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1. Introduction. Positive selfadjoint extensions of a symmetric operator
have been investigated by many mathematicians : J. von Neumann, K. Friedrichs,
M. Krein, M. Birman and others. Especially M. Krein [3] observed the class of
all positive selfadjoint extensions of a given positive symmetric operator, and
proved among others that, in case of a densely denned operator, the greatest
and the smallest positive selfadjoint extension exist. The greatest extension is
shown to coincide with the extension, established by Friedrichs, while the
smallest one coincides with the extension, considered by von Neumann in case
of a strongly positive operator.

In this paper, starting with the well known theorem of Friedrichs, we shall
investigate the structure of the greatest extension (Friedrichs extension) T μ and
the smallest one (von Neumann extension) TM of a given positive symmetric
operator T from various points of view. Theorem 1 gives a necessary and
sufficient condition for T with non-dense domain to admit positive selfadjoint
extensions. If any one of such extensions exists, the von Neumann extension is
shown to exist, and its domain is explicitly determined. Among many consequences
of this theorem is a simple description of the von Neumann extension, when it
is bounded (Theorem 2). In contrast with the identity: (T + α)μ—a = Tβ for all
positive number a, (!T + ά)M—a varies largely according to α. Theorem 3 shows
that (T + a)M—a converges, in a natural sense, to the von Neumann extension TM

or to the Friedrichs extension T μ according as α—>0 or—>oo. This theorem
permits us to determine the spectrum of TM or Tμ, when TM is compact or T μ

has compact resolvent.

2. Preliminaries. A linear operator T on a Hubert space is, by definition,
symmetric if

(Tf,g) = (f,Tg) (f,gzD(T));

here the domain D(T) is not assumed to be dense. T is called positive (resp.
strongly positive), if ( T / , / ) ^ 0 (resp. ̂  £(/,/) for a constant £ > 0 ) .

A positive selfadjoint operator Sx is called greater than another S2, or the
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latter is smaller than the former, in symbol S1^S29 if

S D(Sl*) and | |5^/| | ^ ||5 /̂11

For bounded positive self ad joint operators, this definition is reduced to the usual
order relation. *Si=gS2 implies S1 + a^S2 + a for all α > 0 . If 5 2 is invertible
and Si ̂  S2, then 5^ is also invertible and Sϊ1 fg Sf *.

The greatest (resp. smallest) of all positive selfadjoint extensions of a given
positive symmetric operator T, if exists, will be called the Friedrichs (resp.
von Neumann) extension and denoted by Tμ (resp. TM) Remark that M. Krein
[3] used the terminology "hard (resp. soft) extension" instead of the Friedrichs
(resp. von Neumann) one. The basic tool for our development is the well known
result of Friedrichs (see [4] n° 124):

FRIEDRICHS THEOREM. A densely defined, positive symmetric operator
T admits the Friedrichs extension Tμ. The domain of its square root Ύψ
consists of all vectors f, for which there exists a sequence {fn} c D(T) such
that

lim fn=f and lim (T(/n-/w), /n-/m) = 0 .
π-»oo n,m-*oo

Tμ is just the restriction of the adjoint T* on D(T*)nD(T]I2).

An immediate consequence is the relation

(T + α)μ = T μ + a for all a^O .

That T is densely defined is also a necessary condition for the existence of the
Friedrichs extension. K. Friedrichs proved only that the above mentioned
restriction of T* is a positive selfadjoint extension. However, for any positive

selfad joint extension T and [fn] in the Friedrichs theorem, {T1/2fn} is a Cauchy

sequence, so that / belongs to D(T1/2) because of the closedness of T1/2 and

showing that the extension by Friedrichs is the greatest one (cf. [3] and [1]
n° 109).

3. von Neumann extension. Throughout this section T will denote a
closed positive symmetric operator on a Hubert space H. On account of the
index theorem of Krasnoselskii [2 §3] T admits a selfadjoint extension, but
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not necessarily a positive one. To formulate a condition for the existence of
positive selfadjoint extensions, let us introduce a notion. T is called positively
closable if

lim (T/n,/n) = 0 and Km Tfn = g

implies g = 0. If T is densely defined, it is positively closable in fact, the
inequality

I (TΛ, h) i2 ̂  (Tfa,fnχτh, h) (h € z>(Γ))

shows that (g,h) = 0 for A in the dense set D(T), hence <7 = 0. If T is strongly

positive, it is positively closable in fact, lim (Tfn,fn) = 0 implies lim fn — 0,

hence g = 0 because of the closedness of T.

