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1. Introduction. In his recent papers [4], [5], and [6], K. Ogiue
studied positively curved submanifolds of a complex protective space. The
purpose of this paper is to study similar problems for submanifolds of a
Sasakian space form.

Let M be a (2n + l)-dimensional Sasakian manifold with the structure
tensors φ, ξ, η, and g. Then we have

φξ = 0, η(ζ) = 1, Φ2 = -1+ ξ®y ,

g(X, ζ) = η(X), g(φX, φY) = g(X, Y) - v(X)η(Y) ,

dy(X, Y) = g(φX, Y) ,

φX = Vzί, (Vxφ) Y=η{ Y)X - g(X, Y)ξ .

By a 0-holomorphic sectional curvature H(X) of M with respect to a
unit vector X orthogonal to £, we mean the sectional curvature K(X, φX)
spanned by the vectors X and φX.

A sasakian space form is, by definition, a connected and complete
Sasakian manifold of constant ^-holomorphic sectional curvature C.

It is known that there are three types of simply connected Sasakian
space forms:

1) Elliptic Sasakian space form: C > —3; (homeomorphic to a sphere),
2) Parabolic Sasakian space form: C = —3; (homeomorphic to a Eu-

clidian space),
3) Hyperbolic Sasakian space form: C < —3; (homeomorphic to a real

line bundle over a unit disk in Cn).
Simply connected Sasakian space forms are homogeneous contact

manifolds which they are regular [1, 8].
The author expresses his hearty thanks to Professors K. Ogiue and

S. Tanno for their valuable suggestions and encouragement.

2. Sasakian submanifolds. Let M be a (2(n + p) + l)-dimensional
Sasakian space form of constant ^-holomorphic sectional curvature C with
structure tensors (φ, ξ,y,g), and let M be a (2w+l)-dimensional differential
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manifold with an almost contact structure (φ, ζ, η, g). We assume that
M is immersed in M by / and / satisfies φ-f* = f*-Φ, I =/*•£, V = f*V
and # = f*§, where / * denotes the differential of / and / * the dual map
of /*.

We denote by V (resp. V) the covariant differentiation with respect
to g (resp. g). Then the second fundamental form a of the immersion /
is given by

a(X, Y) = VXY-VXY.

We can easily see that a satisfies

(2.1) φa(X, Y) = a{φX, Y) = a(X, φY) ,

(2.2) a(X, £) = 0 .

Let Vi, , vP9 φvu , φvv be local fields of orthonormal vectors normal to
M. If we set, for i = 1, 2, , p,

giAtX, Y) = g(a(X, Y), v<) ,

g(ArX, Y) - ff(a(X, Y), M) ,

then, Au , Ap, A?, , Ap* are local fields of symmetric linear transfor-
mations and they satisfy

(2.3) A? = φA{ ,

(2.4) φAt = -Arf,

(2.5) A,ξ = 0.

It is known that (φ, ξ, η, g) is a Sasakian structure on M (Tanno [9]).
Hereafter, we therefore call M a Sasakian submanifold of M.

PROPOSITION 2.1 (Tanno [9]). M is a minimal submanifold of M.

PROOF. It suffices to verify that tr A{ = tr A{* = 0. From (2.3) and
(2.4), tr Ai* — 0 is evident, and we have φA{φ — —φ2A{ = A{ — ξξ&ηAi.
Hence we have

tr A^ = tr (φArf + ζ

= tr (A{φ
2 + ξ (X) ηA<)

= tτ(-A<),

because ξ (x) ηA,X = ̂ (^X)? = ̂ X , f)ί = flr(X, Λί) = 0 by (2.5). q.e.d.

Let R be the curvature tensor field of M. Then, the equation of
Gauss is
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(2.6) R(X, Y)Z=Σ,{~9{A<X, Z)A,Y + g(A{Y, Z)A{X

, Z)ψAiY + g(φA{Y, Z)φAiX)

j(C + 3){flf(Γ, Z)X - g(X, Z)Y)

i-(C - l){y(X)V(Z)Y- η(Y)v(Z)X + g(X, Z)η{Y)ξ

- g(Y, Z)η{X)ξ - dη(X, Z)φY + dη{Y, Z)φX

- 2dη(X, Y)φZ) .

