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1. Introduction. Let (Jlf, g) be a compact orientable Riemannian
manifold (connected and C°°, dim M = m) with metric tensor g. By V
we denote the Riemannian connection and by Δ we denote the Laplacian
acting on p-forms, 0 ^ p ^ m. Let λβfP be eigenvalues of Δ and put

(1.1) Spec (M, g; p) = {0 ^ λo,p ^ λ1>?) ^ λ2)ί) ^ j - oo} .

For p = 0, we denote Spec (M, #; 0) = Spec (M, g) and λα,0 = λα. Relations
between Spec (Λf, g) and Riemannian structures have been studied by
Berger [1], Mckean-Singer [6], Patodi [10], Sakai [11], etc. Some results
are listed in the first part of § 3. A useful tool is a formula of Minakshi-
sundaram:

do, au a2 were calculated by Berger [1] and Mckean-Singer [6]; and α3

was calculated by Sakai [11]. In the following Theorems A, B, and D,
the assumption on Spec (,) is also replaced by Σ eλ<χt> a n ( i more precisely
in terms of aβ (β = 0, 1, 2, 3).

THEOREM A. Let (M, g) and {Mf, gr) be compact orientable Rieman-
nian manifolds. Assume that Spec (M, g) = Spec (AT, gf). Then m = mf

and
( 1 ) for 2 ^ m ^ 5, (Λf, g) is of constant curvature K, if and only

if (M', g') is of constant curvature K' = K,
( 2 ) for m = 6, (2-1) (Mf g) is conformally flat and the scalar cur-

vature S is constant, if and only if (ikΓ, g') is conformally flat and the
scalar curvature S' is constant, Sr = S,

(2-2) (M, g) is of constant curvature K > 0, if and only if (Mf, gr)
is of constant curvature Kf = K > 0.

Theorem A for m = 2, 3 was proved by Berger [1] For m = 4,
Berger's Theorem 8.1 in [1] requires an additional condition χ(M) = χ{M'),
where χ(M) denotes the Euler-Poincare characteristic of M. Our result
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generalizes this and furthermore it is valid for m = 5.
By Sm(c) or (Sm(c), g0) we denote a Euclidean ra-sphere with constant

curvature c > 0, and by Hm(—c) we denote a hyperbolic m-space with
constant curvature — c < 0.

THEOREM B. Let (M, g) be a compact orientable Riemannian manifold,
2 ^ m ^ 6. If Spec (M, g) = Spec (Sm(c), #0), then (M, g) is isometric to
(Sm(c), g0).

This follows from Theorem A (1) and (2-2).

Theorem B has some aspect related to Obata's theorem [8] on the
first non-zero eigenvalue on Einstein spaces.

THEOREM C. Let (M, g) be a compact orientable Riemannian manifold
with m = 6. In (1.2), α2 = α3 = 0 holds, if and only if (M, g) is either

( 1 ) Eβ/Γ19 where Γ1 is some discontinuous group of translations of

the ^-dimensional Euclidean space Eβ, or

( 2 ) [S3(c) x Hz{ — c)]/Γ2, where Γ2 is some discontinuous group of

isometries of S3(c) x H*(-c).

For m ^ 5, Mckean-Singer [6] and Patodi [10] showed that (1) is the
only case. For m ^ 7, see Proposition 7 (3).

Kahlerian analogues are also true. Corresponding to Theorem A, we
have Theorem E in §4. Corresponding to Theorem B, we have

THEOREM D. Let (M, g, J) be a compact Kahlerian manifold, m =
2n 5̂  12. Let (CPn(H), gQ, Jo) be a complex n-dimensional protective space
with the FubiniStudy metric of constant holomorphic sectional curvature
H. If Spec (Λf, g, J) = Spec (CPn(H), g0, Jo), then (M, g, J) is holomor-
phically isometric to (CPn(H), gQ, JQ).

