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1. Introduction. Let (M, g) be a compact orientable Riemannian
manifold (connected and C=, dim M = m) with metric tensor g. By /
we denote the Riemannian connection and by 4 we denote the Laplacian
acting on p-forms, 0 < »p < m. Let \,,, be eigenvalues of 4 and put

(1.1) Spec (M, 9;0) = {0 = Ny SNy S Ngp = oo+ | —oo}

For p = 0, we denote Spec (M, g; 0) = Spec (M, g) and \,, = .. Relations
between Spec (M, g) and Riemannian structures have been studied by
Berger [1], Mckean-Singer [6], Patodi [10], Sakai [11], etc. Some results
are listed in the first part of §3. A useful tool is a formula of Minakshi-
sundaram:

oo 1 m2 oo
(1.2) Z,O ¢lat ~ <Et—) S agtt .
a,, a,, a;, were calculated by Berger [1] and Mckean-Singer [6]; and a,
was calculated by Sakai [11]. In the following Theorems A, B, and D,
the assumption on Spec (,) is also replaced by 3 e, and more precisely
in terms of a;(B =0, 1, 2, 3).

THEOREM A. Let (M, g) and (M', g') be compact orientable Rieman-
nian manifolds. Assume that Spec (M, g) = Spec (M’, g'). Then m = m'
and

(1) for2=<m<5, (M,g9) is of constant curvature K, if and only
of (M, g') is of constant curvature K' = K,

(2) for m =6, (2-1) (M, g) is conformally flat and the scalar cur-
vature S is constant, if and only if (M', g') is conformally fat and the
scalar curvature S’ is constant, S’ = S,

(2-2) (M, g) is of comstant curvature K >0, of and only iof (M', g')
s of constant curvature K' = K > 0.

Theorem A for m = 2,3 was proved by Berger [1]. For m = 4,
Berger’s Theorem 8.1 in [1] requires an additional condition (M) = yx(M’),
where (M) denotes the Euler-Poincaré characteristic of M. Our result
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generalizes this and furthermore it is valid for m = 5.

By S™(c) or (S™(c), g) we denote a Euclidean m-sphere with constant
curvature ¢ > 0, and by H™(—c) we denote a hyperbolic m-space with
constant curvature —c¢ < 0.

THEOREM B. Let (M, g) be a compact orientable Riemannian manifold,
2= m=6. If Spec(M,g) = Spec (S™(c), 9.), then (M, g) is tisometric to
(S™(e), 9)-

This follows from Theorem A (1) and (2-2).

Theorem B has some aspect related to Obata’s theorem [8] on the
first non-zero eigenvalue on Einstein spaces.

THEOREM C. Let (M, g) be a compact orientable Riemannian manifold
with m = 6. In (1.2), a, = a, = 0 holds, if and only if (M, g) is either

(1) E*T,, where I', is some discontinuous group of translations of
the 6-dimensional Euclidean space E°, or

(2) [S¥c) x H(—¢)]/I",, where I'y is some discontinuous group of
isometries of S*cc) X H3(—c).

For m < 5, Mckean-Singer [6] and Patodi [10] showed that (1) is the
only case. For m = 7, see Proposition 7 (3).

Kahlerian analogues are also true. Corresponding to Theorem A, we
have Theorem E in §4. Corresponding to Theorem B, we have

THEOREM D. Let (M, g,J) be a compact Kdhlerian manifold, m =
2n < 12. Let (CP™(H), g,, J,) be a complex n-dimensional projective space
with the Fubini-Study metric of constant holomorphic sectional curvature
H. If Spec(M,g,J) = Spec (CP*(H), g9,, J;), then (M, g,J) is holomor-
phically isometric to (CP™(H), g,, J,).