Let S and p be the Ricci tensor and the scalar curvature of M respec-
tively. Then we have

(2.7) S(X, Y) = hn(C + 3) + C - l}g(X, Y) - h n + 1)(C - l)η{X)η{Y)
Δ Δ

-2Σ,g(AiX,AiY)
i = l

and

(2.8) p = ̂ {(2n + 1)(C + 3) + C - 1} - 2 tr Σ M .
2 ί=ι

Let K(X, Y) be the sectional curvature of M determined by ortho-
normal vectors X and Y. Then we have

(2.9) K(X, Y)=g(R(X, Y)Y, X)

= Σ MAiX, X)g(AiY, Y) - giAtX, Yf
i=ι

+ g(φA{X, X)g(φAiY, Y) - giφA.X, Yf}

+ i ( C + 3) + 1(C - l){3g(φX, YY - 7](Xy - V(Yf} .

In particular, the 0-holomorphic sectional curvature H{X) of M is given

by

(2.10) H(X) = C - 2 Σ MAX, XY + giφAtX, X)2} .
i = l

It is easily seen that K(ξ, X) = K{ξ, X) = 1.

3. Fiberings of Sasakian submanifolds.

PROPOSITION 3.1. A Sasakian submanifold of a regular Sasakian
manifold is also regular.
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PROOF. Let M be a regular Sasakian manifold and M a Sasakian
submanifold of M. Let 7 be an integral curve of ξ through a point P
of M. Then f(i) is an integral curve of f = /*£ through /(P) e M. Assume
that 7 is not regular at Qey(s). Let Uf(Q) be an arbitrary open neigh-
borhood of f(Q) in M. Then, by assumption, f~\Uf{Q)) is piersed at least
twice by 7. This implies that Uf{Q) cannot be regular neighborhood, which
is a contradiction. q.e.d.

By a well known theorem of Boothby-Wang [1], a compact regular
Sasakian manifold is a circle bundle over a compact Kaehler manifold. If
M/ξ (resp. M/ξ) denotes the set of orbits of ξ (resp. £), then M/ξ (resp.
M/ξ) is a compact Kaehler manifold.

PROPOSITION 3.2. Let M be a compact Sasakian submanifold of a
compact regular Sasakian manifold M. Then M/ξ is a compact Kaehler
submanifold of M/ξ.

PROOF. Let / be the immersion of Minto M, and π: M-+ M/ξ (resp.
π:M-+M/ξ) be the natural projection. Then there exists a mapping
F: M/ξ —• M/ξ such that the following diagram is commutative;

M — M

M/ξ > M/ξ .

Let (J, G) (resp. (J, G)) be the Kaehler structure of M/ξ (resp. M/ξ).
Then we have

(3.1) (JX)* = φX\ G(X, Y) = flr(X*, Γ*) for X, Ye T(M/ξ) ,

(3.2) (J, X)* = ^X*, G(X, Y) = g{X\ Ϋ*) for X, Ye T(M/ξ) ,

where * denotes the horizontal lift with respect to the connection η or η.
For any vector X on M/ξ, we have

F^JX) = n(τ

which implies that î 7 is a complex immersion.
On the other hand, we have

Y*) = G(X,Y) ,

which implies that F is an isometric immersion. q.e.d.

REMARK. Proposition 3.2 was proved in [2] for hypersurfaces.

Let R' be a curvature tensor field of M/ξ. Then we have [3]
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(3.3) (R'(X, Y)Z)* = -Φ2R{X*, Y*)Z* - \y{[Y*, Z*])φX*
Δ

+ \η{[X*, Z*])φY* + V([X* Y*))φZ* .
Δ

Let i£'(X, Y) be the sectional curvature of M/ξ determined by ortho-
normal vectors X and Y. Then we have

*(3.4) K'(X, Y) = K(X*, Yη + 3</(X*

The holomorphic sectional curvature H'{X) of jlί/f determined by X
is given by

(3.5) H'(X) = H(X*) + 3 .