2. Preliminaries. By R = (R*jkl) we denote the Riemannian curvature
tensor: IP^d/dx* = R(d/dx\ d/dxι)d/dxj and R{X, Y)Z = FC X f Γ ]Z - [FZ9 VY]Z,
iyjfk,l=l, ",m = dim M. By Rλ = (Rjk) = (Rr

jkr) we denote the Ricci
curvature tensor. By S = (gjkRjk) we denote the scalar curvature. For
a tensor field Γ = (Tijk), for example, we denote | T\2 = (TijkT

ίjk). Then
we have (cf. [1], [2], [6], [11])

(2.1) α0 = Vol(ilf) = \dM,

(2.2) a, = — \sdM ,
6 J

(2.3) α2 = - L - ([21R |2 - 2| 5 , |2 + 5S*]dM,
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<2 4) ° = i i [ - > Λ i ' - f ι
- JLB",,R",,R"U - -L.BrB» B,a,

ΔL bo

RRRtm

bo

The following are also useful.

(2.5) |12|2 m — 1

(2.6) l ^ i l 2 - — S 2 ^ 0 .
m

The equality in (2.5) on Af implies that (Af, g) is of constant curvature,
and the equality in (2.6) on Af implies that (AT, g) is an Einstein space
(cf. [1], or [2]).

The WeyPs conformal curvature tensor C = (&&), Cim = girC
r

jku is
given by (for m ^ 4)

(2.7) C U = Rim - — ί - (Rjkgu - Rngik + ^ i 2 ί Z - gnRik)

(m — l)(m - 2)

Then we have (cf. [14], [15])

(2.8) | C r = . | 2 ? r - i
m — 2 (m — l)(m — 2)

By (2.8) we have

(2.9) 21igl2-21ig1l
2 + 5 S 2 = 2 1 C T + 2 ( 6 " m ) [gxΓH- 5 m ( m ~ 3 ) + 6 S2.

m — 2 (m — l ) ( m — 2)
3. Geometry reflected by the spectrum. Let (M, g) and (M\ gf) be

compact orientable Riemannian manifolds. The following are known.
[ i ] Spec (M, g) = Spec (M\ g') implies m = m', Vol (M) = Vol (Af 0

([2], p. 215).
[ ii ] For m = mr = 2, if α^ = α£ (/3 = 0,1, 2) and S = constant, then

S' is also constant and S = S' (Berger: [2], p. 226).
[iii] For m = m' = 3, if aβ = a'β (β = 0,1, 2) and if (Λf, g) is of con-

stant curvature K, then (AT, βr') is also of constant curvature K (Berger:
[2], p. 228).

[iv] For m = ra' = 4, if aβ = a'β (β = 0,1, 2), χ(AΓ) = χ(Af') and if
(Af, gr) is of constant curvature K, then (Af', g') is of constant curvature
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K (Berger: [2], p. 229).
[ v ] Assume that (M, g) and (ΛF, gr) are Einstein spaces and aβ = aβ

(β = 0,1, 2) Then (M, g) is of constant curvature K, if and only if
(ikP, gf) is of constant curvature K (Sakai [11], p. 599).

[vi] For m = w! — 6, assume that (ikf, g) and (ΛΓ, g') are Einstein
spaces. If aβ = aβ (β = 0,1, 2, 3) and χ(M) = χ(M'), then (ikf, #) is locally
symmetric if and only if (M\ gf) is locally symmetric (Sakai [11], p. 601).

[vii] For m ^ 5, assume aβ = 0 (/3 = 1, 2). Then (Λf, g) is locally
flat (for ra ^ 3, Mckean-Singer [6]; for ra ^ 5, Patodi [10]).

Concerning [iii], [iv] and [v], we have

THEOREM A'. Let (M, g) and (M', g') be compact orientable Riemannian
manifolds. Assume aβ — a'β for β = 0, 1, 2. Then,

(1) for m = mr ^ 5, (M, g) is of constant curvature K, if and only
if (M\ gτ) is of constant curvature K,

( 2 ) for m = mf = 6, (M, g) is conformally fiat and S is constant,
if and only if (Mr, g') is conformally fiat and £' is constant, S = S\

PROOF. Since the case m — 2, 3 was proved in [1], assume m ̂  4.
By (2.3) and (2.9), α2 = a[ is written as

(3.1) ([21C |2 + 2 ( 6 " m)( 1 R A 2 - - S>)
JL m — 2 \ m /

/ 2(6 - m) 5m(m - 3) + 6
\m(m - 2) (m - l)(ra - 2)

m — 2 V m

/ 2(6 - m) 5m(m - 3) + 6
Vm(m-2) ( m - l ) ( m - 2 )

First assume 4 ^ m ^ 5 and (ikf', gf) is of constant curvature Kf. Then
it is conformally flat (C = 0) and is an Einstein space (|iϋί|2 = S'2/m).

