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1. Introduction. In his recent papers [4], [56], and [6], K. Ogiue
studied positively curved submanifolds of a complex projective space. The
purpose of this paper is to study similar problems for submanifolds of a
Sasakian space form.

Let M be a (2n + 1)-dimensional Sasakian manifold with the structure
tensors ¢, & 7, and g. Then we have

9§ =0, 9 =1, ¢&=-I+({Q7,
9(X, §) = 9(X), 96X, ¢Y)=9(X,Y) - pX)N(Y),
dn(X, Y) = 9(¢X, Y),
X = Vi, (Vi)Y =9(Y)X — g(X, Y)§.

By a ¢-holomorphic sectional curvature H(X) of M with respect to a
unit vector X orthogonal to §, we mean the sectional curvature K(X, ¢X)
spanned by the vectors X and ¢X.

A sasakian space form is, by definition, a connected and complete
Sasakian manifold of constant ¢-holomorphic sectional curvature C.

It is known that there are three types of simply connected Sasakian
space forms:

1) Elliptic Sasakian space form: C > —3; (homeomorphic to a sphere),

2) Parabolic Sasakian space form: C = —3; (homeomorphic to a Eu-
clidian space),

3) Hyperbolic Sasakian space form: C < —3; (homeomorphic to a real
line bundle over a unit disk in C").

Simply connected Sasakian space forms are homogeneous contact
manifolds which they are regular [1, 8].

The author expresses his hearty thanks to Professors K. Ogiue and
S. Tanno for their valuable suggestions and encouragement.

2. Sasakian submanifolds. Let I be a (2(n + p) + 1)-dimer~15ional
Sasakian space form of constant ¢-holomorphic sectional curvature C with
structure tensors (8, &, 7, §), and let M be a (2n-+1)-dimensional differential
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manifold with an almost contact structure (g, &, 7, 9). We assume that
M is immersed in M by f and f satisfies §-fy = fu*9, & = fy+&, 0 = f*T]
and g = f*g, where f* denotes the differential of f and f* the dual map

of fi.
We denote by V (resp. V) the covariant differentiation with respect

to g (resp. §). Then the second fundamental form a of the immersion f
is given by
aX,Y)=V,Y—V,Y.
We can easily see that « satisfies
2.1) ga(X, Y) = a(3X, Y) = a(X, $Y) ,
(2.2) a(X,8) =0.

Let v, +++,v,, ¢y, «++, ¢v, be local fields of orthonormal vectors normal to
M. If we set, for : =1,2,---, p,

g(A'iX’ Y) = g(a(X’ Y); ”,-) ’
9(4:X,Y) = §a(X, V), $v5) ,

then, A4,, .-+, A,, Ay, -+, A,+ are local fields of symmetric linear transfor-
mations and they satisfy

(2'3) Ay = ¢Ai ’
(2.4) $A; = — A,
(2.5) A& =0.

It is known that (¢,¢,7,¢9) is a Sasakian structure on M (Tanno [9]).
Hereafter, we therefore call M a Sasakian submanifold of M.

PROPOSITION 2.1 (Tanno [9]). M is a minimal submanifold of I.

Proor. It suffices to verify that tr A; = tr 4+« = 0. From (2.3) and
(2.4), tr A» =0 is evident, and we have ¢4 = —¢°4; = A, — £ R nA..
Hence we have

tr 4; = tr (4.9 + £ Q@ n4,)
= tr (4i¢* + £ ® P4.)
=tr(—4; + 26 ® 74,
== tI‘ (_At) P}
because & @ PA; X = P(4;X)¢ = g(4:X, &)¢& = g(X, A;&) = 0 by (2.5). q.e.d.

Let R be the curvature tensor field of M. Then, the equation of

Gauss is
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26) R(X, V)Z = 3 {~0(4.X, DAY + g(A.Y, 2)AX
— GBAX, Z)6AY + gBAY, Z)pAX)
+ %(C* + 3){9(Y, Z2)X — g(X, Z)Y)

+ 711—((7 — D{n(X)(2)Y — n(Y)(Z)X + 9(X, Z)n(Y)é

— 9(Y, Z)(X)¢ — dn(X, Z)sY + di(Y, Z)$X
— 2d9(X, Y)¢Z} .