2. Preliminaries. By R = (R';,,) we denote the Riemannian curvature
tensor: R;,0/0x' = R(3/ox*, 3/0x")0/ox! and R(X, Y)Z = pix.viZ — [Vx, V¥lZ,
1,5,k,l=1,+--,m =dim M. By R, = (R;;) = (R";,,) we denote the Ricci
curvature tensor. By S = (¢*R;,) we denote the scalar curvature. For
a tensor field T = (T;;), for example, we denote |T|* = (T;;, T**). Then
we have (cf. [1], [2], [6], [11])

2.1) a, = Vol (M) = SdM,
1
2.2) a = ESSdM’
1
2. p = —— 2 2 __ 2 12 2 ,
2.3) o= S[ |R[ — 2R, + 5S%dM
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The following are also useful.
2.5) IR — —2 _|R=0,
m—1
(2.6) IRIP—Lgs>0.
m

The equality in (2.5) on M implies that (M, g) is of constant curvature,
and the equality in (2.6) on M implies that (M, g) is an Einstein space
(cf. [1], or [2]).

The Weyl’s conformal curvature tensor C = (C'.), Cijti = 9::C"jirs 1S
given by (for m = 4)

2.7 Ciitt = Riju — m]_._ 2 (Rit9: — Rugu + 95 Ry — 91 Ri)
1
s — 998 -
+m_Dm_m@wzng
Then we have (cf. [14], [15])
4 2

2.8 C*=|R|?— R, ? S:=>0.
@8  ICF =R - A RE oS

By (2.8) we have

2.9) 2|R—2|R. [ +58°=2|C4+ 26 =™ g Smm—3) +6q
m— 2 (m — 1)(m — 2)

3. Geometry reflected by the spectrum. Let (M, g) and (M’, ¢') be
compact orientable Riemannian manifolds. The following are known.

[i] Spec (M, g) = Spec (M’, ¢') implies m = m', Vol (M) = Vol (M’)
(12], p. 215).

[ii] For m =m' =2, if a; = a; (8 = 0,1, 2) and S = constant, then
S’ is also constant and S = S’ (Berger: [2], p. 226).

[ili] For m =m' =38, if a; = a; (8= 0,1, 2) and if (M, g) is of con-
stant curvature K, then (M’, ¢') is also of constant curvature K (Berger:
[2], p. 228).

[iv] For m=m'=4, if a;=a} (8=0,1,2), x(M) = x(M') and if
(M, g) is of constant curvature K, then (M’, ¢') is of constant curvature
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K (Berger: [2], p. 229).

[v] Assume that (M, g) and (M’, ¢') are Einstein spaces and a; = a;
(B=0,1,2). Then (M,g) is of constant curvature K, if and only if
(M', ¢') is of constant curvature K (Sakai [11], p. 599).

[vi] For m = m' = 6, assume that (M, g) and (M’, ¢') are Einstein
spaces. If a; = a; (8= 0,1,2,8) and x(M) = y(M'), then (M, g) is locally
symmetric if and only if (M’', ¢') is locally symmetric (Sakai [11], p. 601).

[vii] For m £5, assume a; =0 (8 =1,2). Then (M, g) is locally
flat (for m < 3, Mckean-Singer [6]; for m < 5, Patodi [10]).

Concerning [iii], [iv] and [v], we have

THEOREM A'. Let (M, g) and (M’', g') be compact orientable Riemannian
manifolds. Assume az = aj for 8 =0,1,2. Then,

(1) for m=m'<5, (M, g) is of constant curvature K, if and only
if (M',g') is of comstant curvature K,

(2) for m=m' =6, (M, g) is conformally flat and S is constant,
if and only if (M', g') is conformally flat and S’ is constant, S = S'.

Proor. Since the case m = 2,3 was proved in [1], assume m = 4.
By (2.3) and (2.9), a, = a; is written as
2 2(6 - m) 2 _ l 2
@3.1) S[2|C’| + 8 -n <|R1| ms)
(2(6—-’”&) + 5m(m—3)+6)sz]dM
mim — 2)  (m— 1)(m — 2)

= [zicr+ 2= (1 Rrp - L 57)

2(6 — m) bm(m — 3) + 6\ qr. '
(m(m— 2) + (m — 1)(m — 2))8 ]dM )

First assume 4 < m <5 and (M’, ¢') is of constant curvature K’'. Then
it is conformally flat (C' = 0) and is an Einstein space (|Ri|* = S"*/m).
Since S’ is constant, a, = a, and a, = a imply SSZdM > SS’sz . In fact,
using Schwarz inequality, we have

(o ) (Js) - s
() - (o)
- <§dM>(§S’2dM’> .