Since S' is constant, α0 = αj and ax = α' imply \S 2dM^ \sf2dM'. In fact,

using Schwarz inequality, we have

(\dM\(\s*dAl\ ^ (\sdMy =

= Sn([dM)(\dM')

Hence, (3.1) gives C = 0, | Rt |
2 = S2/m and f S2ώM - ίs ' 2dM'. Consequently,
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(M, g) is of constant curvature K — K\

Next, assume m = 6, C = 0 and S' = constant. Then, using (3.1),
similarly we have C = 0 and S = constant.

REMARK. (3.1) gives a simple proof of [v].

Concerning [vii], a simple proof is (2.3) and (2.9). Patodi [10] gives
a counter-example for m = 6. For m = 6, under an additional condition
α3 = 0, we determine (M, #).

LEMMA 1. If a2 = 0 απeZ m = 6, ίfrew (ikf, #) is conformally flat and
the scalar curvature S is vanishing.

PROOF. This follows from (2.3) and (2.9).

Now we denote (i?0 = (Ri

jR''kR
k

i).

LEMMA 2. If (M, g) is conformally flat, m 7> £, and S = constant,
then

(3.2)

Uγι _ i)(w2, _ 2)

PROOF. By (2.7) and C = 0, β 4 i w is expressed by i2ifc, sriΛ, and S. By
the second Bianchi identity for Rijkl we have

(3.3) FkRij = FjjBίfc .

Then we have

(3.4) \FR.l2 = FkRi3V
kRij = FάRikF

kR1'

= Fk(FjRik-Ri>')-FΨjRik-Ri>' ,

where FkFόRik is calculated by the Ricci identity:

(3.5) gkrFrF5Rik = gk*{F3VrRik - i28

ί i r22β & - Λ % i r β < f ) .

Noticing that gkrFrRik = (1/2^5 = 0 and fifferie8

fcir = -R'i9 we simplify (3.5).
Putting the result into (3.4) and integrating, we have (3.2).

LEMMA 3. If (M, g) is conformally flat, m ^ 4, and S = constant,

then

(3.6) α3 = — -
6! J L 6 3 ( m - 2)

+ 1 f
63(m - 2)3 l"

- 16(m - 2)(m - 4) - 40(m - 2)2 - 36(m -

+ ΐ [192(m - 4)
63(m - 2)3 l V '
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+ [576 - 16(m + l)(m - 2)
63(m — l)(m — 2)3

+ 4(m - 2)2(52m - 47) - 42(m - l)(m - 2)3]S\R1\
2

+ [-96m + 16(m - l)(m - 2)
63(m - l)2(m - 2)3 l V Λ '

- 104(m - l)(m - 2)2 + 35(m - l)2(m -

PROOF. By (2.7) and C — 0, we have

(3.7) m — 2

(3.8) i
m-2 ' ' (m-l)(m-2)

(3.9) RikRiιRim

2
l2 +(m — l ) (m — 2) (m — l )(m — 2)

Λ* 1 Π\ J?rs 7? όki τ>

= 2 < m ~ 4> (i2?) + ?(m+J) s\RΛ>- ? Ss
(m - 2)2 (m - l)(m - 2)2 ' (m - l)(m - 2)2

(3.11) WuR
M

r.R"ii = [replacing R»hl by (2.Ί)]Ru

rsR"%j

2

m - 2 r "•" (m - l)(m - 2)

8(m - 4) (RS) _ 24 „
(m - 2)3 ( ι) ( m - l ) ( m - 2 ) 3

+ S #
(m - l)2(m - 2)3

Substituting these into (2.4), we get (3.6).

PROPOSITION 4. Let (M, g) and (M1, g') be compact orientable Rieman-
nian manifolds, m = m' = 6. Assume aβ — a'β (β = 0,1, 2, 3). Then (Mr, g')
is of constant curvature K' > 0, if and only if (M, g) is also of constant
curvature K = K' > 0.