THEOREM 1. A closed positive symmetric operator T admits a positive
selfadjoint extension if and only if it is positively closable. When this
requirement is fulfilled, T has the von Neumann extension TM such that

|l T l/2 Jι II 2 _\\1M n\\ —

and DζΓψ) consists of all vectors h, for which the above right side is finite.

PROOF. If Ύ admits a positive selfadjoint extension, it is positively closable,
because a positive selfadjoint operator is always positively closable. Suppose,
conversely, that T is positively closable. Consider the operator 5, defined on the
space PH by

S(Tf) = Pf (felKT)),

where P is the orthogonal projection onto the closure of the range of T. This
definition causes no ambiguity, for T / = 0 implies (fyTh) = 0 (h^D(T)), hence
Pf=0. Since

(5(T/),T/) = ψfTf) = (f,Tf)^0,

S is a densely defined, positive symmetric operator on PH. Consider the Friedrichs
extension Sμ on PH, then it has inverse in fact, Sμg = 0 implies S]/2g = 0,
hence on account of the Friedrichs theorem there exists a sequence [gn] c D(S)
such that

lim gn = g and lim (Sgn, gn) = 0 .
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It follows, with gn = Tfn, that

lim Tfn = g and lim (T/Λ,/n) = 0,
n—* oo n-*oo

hence g = 0 by assumption. Consider the positive self ad joint operator T = S^ P

on H. Since Pf=S(Tf) implies S~1 (Pf) = Tf T is an extension of T. It

follows from T1 / 2 = 5;1 / 2 P that

= sup

and the domain X>(7n/2) consists of all vectors h, for which the above right side
is finite. On the other hand, on account of the Friedrichs theorem, for any
g € Diβ]!1) there exists a sequence {gn} c D(S) such that

lim gn = g and lim(5^,, gn) = \\Sfg\\*,
n-+oo n—»oo

consequently

It remains to show that T is really the smallest extension. Take an arbitrary

positive selfadjoint extension T, then

T^T

hence

This completes the proof.

COROLLARY 1. T admits a positive selfadjoint extension if and only
if the functional
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is finite on a dense set.

PROOF. If T admits a positive selfadjoint extension, the set of h with
finite ΘQi) is just the domain of Tψ by Theorem 1, hence it is a dense set.
Suppose, conversely, that the functional is finite on a dense set D. Since

, h) 12 ̂  (Tf,f).θ(h) (h € D,fe D(T)) >

T is shown to be positively closable.

COROLLARY 2. If T is densely defined, its von Neumann extension is
the restriction of T* on the set of vectors / , for which there exists a sequence
{/n}c/)(T) such that

lim Tfn = T*f and lim (T(/n -fm\fn -fm) = 0.
W-*oo W,m->oo

PROOF. With the notations in the proof of Theorem 1, f^D(TM) is
equivalent to Pfz /2(5μ). On account of the Friedrichs theorem the last condition
means that there exists a sequence {fn} c D(T) such that

S*(lim Tfn) = Pf and lim (T(fn-fm),fn-fm) = 0.
TO-+00 7l,m-*oo

The assertion follows now immediately.

COROLLARY 3. If T is positively closable with closed range, then its
von Neumann extension TM is given by the formula:

TM(f + g) = Tf (fe D(T), g

PROOF. Consider the positive symmetric operator T, defined by

T(f+g) = Tf (/€ D(T), g

Since the range R(T) is closed by assumption, the orthogonal complement of
DiD + RiT)1- consists of vectors Tf with (T / , / ) = 0, so that it is reduced to

{0} because of the positive closableness of T. Now that D(T) is dense, R(T) is

closed and D(J7)'DR(JΓ)1-7 T is a selfadjoint operator. Finally by Theorem 1

R(JY is contained in the kernel of Ύψ, hence of TM, consequently D(T)dD{TM).
This completes the proof.
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M. Krein [3] proved this corollary in quite a different manner. That the
operator T in the above proof is a positive self ad joint extension was firstly
proved by J. von Neumann for a strongly positive operator (see [1] nol07).

COROLLARY 4. Let T be a densely defined operator with inverse. Then
T"1 admits a positive self ad joint extension if and only if the Friedrίchs
extension Tμ has inverse. When this requirement is fulfilled, it results

PROOF. The inverse of Tμ, if exists, is a positive selfadjoint extension of
T" 1 . On the other hand, any positive selfadjoint extension S of T" 1 has dense
range because of JR(S)l) D(T), hence has inverse. S'1 is a positive selfadjoint
extension of T, consequently S~1^Tβ by definition. But this means that (Tμ)""1

is the von Neumann extension of T" 1 .