Hence, (3.1) gives C = 0, |R.[* = S¥m and SSZdM - SS’ZdM’. Consequently,
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(M, g) is of constant curvature K = K'.

Next, assume m = 6,C’ = 0 and S’ = constant. Then, using (3.1),
similarly we have C = 0 and S = constant.

REMARK. (8.1) gives a simple proof of [v].

Concerning [vii], a simple proof is (2.3) and (2.9). Patodi [10] gives
a counter-example for m = 6. For m = 6, under an additional condition
a; = 0, we determine (M, g).

LEMMA 1. If a, = 0 and m = 6, then (M, g) is conformally flat and
the scalar curvature S is vanishing.

PrOOF. This follows from (2.3) and (2.9).
Now we denote (R} = (R';R‘,R*).

LEMMA 2. If (M, g) is conformally flat, m = 4, and S = constant,
then

62 [ree={[2 @
2m —_ 1 2 1 3
+ (m — 1)(m — 2) SIE| (m—l)(m—z)s]dM'

ProOF. By (2.7) and C = 0, R;;;, is expressed by Rj, 9;:, and S. By
the second Bianchi identity for R,;; we have

(3.3) VkR;j = VJ'R‘Lk .
Then we have
(3.4) lVRl ]2 = VkRHVkRij = VjR;kaRij

= V*(V iRy« B¥) — V'V iRy« B,
where V¥ ;R;, is calculated by the Ricci identity:
(3.5) gV iRy = gV¥V.Ry — R R, — R, Ry,)
Noticing that ¢*V,.R;, = (1/2)/;S = 0 and g*"R*,;, = — R*;, we simplify (3.5).
Putting the result into (3.4) and integrating, we have (3.2).

LEMMA 3. If (M, g) is conformally flat, m = 4, and S = constant,
then
1
— = _[192(m — 4
+ 83m —gp L2m =4

— 16(m — 2)(m — 4) — 40(m — 2)* — 36(m — 2)*|(R)
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1 —_—

* 63(m — 1)(m — 2)° [676 — 16(m + 1)(m — 2)

+ 4m — 2G2m — 47) ~ d2(m — D(m ~ VS B[
1

* 63(m — 1)*(m — 2)* [—96m + 16(m — 1)(m — 2)

— 104(m — 1)(m — 2)* + 35(m — 1)*(m — 2)3]S3]dM.

ProoF. By (2.7) and C = 0, we have

3.7) RE=_*4 SIPRF
.4 2 _ 2 s
(3.8) SIRP = A SIRF - s
(3.9 R™R'R;,
-2 - 2L SR :

(m — 1)(m — 2) R+ (m — 1)(m — 2)
(8.10) R™R,"™R, ;.

1

_2m =) py ,_ 2Am+D) gpo. 2

(m — 2)* (m — 1)(m — 2)* (m — 1)(m —
(3.11) R, R¥ R™,; = [replacing R¥,, by (2.7)]R",.R™;;
—4 . 2
=_—% R"R/MR, S|R|*
m — 2 ’”+(m—1)(m—2) ||
= -8 gy - 2SI

(m — )" (m — 1)(m — 2y
4m 3
T = 1 — oy

Substituting these into (2.4), we get (3.6).

PrOPOSITION 4. Let (M, g) and (M, g') be compact orientable Rieman-
nian manifolds, m = m' = 6. Assume a; = a3 (8 = 0,1, 2,3). Then (M', g
18 of constant curvature K' > 0, if and only if (M, g) is also of constant

curvature K = K' > 0.

PRrROOF. Assume that (M’, ¢') is of constant curvature K’ > 0. By

Theorem A’ we have C = 0 and S = constant. By (3.6) we have

I O [ A, o L 19 e
(312 a= & S[ T IPR - (R)+ <o SIR +()s]

where (*) denotes the coefficient of S®. By (3.2) we have

2)

’
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(3.13) a, = ‘617 S[— 65—3H7R1|2 - % s<| R — %S) + (**)Ss]dM.