PROOF. Assume that (M', g') is of constant curvature K' > 0. By
Theorem A' we have C — 0 and S = constant. By (3.6) we have

(3.12) α3 - -A-J[- l ί IFR, |2 - J- (ΛJ) +

where (*) denotes the coefficient of S3. By (3.2) we have
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(3.13) «. = Jj- \[-^\^ -±

Since (Jkf', #') is of constant curvature, we have αj = (l/6!)((**)S'3dJlf\

Since S = S' > 0, α3 = a[ implies that FΉ = 0 and | R, |2 = S2/6. Hence,

(Jlf, g) is of constant curvature K = K' > 0. q.e.d.

Theorem A' and Proposition 4 give a proof of Theorem A.

PROPOSITION 5. If (Jlf, g) is conformally flat and S = 0, and if m >̂ 4
(m ^ 8) αweZ α3 = 0, ίfeβ^ VRγ = 0, a n d feewce (jlf, gr) is

( 1 ) locally flat, or
( 2 ) locally Riemannian product Sm'2(c) x Hml2(—c).

PROOF. By (3.2) and (3.6), we have

1 f 2(m - 8)(5m2 - 2m - 48)

" ~6Γ 3 63m(m - 2)2

Since 5m2 - 2m - 48 > 0 for m ^ 4, if m ^ 8, we have F i ^ = 0. If
(Λf, g) is irreducible, then (ikf, gr) is an Einstein space. S — 0 implies that
(Jlf, g) is locally flat. This is a contradiction. If (Jlf, g) is reducible, then
it is locally Riemannian product [E1 x Sm-χ(c), or ΐ/1 x £Γw- 1(-c), or £"*,
or Sr(c) x i f m - r (-c)] (cf. Kurita [4]). S = 0 implies that (Jlf, ί/) is locally
Em or locally Sm/2(c) x Hml\-c).

THEOREM C\ Lei (Jlf, g) be a compact orientable Riemannian manifold
with m = 6. If aβ = 0 for β = 2, 3, ί/̂ βw (Jlf, gr) is either

(1) # 6 /Λ, or

( 2 ) [S3(c) x ίf 3(-c)]/Γ 2.

PROOF. This follows from Lemma 1 and Proposition 5.

REMARK. AS for 5 > i β * for S3(c) x [£Γ3(-c)/Γ*], cf. [10], p. 283-285.

Concerning [vii] for m ^ 7, we can state

PROPOSITION 6. Let (Jlf, g) be a compact orientable Riemannian mani-
fold with a2 = 0, m >̂ 7. 1/

<3 " > i * ' *

o^ Jlf, then (Jlf, #) is conformally flat, and the equality holds in
(3.14) on Jlf.

PROOF. This follows from (2.3) and (2.9).

Hence, as for α2, we can summerize the above as follows.
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PROPOSITION 7. Let (M, g) be a compact orientable Riemannian mani-
fold.

( 1 ) For 2 ^ m ^ 5, α2 ^ 0 holds, equality is only for locally flat

(M, g).
( 2 ) For m = 6, α2 ^ 0 holds; (if α3 = 0) equality is only for locally

flat (ikf, g) or locally Riemannian product S3(c) x Hz(—c).
( 3 ) jPor m^7, if Ricci curvatures are non-negative (or non-positive)

on M, then α2 ^ 0 holds; equality is only for locally flat (ikf, g).

PROOF. (1) is [vii] or (2 9). (2) is Theorem C. We show (3). By
the assumption of Ricci curvatures we have

(3.15) I Λx |
2 <; S2 ̂  J M m - 3 )

2(m — l)(m — 6)

Hence, (3.14) holds. Therefore C = 0 and (3.15) must be equalities. Thus
S = 0 and | J?x |

2 = 0. This implies R = 0.
Next, we show

PROPOSITION 8. Lei (M, g) and (M\ gf) be compact orientable Rieman-
nian manifold, m = mr = 4. Assume α̂  = α̂  for β = 0,1, αraί 2. //"
(M"', βr') is α% Einstein space, then

(3.16) χ(Af) ^ χ(ikf')

holds. The equality holds, if and only if (ikf, g) is also an Einstein space.

PROOF. By Gauss-Bonnet formula we have (cf. [1], (8.1))

(3.17) α2 = -§^L χ(M) + -±- \ [21R, |2 + S2]ώM.