Let S and p be the Ricci tensor and the scalar curvature of M respec-
tively. Then we have

@7 SX, Y) = n(C +3) + C — Jo(X, ¥) — =(n+ D - H(Xm(¥)

— 23 g(AX, A;Y)
and

2.8) pz%{(2n+1)(@+3)+6‘—1}—2tr2A‘:’-.

Let K(X, Y) be the sectional curvature of M determined by ortho-
normal vectors X and Y. Then we have

(2.9) KX,Y) =9g(RX, Y)Y, X)
= é {9(A:X, X)9(A;Y, Y) — 9(A:X, Y)

+ 904X, X)9(pA;Y, Y) — 9(¢4: X, Y)*}

+ (€ +3) + (€ — DEIGX, Y) - 7(X) = 0T}
In particular, the ¢-holomorphic sectional curvature H(X) of M is given
by
(2.10) HX)=C—2 i 9(AX, XY + g(pA:X, X)) .
It is easily seen that K(¢, X) = K¢, X) = 1.

3. Fiberings of Sasakian submanifolds.

ProprosSITION 3.1. A Sasakian submanifold of a regular Sasakian
manifold s also regular.
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ProOF. Let I be a regular Sasakian manifold and M a Sasakian
submanifold of M. Let v be an integral curve of & through a point P
of M. Then f(v) is an integral curve of & = f,& through f(P)c M. Assume
that v is not regular at Qe v(s). Let Uy, be an arbitrary open neigh-
borhood of f(Q) in 117.7._ Then, by assumption, f~'(U,,) is piersed at least
twice by v. This implies that U,,, cannot be regular neighborhood, which
is a contradiction. g.e.d.

By a well known theorem of Boothby-Wang [1], a compact regular
Sasakian manifold is a circle bundle over a compact Kaehler manifold. If
Mj¢ (resp. MJE) denotes the set of orbits of & (resp. £), then M/¢ (resp.
MJg) is a compact Kaehler manifold.

PROPOSITION 8.2. Let M be a compact Sasakian submanifold of a
compact regular Sasakian manifold M. Then M/E is a compact Kaehler
submanifold of MJE.

PROOF. Let f be the immersion of M into i1, and 7: M — M/& (resp.
#: M — MJE) be the natural projection. Then there exists a mapping
F: M/& — MJE such that the following diagram is commutative;

L
nl i li
Let (J, G) (resp. (J, G)) be the Kaehler structure of M/¢ (resp. M/E).
Then we have
(3.1) JX)* = ¢X*, G(X,Y)=g(X* Y*) for X,YeT(M),
8.2) (J, X)*=4X*, GX,¥)=gX* Y* for X, Ve T(E),
where * denotes the horizontal lift with respect to the connection » or 7.
For any vector X on M/s, we have
F*(JX) = F*(ﬂ*¢X*) = ﬁ*f*(¢X*) = ﬁ*¢f*X* = jﬁ*f*X*
= JF,m . X*=JF . (X),

which implies that F is a complex immersion.
On the other hand, we have

GEFX, F Y)=F(F,Y)*, (Fyy Y))=g(f X*, £ Y*)=g(X*, Y)=G(X,Y) ,
which implies that F' is an isometric immersion. g.e.d.
REMARK. Proposition 3.2 was proved in [2] for hypersurfaces.
Let R’ be a curvature tensor field of M/¢. Then we have [3]
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(3.3) (R'(X, Y)Z)* = —¢"R(X*, Y*)Z* — %v([Y*, Z*)pX*
+ X7, ZDY "+ N(X* - YU)eZ”

Let K'(X, Y) be the sectional curvature of M/é determined by ortho-
normal vectors X and Y. Then we have

(3.4) K'(X,Y) = K(X*, Y*) + 3g(X*, Y*).