Since (M', g) is of constant curvature, we have a; = (1/6!)\(**)S"*dM".

Since S =S8 >0, a, = a; implies that VYR, = 0 and |R,|>* = S?/6. Hence,
(M, g) is of constant curvature K = K’ > 0. g.e.d.

Theorem A’ and Proposition 4 give a proof of Theorem A.

PROPOSITION 5. If (M, g) is conformally flat and S = 0, and if m = 4
(m == 8) and a, = 0, then VR, = 0, and hence (M, g) is either

(1) locally flat, or

(2) locally Riemannian product S™*c) x H™*(—c).

Proor. By (3.2) and (3.6), we have

a 2_1_5 2(m — 8)(56m? — 2m —
? 63m(m — 2)*

Since 5m* — 2m — 48 > 0 for m =4, if m # 8, we have FR, =0. If
(M, g) is irreducible, then (M, g) is an Einstein space. S = 0 implies that
(M, g) is locally flat. This is a contradiction. If (M, g) is reducible, then
it is locally Riemannian product [E*' x S™'(¢), or E* x H™*(—¢), or E™,
or S'(¢) x H™"(—c)] (cf. Kurita [4]). S = 0 implies that (M, g) is locally
E™ or locally S™*(c) x H™*(—c).

48) \pR,pdM .

THEOREM C'. Let (M, g) be a compact orientable Riemannian manifold
with m = 6. If ap =0 for B = 2,3, then (M, g) is either

(1) E°II', or

(2) [S%ec) x H(—o)|/] .

Proor. This follows from Lemma 1 and Proposition 5.
REMARK. As for 3 e’ for S¥c) x [H*(—c)/I"*], cf. [10], p. 283~ 285.
Concerning [vii] for m = 7, we can state

PROPOSITION 6. Let (M, g) be a compact orientable Riemannion mani-
fold with a, =0, m="7. If

2 —~ bm(m — 3) + 6 q,
(3.1 B s o B IL s

holds on M, then (M, g) ts conformally flat, and the equality holds in
(3.14) on M.

Proor. This follows from (2.3) and (2.9).

Hence, as for a,, we can summerize the above as follows.
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PROPOSITION 7. Let (M, g) be a compact orientable Riemannian mani-
fold.
(1) For 2=<m <5,a,=0 holds, equality is only for locally flat

(M, g).
(2) For m =6, a,=0 holds; (if a; = 0) equality ts only for locally

flat (M, g) or locally Riemannian product S*(c) X H3*(—c).
(8) For m =1, if Ricci curvatures are non-negative (or non-positive)
on M, then a, = 0 holds; equality is only for locally flat (M, g).
Proor. (1) is [vii] or (2.9). (2) is Theorem C’. We show (3). By
the assumption of Ricei curvatures we have
5m(m — 3) + 6 St
— 2(m — 1)(m — 6)
Hence, (3.14) holds. Therefore C = 0 and (3.15) must be equalities. Thus
S =0 and |R,]*?= 0. This implies R = 0.
Next, we show
PROPOSITION 8. Let (M, g) and (M’, g') be compact orientable Rieman-
nian manifold, m = m' = 4. Assume az = a; for 8=0,1, and 2. If
(M, g') is an Einstein space, then
(3.16) xX(M) < u(M)
holds. The equality holds, if and only if (M, g) is also an Einstein space.
PrROOF. By Gauss-Bonnet formula we have (cf. [1], (8.1))

(3.15) IRP<S <

3.17) a, = 45 2(M) + 1—20 g [2| R, + SldM .