Let S' be the Ricci tensor of M/ξ. Then we have

(3.6) S'(X, Y) = S(X*, Y*) - g(R(ξ, X*)Γ*, ξ) + 3</(X*, Y*) .

The scalar curvature p' of Λf/f is given by

(3.7) p' = p + 2n.

4. Main results. Throughout this section, we confine our attention
to compact Sasakian submanifolds of a simply connected elliptic Sasakian
space form.

Let M be a simply connected elliptic Sasakian space form of constant
^-holomorphic sectional curvature C(C > — 3) and M be a compact Sasakian
submanifold of M. Then M/ξ is a complex protective space of constant
holomorphic sectional curvature C + 3 by (3.5).

THEOREM 4.1. Let M be a compact Sasakian suhmanίfold of codimen-
sίon 2 imbedded (resp. immersed) in a simply connected elliptic Sasakian
space form of constant φ-holomorphic sectional curvature C. If dim M ̂  5
(resp. dim M ̂  9) and if the sectional curvature K of M satisfies K(X, Y) +
2g(φX, Y)2 > 0 for each pair of orthonormal vectors X and Y, then M is
totally geodesic.

PROOF. By Proposition 3.2, M/ξ is a compact Kaehler hypersurface
imbedded (resp. immersed) in a complex protective space. Our assump-
tion, together with (3.4), implies that every sectional curvature of M/ξ
is positive. Hence, by Theorem 3.3 in [4], (resp. Theorem in [5]) M/ξ is
a totally geodesic submanifold of codimension 2 of the complex protective
space so that Ή = C + 3. This, together with (3.5), implies H = C.
Therefore, by (2,10), we have A1 = 0, that is, ikΠs totally geodesic, q.e.d.

THEOREM 4.2. Let M be a (2n + l)-dimensional compact Sasakian
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submanifold immersed in a simply connected elliptic Sasakian space form
of constant φ-holomorpic sectional curvature C of dimension 2(n + p) + 1.
// every φ-holomorphic sectional curvature of M is greater than C —
({n + 2)/2(n + 2p))(C + 3), then, M is totally geodesic.

PROOF. M/ξ is an ^-dimensional compact Kaehler submanifold im-
mersed in a complex protective space of constant holomorphic sectional
curvature C + 3 of dimension n + p. By assumption and (3.5), we have

H'XC +
2{n + 2p)

By virtue of Theorem in [6], M/ξ is totally geodesic. By the argument
similar to Theorem 4.1, M is totally geodesic. q.e.d.

The same argument as Theorem 4.2, combined with Theorem in [10]
implies the following.

THEOREM 4.3. Let M be a ^-dimensional compact Sasakian submani-
fold immersed in an lϊ-dimensional simply connected elliptic Sasakian
space form of constant φ-holomorphic sectional curvature C. // every φ-
holomorphic sectional curvature of M is greater than (2/3)C — 1, then M
is totally geodesic.

THEOREM 4.4. Let M be a (2n + l)-dimensional compact Sasakian
submanifold immersed in a simply connected elliptic Sasakian space form
of constant φ-holomorphic sectional curvature C. If every Ricci curvature
of M is greater than (n/2)(C + 3) — 2, then Mis totally geodesic.

PROOF. For a unit vector X in M/ξ, we have from (3.6) that

s'(x, x) = s(x*, xη + 2.
This, together with our assumption, implies S'(X, X)>(n/2)(C + 3). Hence,
by virtue of Theorem 1 in [6], M/ξ is a totally geodesic submanifold of
the complex projective space. By the argument similar to Theorem 4.1,
M is totally geodesic. q.e.d.

THEOREM 4.5. Let M be a (2n + l)-dimensional compact Sasakian
submanifold of codimension 2 immbedded in a simply connected elliptic
Sasakian space form of constant φ-holomorphic sectional curvature C. If
the scalar curvature of M is greater than (C + 3)w2 — 2n almost everywhere
on M, then, M is totally geodesic.

PROOF. From (3.7), we have p' > (C + 3)w2, which together with Corol-
lary 2.2 in [4], implies that M is totally geodesic. q.e.d.
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