [E{(pJ

τj-1Xj)
t)-[E(pi

rj-ιXj)}t]^3lp}

irj-i <+oo, for r = 2 and 3, we
have, by the well known theorem of Khintchine and Kolmogorov,

(5. 2) P\ Σ, [PίJ-'Xi ~E(P/j-ιXj)} converges "1=1, (r = 2, 3).

On the other hand it is easily seen that

< + o o , if r = 2 ,
(5.3) Σ (?/;%),

{ if r = 3 .

By (5. 2) and (5. 3), we can take a point ω0 € Ω such that

E P Λ Γ % («>O)< +00 and Σ PiTιX>{<o«)= +00.
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Putting ε} = Xj(ω0), we can prove the lemma.

6. Proof of the Proposition. I. First let us put

(6.1)

Since q(j + l) — q(j)~arιj< ι-a)/a and q"(j)~j, as j-t+co^ we have

[j/c, if
(6.2) /(/)

[j min (2,1/0. if «=l/2.

Next we put

«! = 1 and nk+ι - [nk(l + ck-") + l], for

and if «ί(Λ, j^j0, is defined, then we put

nQ(i) +ί —

Then (6.2) and qa(j)^h as j - > + o o , imply that n A + 1 ^

II. It is well known that we can take a sequence {/>(;)} s u c n t n a t 0 <p(j)
<min {£>1/2(/), log j ] , (l/pO*)} is convex and />(/)f+oo, as j—> + oo. On the

other hand there exists an integrable function f(x) such that f(x)

and

(6. 3) cn ^ [p([n^])} ~v\ for all n ^ 1.

Further, by Lemma 9 we can take a sequence £/£, = 0 or 1) for which

(6. 4) £

4) For real number x, [x] denotes the integral part of x.
5) For two sequences {die} and {eje}, dk~eic, as &-> + oo, means that lim dk/eic = l.

Λ->oo
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Using the above defined quantities, we put bk as follows : If k — g(j) + l, for
^ί(j) and e, = l, then

(6.5) bk = p>(j)Γ\l-(l+ϊ) {/(/) + !}

and if otherwise, then

(6.5') h = k-K

Then it is seen that if j ^j0 and Sj = 1,

Σ Ku + cos /ιβ
2=0

where σn{x:f) denotes the rc-th (C,l)-mean of the Fourier series of f(x). Therefore,
n

putting Sn(x) = Σ cLcoslx we have
1=1

cos dx

max \

max Γ Γ | 5 Λ + 1 ( Λ : ) | J ^ + ί ^ + l } " 1 ! : Γ)LJo ί^Jo

= O(j-Y(j)logl(j))=o(l), as i-> + oo,

and, if ^ = 1, we have, by Lemma 1,

I Σ ^ ) + i c o s nQU)+ιχ dx < p2(J)j"ιCQ, for some C 0 > 0
Λ ί=o

Hence, by (6. 4) and (6.5'),

(6.6) 2^ bkcosnkx converges in L^norm.

Further, we have, by (6. 2), (6. 3) and (6. 4),



418 S. TAKAHASHI

q(m) + l(m) m

(6.7) 2^ ( m ) + i ( m )= Σ V ^ Σ
k=l

10")

a s

and since qa(j)~~J> &s j—> + oo,

(6.8) bk = O(p\k)k-a) = O(φ(k)k-*\ as ^ -> + oo.

III. Putting α^ == bkBk~\ then Lemma 8 and (6. 6) imply that Σ ^fc cos

is the Fourier series of a function of Lr(0,2π\ l ^ r < 2 , and by (6.7)

and (6. 8),

i k=i k=\

{ aN = o(bN) = O(φ(N)N-a) = O^A2^r)φ{N)N-aX as N

Thus, we can complete the proof of the proposition.
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