The holomorphic sectional curvature H'(X) of M/é determined by X
is given by

(3.5) H'(X) = HX*) + 3.
Let S’ be the Ricci tensor of M/5. Then we have

(3.6) S'(X,Y)=S8X* Y*) — g(R(E, X*)Y™, 8 + 39(X*, Y™).
The scalar curvature o’ of M/§ is given by

3.7 o =p0+2n.

4. Main results. Throughout this section, we confine our attention
to compact Sasakian submanifolds of a simply connected elliptic Sasakian
space form.

Let M be a simply connected elliptic Sasakian space form of constant
¢-holomorphic sectional curvature C(C > —3) and M be a compact Sasakian
submanifold of M. Then M/Z is a complex projective space of constant
holomorphic sectional curvature C + 3 by (3.5).

THEOREM 4.1. Let M be a compact Sasakian submanifold of codimen-
sion 2 tmbedded (resp. immersed) in a simply connected elliptic Sasakion
space form of constant ¢-holomorphic sectional curvature C. If dim M =5
(resp. dim M = 9) and if the sectional curvature K of M satisfies K(X, Y) +
39(¢X, Y)* > 0 for each pair of orthomormal vectors X and Y, then M 1is
totally geodesic.

Proor. By Proposition 3.2, M/ is a compact Kaehler hypersurface
imbedded (resp. immersed) in a complex projective space. Our assump-
tion, together with (8.4), implies that every sectional curvature of M/¢
is positive. Hence, by Theorem 3.3 in [4], (resp. Theorem in [5]) M/ is
a totally geodesic submanifold of codimension 2 of the complex projective
space so that H' = C + 8. This, together with (3.5), implies H = C.
Therefore, by (2,10), we have A, =0, that is, M is totally geodesic. q.e.d.

THEOREM 4.2. Let M be a (2n + 1)-dimensional compact Sasakian
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submamnifold immersed in a simply connected elliptic Sasakian space form
of constant g-holomorpic sectional curvature C of dimension 2(n + p) + 1.
If every ¢-holomorphic sectional curvature of M is greater than C -
(n + 2)/2(n + 2p))(C + 3), then, M is totally geodesic.

Proor. M/&¢ is an mn-dimensional compact Kaehler submanifold im-
mersed in a complex projective space of constant holomorphic sectional
curvature C + 3 of dimension % + p. By assumption and (3.5), we have

H'>(C*+3)<1—_”JEZ_‘).

2(n + 2p)
By virtue of Theorem in [6], M/& is totally geodesic. By the argument
similar to Theorem 4.1, M is totally geodesic. g.e.d.

The same argument as Theorem 4.2, combined with Theorem in [10]
implies the following.

THEOREM 4.3. Let M be a 5-dimensional compact Sasakian submani-
fold immersed in an ll-dimensional simply connected elliptic Sasakioan
space form of constant ¢-holomorphic sectional curvature C. I f every ¢-
holomorphic sectional curvature of M is greater than (2/3)C — 1, then M
1s totally geodesic. ’

THEOREM 4.4. Let M be a (2n + 1)-dimensional compact Sasakion
submanifold immersed in a simply connected elliptic Sasakian space form
of constant ¢-holomorphic sectional curvature C. If every Ricci curvature
of M is greater than (n/2)(C + 3) — 2, then M is totally geodesic.

PrRoOOF. For a unit vector X in M/&, we have from (3.6) that
S'(X, X) = S(X*, X*)+ 2.

This, together with our assumption, implies S'(X, X)>(n/2)(C + 3). Hence,
by virtue of Theorem 1 in [6], M/é is a totally geodesic submanifold of
the complex projective space. By the argument similar to Theorem 4.1,
M is totally geodesic. g.e.d.

THEOREM 4.5. Let M be a (2n + l)-dimensional compact Sasakian
submanifold of codimension 2 immbedded in a simply connected elliptic
Sasakian space form of constant ¢-holomorphic sectional curvature C. If
the scalar curvature of M is greater than (C‘ + 3)n? — 2n almost everywhere
on M, then, M is totally geodesic.

Proor. From (8.7), we have o’ > (C + 3)n?, which together with Corol-
lary 2.2 in [4], implies that M is totally geodesic. g.e.d.
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