Since (M’, g’) is an Einstein space, a, = a} is written as

x( ) + ?0 5[2(‘R‘|2 - %sﬁ + %SﬂdM

’ 1 S 3 SIZdM'
5 - () + 120 )
Since SSZdM = \S"”dM’ (cf. proof of Theorem A’), we have (3.16). The
equality implies |R,|* = S%/4.
REMARK. In connection with Theorem A’ (2) and Proposition 4, the
role of a; = a; may be replaced by the fundamental group of M. Namely
we have

PROPOSITION 9. Let (M, g) and (M’, g') be compact orientable Rieman-
nian manifolds, m = m' = 6. Assume that a, = a; holds for 5 =0,1,2
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and assume that (M’', g') is of constant curvature K'. If the fundamental
group (M) of M is finite, then (M, g) is also of constant curvature K’
and K' > 0.

In particular, if (M', 9') = (S%c), 9,), then (M, g) is isometric to
(S°(), 90)-

This follows from Theorem A’ (2) and the following fact: Let (M, g)
be a compact conformally flat Riemannian manifold with finite =, (M),
m = 8; if S is constant, then (M, g) is of positive constant curvature
(cf. Tanno [13]).

4. Kahlerian manifolds. Let (M, g, J) be a Kahlerian manifold with
almost complex structure tensor J = (J}) and Kahlerian metric tensor
g = (9;;)- The complex dimension of M is n = m/2. Then,

(4.1) 0 i = gy, T = —8

and 7,Ji = 0. J;; = ¢;,J7 is skew-symmetric. The Ricei curvature tensor
satisfies

4.2 R, JiJi = R,,, R, J; = —R;JI .
The Bochner curvature tensor B = (B%;.), Biju = 9:»B"ju, is given by (cf.
-[15], ete.)

(4.3) Bij = Rijy — ‘——1—" (Ri9: — Ruga + 9iRa — 9aRa
m + 4

+ R JiJy — R diJy + JuRiJi — JuRiJy — 2R, J7J;

— 2R;,J}J,) + (9494 — 919

1
(m + 2)(m + 4)
+ Jik il JilJik - 2Jliii)S *
| B| is given by (cf. [15])

16 8
4.4 B|*=|R?— R >+ S.
@4 |BF = 1R m—i—4I | (m + 2)(m + 4)

A Kahlerian manifold (M, g,J), m = 4, is of constant holomorphic sec-
tional curvature H, if and only if

(4.5) R;ju = %(gjkgil — 9i9u + Iidu — Jud i — 2J;;0 )

holds. Then R;, and S are given by

(4.6) R, = 2+ 2Hgn, S= —”-‘(’”TJF?)—H
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A Kahlerian manifold (M, g, J) is of constant holomorphic sectional curva-
ture, if and only if B = 0 and |R,|* = S*/m.

PROPOSITION 10. Let (M, g,J) and (M', g',J’) be compact Kahlerian
manifolds. Assume ap = a; for 8 =10,1, and 2. Then,

(1) for m =m' <10, (M, g,J) is of constant holomorphic sectional
curvature, if and only iof (M', g, J’) is of constant holomorphic sectional
curvature, H= H',

(2) for m=m'=12, B = 0 and S .= constant, if and only if B’ =0
and S’ = constant, S = S'.

Proor. By (4.4), we have
_ L ([gpp4202=m (p._ 1
.0 % = 360 S[ZIBI T ('R“' ms)

5m? + 8m + 12 Sz]dM
m(m + 2) )

Then the proof is completed in a way similar to that of Theorem A'.

LEmMMA 11. (Matsumoto [5]) If the Bochner curvature tensor B = 0
(more generally, parallel) and S = constant, then the Ricci curvature
tensor R, is parallel (and (M, g) is locally symmetric).

LeEmMMA 12. If VR, = 0, then
(4-8) Rrjkera = Rj,,Rrk .

ProoF. By 0 = (P .V,R,.; — V./,R,;)97° and the Ricei identity, we have
(4.8).

LEMMA 13. If B=0 and VR, = 0, then

(4.9) mB)y=2m+tD) gpp__1 g
m + 2 m + 2

ProOOF. Transvect (4.8) with R and use (4.3). Then, using (4.2),
we have (4.9).