Since (ikf, ί/') is an Einstein space, α2 = α2 is written as

Since ί s 2 dikf^ ίs'2cZikf' (cf. proof of Theorem A'), we have (3.16). The

equality implies | JBX |
2 = S2/4.

REMARK. In connection with Theorem A' (2) and Proposition 4, the
role of Os = a[ may be replaced by the fundamental group of ikf. Namely
we have

PROPOSITION 9. Let (ikf, g) and (M\ gf) be compact orientable Rieman-
nian manifolds, m = mr = 6. Assume that aβ = a'β holds for β = 0,1, 2
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and assume that (M', gf) is of constant curvature Kr. If the fundamental
group πjjd) of M is finite, then (M, g) is also of constant curvature K'
and K' > 0.

In particular, if {Mf, gr) — (S6(c), g0), then {M, g) is isometric to
(Sβ(c), g0).

This follows from Theorem A! (2) and the following fact: Let (M, g)
be a compact conformally flat Riemannian manifold with finite πJJM),
m ^> 3; if S is constant, then (M, g) is of positive constant curvature
(cf Tanno [13]).

4. Kahlerian manifolds. Let (M, g, J) be a Kahlerian manifold with
almost complex structure tensor J = (Jj) and Kahlerian metric tensor
g = (g.j). The complex dimension of M is n — ra/2. Then,

(4.1) grsJiJj=9ij, JUj = -δj

and F\J) — 0. JiS = girJj is skew-symmetric. The Ricci curvature tensor
satisfies

(4.2) RiβJ
ι

rJi = Rr8 , RirJj = -RjrJϊ .

The Bochner curvature tensor B = {Bι

jkl), Bijkl = girB
r

ύkU is given by (cf.
[15], etc.)

(4.3) Bijkl = Rijkl - ^ ι {RjkQu - RjiQik + gjkRu - gjiRik

+ RjrJkJu — RjrJιJik + J3kRirJι — JjiRirJk — 2RkrJιJij

- 2RirJ
r

άJkl) + — — — (gjkgu - gngik

(m + 2)(m + 4)

\B\ is given by (cf. [15])

(4.4) | B | « = | Λ | « - _ W I ̂  I2 +
m + 4

I ̂  I + ^ S .
m + 4 (m + 2)(m + 4)

A Kahlerian manifold {M, g,J),m^4, is of constant holomorphic sec-
tional curvature H, if and only if

TT

(4.5) Rijki = — (gskΰu — 9n9ik + JjkJu — JikJji —

holds. Then Rjk and S are given by

(4.6) Rik = H ± 2 H g j k , s = m(m + 2)
4 4
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A Kahlerian manifold (Λf, g, J) is of constant holomorphic sectional curva-
ture, if and only if B = 0 and | R, |2 = S2/m.

PROPOSITION 10. Let (Λf, g, J) and (M', g', /') be compact Kahlerian
manifolds. Assume aβ = αj /or /3 = 0,1, and 2. Then,

(1) /or m = m' ^ 10, (Λf, #, J) is o/ constant holomorphic sectional
curvature, if and only if (Λf', #', /') is o/ constant holomorphic sectional
curvature, H = Hf,

(2) for m = m' = 12, 5 = 0 αmZ S,= constant, if and only if B' = 0
S' = constant, S = S'.

PROOF. By (4.4), we have

(4.7) "• 360 JL m + 4

m(m + 2)

Then the proof is completed in a way similar to that of Theorem A'.

LEMMA 11. (Matsumoto [5]) If the Bochner curvature tensor B = 0
(more generally, parallel) and S = constant, then the Ricci curvature
tensor i2L is parallel (and (M, g) is locally symmetric).

LEMMA 12. If VRX = 0, then

(4.8) Rr3ksR
r8 = RjrR\

PROOF. By 0 = (VsVkRrj - VkV8Rr3)grs and the Ricci identity, we have
(4.8).

LEMMA 13. IfB = 0 and FR, = 0, then

(4.9) m(Rl) = 2(m + ^ S\R11
2 - ^

m + 2 m + 2

PROOF. Transvect (4.8) with Rjk and use (4.3). Then, using (4.2),
we have (4.9).