COROLLARY 5. T admits a positive selfadjoint extension, which is
smaller than a given positive selfadjotni operator S, if and only if

I(Tf,h)\*^ {Tf,f)(Sh,h) (/e D(T),h € D(S)).

PROOF. On account of Theorem 1, Corollary 1 and the Friedrichs theorem
the above inequality is equivalent to that TM exists and TM^S.

THEOREM 2. A closed positive symmetric operator T admits a bounded
positive selfadjoint extension of norm^Ί if and only if

When this inequality is fulfilled, the von Neumann extension TM is represented
in the form:

TM = (T

where T* is the adjoint of T as a bounded operator from the Hilbert space
D(T) to H, To is the compression of T on D(T) and TV1 is the inverse of
the restriction of To to the closure of R(T0).

PROOF. The first assertion follows from Corollary 5 with 5 = 7. The last
assertion results from Theorem 1
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T7W =

The first part of Theorem 2 is a variant of the Krein theorem (see [3], [1]
n°108 or [4] n°125) that a symmetric operator S with \\Sf\\ ^ | |/ | | (f z D(S))
admits a selfadjoint extension of normrgl.

COROLLARY 6. T admits a compact selfadjoint extension if and only
if the set [Tf: (Tff)^!} has compact closure. Under the closure compactness
of the set, every positive selfadjoint extension is compact if and only if
D(T) has finite codimension.

PROOF. If the set has compact closure, then

<oo,

so that TM exists as a bounded operator by Theorem 2. It follows with To and
T* in Theorem 2 that

T = (T0-1/2T*)*TJ/2.

This implies that the image of the unit ball under the operator (T0-1/2T*)* is
contained in the closure of the set in question, so that TM is compact by
Theorem 2. The converse assertion follows from the fact that for any positive

selfadjoint extension T the set is contained in the image of the unit ball under

T1/2 and that the compactness of T implies that of T1/2. A bounded positive
selfadjoint operator S is an extension of T if and only if TM^S^TM 4- ccQ
for some ct^O, where Q is the orthogonal projection onto Di^T)1-. The last
assertion of the theorem is now immediate.

COROLLARY 7. A densely defined operator T admits a positive selfad-
joint extension with compact resolvent if and only if the set [f: ( / , / ) + (Tf,f)
^ 1 } has compact closure. Every positive selfadjoint extension of T has
compact resolvent if and only if the range R(T) has finite codimension and
the set {Pf: (Tff)^l} has compact closure, where P is the orthogonal
projection onto the closure of R(T).
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PROOF. T admits a positive selfadjoint extension with compact resolvent
if and only if (T^ + l)" 1 is compact. Thus the first assertion follows from
Corollary 4 and Corollary 6. Since /2(Tr)-L coincides with the kernel of the von
Neumann extension TM, the compactness of ( T ^ + l ) " 1 is equivalent to the finite
dimensionality of /J(T)-1- together with the closure compactness of the set
{Pf:

4. Limit representation. T is again a closed positive symmetric operator.
For any α > 0 , the von Neumann extension of T + α is formed according to
Corollary 3. For simplicity, let us use the notation:

7\α) = (T + ά)u - a .

T ( α) is obviously a selfadjoint extension of T, though not positive in fact, it is
given by the formula:

TUf+ 9) = Tf- ag (/€ D(T\ g z R(T + aY).

When T is positively closable, T(0) will have the meaning of TM-
To formulate the asymptotic behaviour of T ( α ) as a—»0 or-^oo, let us

introduce a notion of convergence for a sequence of unbounded selfadjoint
operators. A sequence {Tn} of selfadjoint operators is said to converge to a
selfadjoint operator T in resolvent if

lim (Tn-ξ)-1 = (T-ξ)~ι (strong convergence)
n—*oo

for a complex number ξ, uniformly apart from the spectrum of all Tn and also
of T. It is easy to see that this definition does not depend on the choice of ξ.
For a uniformly bounded sequence, convergence in resolvent is equivalent to
strong convergence.