LemMMmA 14. If B=0 and VR, = 0, then

16 8
4.10 S|R = S|R, — S8,
(4.10) | E| m+ 4 R - T am D
(4.11) R*R"'R;;,, = — (R} ,
(4.12) R"R,;uR™ = 18 Ry _ 8 S|R.,

m + 4 (m + 2)(m + 4)
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i o _ _ 16(m + 12) 8(m + 20)
4.13) R¥,R",R"; = — " T2 (R) + S|R,[*
(4.13) ki m T 1 (B) m+ m+ o

_ 32 g0
(m + 2)*(m + 4)*
ProoF. (4.10) follows from (4.4). (4.11) follows from (4.8). (4.12) is

calculated as follows: First write down R™R,;, using (4.3). Next,
transvect it with R,”* and use (4.2) and well known identities:

(4.14) R{jkle]kl = ZJIRTJ ) Riili,{;J,l == R,‘j,-s ) etc .

For example, R,/¥ R, JiR’,J} (= —2(R) is calculated by the first Bianchi
identity and the above relations.
(4.13) is calculated as follows (using (4.2), (4.8), (4.14))

[replacing R;;, by (4.3)] R, Rr*

1 )
= _—= [-8R"R,;uR* — 16(R}
— I . (R)]

_ 1
(m + 2)(m + 4)

Substituting (4.10) and (4.12), we have (4.13).
LEMMA 15. If B=0 and VR, = 0, then
(4.15) o= 1 S|:<128(3m2 + 40m + 64)  32(m + 1)
63m(m + 2)(m + 4°  63m(m + 2)

2(12_ m) SIR.I? * s]dM
B i) SIRI 8 A

PrOOF. In (2.4) we substitute (4.10), -+, (4.13) and next eliminate
(R} using (4.9).

PROPOSITION 16. Let (M, g,J) and (M', g',J’) be compact Kahlerian
manifolds, m = m' = 12. Assume az = a; for 8 =20,1,2, and 3. Then
(M', ¢',J") is of constant holomorphic sectional curvature H' + 0, if and
only if (M, g,J) is of constant holomorphic sectional curvature H = H'.

[-4|R[* - 8|R.[]S.

PROOF. Assume that (M’, ¢/, J’) is of constant holomorphic sectional
curvature H’ % 0. By proposition 10 and Lemmas 11 and 15, a, = a; is
written as

(4.16) | —61,— §[1}1_7 S<| R — 1_12 S2> + <**>SﬂdM

_L %k 3 ’
- = §< SSHAM
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S = 8"+ 0 gives |R,|* = S*/12. Hence, (M, g,J) is of constant holomorphic
sectional curvature H and H = H'.

By CD"(—H) we denote a simply connected complex space form (of
constant holomorphic sectional curvature — H < 0) of complex dimension 7.

PROPOSITION 17. Let (M, g,J) be a compact Kihlerian manifold with
dimension m = 2n < 12. a, = 0 holds good, if and only if (M,g,J) is
either

(1) CE*TIy, where I'y is some discontinuous group of automorphisms
of the complex n-dimensional Euclidean space CE", or

(2) m=2n=12 and [CP*H) x CD—H)]/I",, where I, is some
discontinuous group of automorphisms of CP*H) X CD(—H).

PrROOF. The case m = 2n < 10 is clear from (4.7). For m = 2n = 12,
by (4.7 we have B=0 and S=0. By Lemma 11, we have /R, = 0.
Since S = 0, (M, g,J) is not irreducible. Hence, it is reducible and locally
[CE® or CP"(H) X CD*(—H), r + s = 6] (cf. Takagi-Watanabe [12]). S =0
gives r = s = 3.

Finally we combine Proposition 10 and Proposition 16.

THEOREM E. Let (M,g9,J) and (M',¢',J’) be compact Kahlerian
manifolds, m = m' <12. Assume Spec (M, g, J) = Spec (M’, ¢’, J').

(1) For m £10, (M, g,J) is of constant holomorphic sectional cur-
vature H, if and only iof (M', g, J’) is of constant holomorphic sectional
curvature H' = H.

(2) For m =12, (M, g,J) is of constant holomorphic sectional cur-
vature H + 0, if and only of (M', ', J’) is of constant holomorphic sec-
tional curvature H' = H.

By Theorem E we have Theorem D in the introduction.
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