LEMMA 14. IfB=0 and FR, = 0, then

(4.10) S\R\2 = J^ £SlR.l £ S
m + 4 (m + 2)(m + 4)

(4.11) RikR»Rijkl= -(Rf) ,

(4.12) R»RrnιR.'» = - i f - (i23) - 8 S |
m + 4 (m + 2)(m + 4)
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(TO + 2)2(m + 4)2

PROOF. (4.10) follows from (4.4). (4.11) follows from (4.8). (4.12) is
calculated as follows: First write down R"Rrm using (4.3). Next,
transvect it with RJkl and use (4.2) and well known identities:

(4.14) RimJkl = 2J[Rrj, RiiklJ}J! = Riir. , e tc .

For example, RJklRktJ
t

ιR\Jf ( = -2{R$) is calculated by the first Bianchi
identity and the above relations.

(4.13) is calculated as follows (using (4.2), (4.8), (4.14))

[replacing Rim by (4.3)] Rij

r8R
r""

^ R r ' R r j k l R J k l - 16(12?)][SRRrjkl

m + 4

- -, h Γ [ - 4 | J B | 2 - 8 | i e i j
2 ] S .

(m + 2)(m + 4) J

Substituting (4.10) and (4.12), we have (4.13).

LEMMA 15. If B = 0 and VR1 = 0, then

a 15) a = — f[Y 1 2 8 ( 3 m 2 + 4 0 m + 64> _ 32(m
3

[
6! JLV 63m(m + 2)(m + 4)2 63m(m + 2)

PROOF. In (2.4) we substitute (4.10), « ,(4.13) and next eliminate
(22J) using (4.9).

PROPOSITION 16. Let (M, g, J) and (M\ g\ J') be compact Kdhlerian
manifolds, m = m! = 12. Assume aβ = αj /or /S = 0, 1, 2, and 3. Then
(M\ g\ J') is of constant holomorphic sectional curvature H' ψ 0, if and
only if (M, g, J) is of constant holomorphic sectional curvature H — H\

PROOF. Assume that (M\ g', Jr) is of constant holomorphic sectional
curvature Hf Φ 0. By proposition 10 and Lemmas 11 and 15, α3 = a[ is
written as

(4.16) - y I — — Si IR, |2 - — S2) + <**>SS \dM

= J_ f <**>S'^M'.
6! J
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S = S' Φ 0 gives \E^ = S2/12. Hence, {M, g, J) is of constant holomorphic
sectional curvature H and H = JET.

By CDn(—H) we denote a simply connected complex space form (of
constant holomorphic sectional curvature — H < 0) of complex dimension n.

PROPOSITION 17. Let (M, g, J) be a compact Kahlerian manifold with
dimension m = 2n ^ 12. α2 = 0 λoώfe #ood, i/ and only if {M, g, J) is
either

(1) CEn/Γ5, where Γz is some discontinuous group of automorphisms
of the complex n-dimensional Euclidean space CEn, or

(2) m = 2n = 12 and [CP\H) x CD*(-H)]/Γ4, where Γ4 is some
discontinuous group of automorphisms of CP3(H) x CDZ{—H).

PROOF. The case m = 2n ^ 10 is clear from (4.7). For m = 2n = 12,
by (4.7) we have B = 0 and S = 0. By Lemma 11, we have VRλ = 0.
Since S = 0, (M, #, J) is not irreducible. Hence, it is reducible and locally
[CE« or CPr(H) x CD*{-H), r + β = 6] (cf. Takagi-Watanabe [12]). S = 0
gives r = s = 3.

Finally we combine Proposition 10 and Proposition 16.

THEOREM E. Let (M, g, J) and (ikf', g', J') be compact Kahlerian
manifolds, m — m* ̂  12. Assume Spec (ikf, gr, J) = Spec (ikΓ, #', J')

(1) For m ^ 10, (M, g, J) is of constant holomorphic sectional cur-
vature H, if and only if (M\ g\ Jf) is of constant holomorphic sectional
curvature Hr = H.

(2) For m = 12, (M, g, J) is of constant holomorphic sectional cur-
vature H Φ 0, if and only if (ikf', g\ J') is of constant holomorphic sec-
tional curvature H' — H.

By Theorem E we have Theorem D in the introduction.
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