LEMMA. If T is positively closable, then

rr , n i ( l - ( l - ( ^ + D-'Wα)) (0 ^ a < 1),

PROOF. Consider first the case a = 0. Since (TM + 1 ) " 1 is a positive
selfadjoint extension of (T +1)" 1 , it follows from definition that
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This inequality implies that 1 — (1 — (T + l)" 1)^ is a positive selfadjoint operator

with inverse, and that

is a positive selfadjoint extension of T. Since TrgTV, it follows from definition

that T coincides with TM> This proves the assertion for the case a = 0. The

case 0 < α < l can be reduced to the above, by considering .. __ (T + α) instead

of T. If a > 1, the operator (TC α ) + 1 ) " 1 is given by the formula:

( T o + l)Λ(T + 1 ) / + (a - 1)<7) =f-g (/€ D(T), g € R(T + α)^) .

On the other hand, since

the subspace R((T +1)" 1 + l / ( α - l ) ) coincides with Λ(T+α), so that (T+l)-}i/(α-i»
is determined by the same formula as that for ( T C α ) + l ) " 1 .

THEOREM 3. 7/* T is a closed, positively closable, positive symmetric

operator, then TCα) co?ιverges to TM in resolvent as a —> 0. If, in addition, T

is densely defined, then T ( α) converges to Tμ in resolvent as a—»o°.

PROOF. Consider first the case TM is bounded. Since, for O^a^b,

a)M+b—a is a positive selfadjoint extension of T + 6, it follows from

definition that

so that T ( α) converges strongly to TM. The assertion for a general case is

reduced to the above in fact, by Lemma and the above arguments

= 1 - lim(l - (T + ΓΓOία/u-α)) = lim(TCo> + I) " 1 .

If T is densely defined, it follows from Corollary 4 and Lemma that

(Tμ + 1 ) " 1 = (T + 1)~V

= lim(T + l)-V/(«-i» = Hm(T(α) + I)" 1 ,
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COROLLARY 8. If the von Neumann extension TM is compact, TC α )

converges uniformly to TM as a—*0. If the Friedrichs extension Tμ has
compact resolvent, (T ( α ) + 1)~1 converges uniformly to (T^H-l)"1 as α—>oo.

PROOF. If TM is compact, for any £ > 0 there exists an orthogonal
projection Qs of finite rank such that

T*Q. = Q.TM and \\TM(l-Q.)\\<€.

Then the inequality

0 ^ T o + a ̂  TJΓ + a

implies

lid - Q.)TUi - Q.)H ̂  11^(1 - Oil + 2α.

On the other hand, it follows from Theorem 3 that for sufficiently small

\\(Tla,-TM)Q.\\<ε,

so that TCα) converges uniformly to ΎM as α—>0. Similar arguments for (T^
instead of TM yield the second assertion.

COROLLARY 9. Let the set {Tf: ( T / , / ) ^ l ) have compact closure.
Then a positive number t is a regular point of the von Neumann extension
TM if and only if for some δ > 0 and all sufficiently small a > 0,

+ (ί + aγ\\0- - pa)f\\> (/

where Pa is the orthogonal projection onto R(T + a).

PROOF. TM is compact by Corollary 6 and T ( α ) converges uniformly to
TM as a—>0 by Corollary 8. Then t is a regular point of TM if and only if
(T(α) — t)"1 is uniformly bounded for sufficiently small <z>0. On the other hand,
on account of Corollary 3, T ( α ) — t is reduced by the subspace RiT + a)1-, on
which it coincides with — (ί + α), so that T ( α ) — ί has inverse of normfgδ"1, δ
being small, if and only if

^ δ 2 | |P α / | | 2 ( /€ D(T)).

The orthogonal sum representation



EXTENSIONS OF POSITIVE SYMMETRIC OPERATORS 75

Tf-tf= (T(β) - t)PJ- (t + α)(l - Pa)f

shows that the uniform boundedness of (T ( α ) — t)'1 is equivalent to the
inequality of the assertion.

COROLLARY 10. Let the set {/: (/,/) + ( T / , / ) ^ l } have compact
closure. Then a positive number t is a regular point of the Friedrichs
extension Tμ if and only if for some δ > 0 and all sufficiently large a > 0,

+ (t + α)2 | |(l - Pa)f\\* ( /€ D(T)) ,

where Pa is the orthogonal projection onto R(T + a).

PROOF. AS in the proof of Corollary 9, the inequality of the assertion is
equivalent to the uniform boundedness of (T ( α ) — t)"1 for sufficiently large α > 0 .
On the other hand, (Tμ + 1)"1 is compact by Corollary 7 and ( T ( α ) + l ) ~ ι converges
uniformly to (T^ + l)" 1 by Corollary 8. Now the assertion follows from the
relation:

( ( T o + I)" 1 - ( * + I)" 1 )" 1 = " (P + 1) - (t + l ) 2 (T ( α ) - ί)" 1
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