
Tόhoku Math. Journ.
25(1973), 445-450.

ON CERTAIN HYPERSURFACES IN A REAL SPACE FORM

Dedicated to Professor Shigeo Sasaki on his 60th birthday

TAKEHIRO ITOH AND HISAO NAKAGAWA"0

(Received October 28, 1972)

Using the formula of Simons' type, many and interested studies have
recently been done for hypersurfaces in a real space from. As one of
special situations, they have common pattern that the second fundamental
form has distinct constant eigenvalues. On the other hand, T. Otsuki
[1] has investigated the problem to determine all minimal hypersurfaces
immersed in a sphere on which the number of distinct principal curvatures
is equal to two.

The purpose of this paper is to study hypersurfaces in a real space
form such that the second fundamental form has at most two distinct
eigenvalues. In § 2, we study hypersurfaces in a real space form such
that the product of two distinct eigenvalues is equal to minus of the
curvature in the ambient space. In § 3, we treat connected and complete
hypersurfaces in a hyperbolic space which have the same curvature as
that of the ambient space and we shall show that there exist many
examples of such hypersurfaces which are not totally geodesic.

The authors express their deep gratitude to Professors T. Takahashi
and R. Takagi who gave them a lot of valuable suggestions.

1. Preliminaries. Let M be an m-dimensional Riemannian manifold
isometrically immersed in an (m + l)-dimensional Riemannian manifold
M of constant curvature c with the immersion f\M—+M. Let F(M)
and F{M) be the bundles of all orthonormal frames over M and M re-
spectively. Let B be the set of all elements b = (x, eu e2, , em em+1) e
F(M) such that (x, el9 e2, •••, em) eF(M), identifying xeM with f(x) in
M and et with df(et) for i = 1, 2, « ,m. Then, B is considered as a
smooth submanifold of F(M). We have, as is well known, a system of
differential 1-forms ωi9 ωih ωim+1 (£, j = 1, 2, , m) and ωm+1 on B associ-
ated with the immersion / such that

* } The second named author's research was done under the program "Sonderforschungs-
bereich Theoretische Mathematik" at Bonn University.
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(1.1)

<ωi5 = -ωji9 ωim+1 = -ωm+li, ωm+1 = 0 ,

{ = ΣΓ=i (On Λ α>y ,

<y = Σ Γ = i ω ί f c Λ α>Λy + ωim+1 A ωm+ίj - cω{ A ω3-,

dωim+1 = ΣΓ=i <% A ω i m + 1 ,

and

(1.2) o)im+ί = Σ!Γ=i ^ i ^ i > L̂<y = A*

Throughout this paper, we assume that M has at most two distinct
principal curvatures, say λ and μ. Then λ and μ are continuous on M
and are differentiate on the set N of all points at which one principal
curvature is different from the other. Furthermore N is clearly open
in M. We can choose a neighborhood U of a point p e N where there
exists beB such that

fωαm+1 = xωa , α>αm+1 = μω β ,

[a = 1, 2, •••, r, α = r + 1, r + 2, •••, m ,

where r is the multiplicity of λ. It follows from (1.3) that we have

[dx A ωa + (λ - μ) Σ« ωaa A ωa = 0 ,
(1 4)

[dμ A ωa + (λ - μ) Σ α ωaa A ωa = 0 .

2 Hypersurfaces with two distinct principal curvatures. In this
section, we shall study principal curvatures of hypersurfaces in a
Riemannian manifold M of non-zero constant curvature c which have at
most two distinct principal curvatures, say λ and μ, such that xμ + c = 0
on N We shall prove the following

THEOREM. Let M be an m{^Z)-dimensional connected and com-
plete Riemannian manifold which is isometrically immersed in an
(m+1)-dimensional Riemannian manifold M of constant curvature c(=£θ).
If M has at most two distinct principal curvatures λ and μ at each
point of M and they satisfy Xμ + c = 0 where X Φ μf then X and μ are
constant on M.

PROOF. We shall use the same notation as that in § 1. To simplify
the statement we may assume without any loss of generality that λ > μ
on N and we first consider the case that there exists a point of N at
which the multiplicity of λ is equal to r, where r satisfies the restriction
2 ^ r ^ m — 2. Let E be the set of all points of N at which the
multiplicity of λ is equal to r. Then E is open in N, so it is also open
in M. Since the multiplicities of the principal curvatures are both con-
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stant on E, it is well known in [1] and [2] that λ and μ are constant
on E. It follows from the continuity of λ that the multiplicity of X is
equal to r on the boundary of E, so it is closed in M. Since M is
connected, the multiplicity of λ is constant r on M, so that λ and μ
are constant on M.

Next, we shall consider the case that one of the principal curvatures
is simple, that is, the multiplicity of one of the principal curvatures is
1 on N. Without loss of generality, we may assume that the multi-
plicity of λ is equal to 1 on N. Let G be the set of all points of N at
which the gradient of λ is a non-zero vector. It is evident that G is
open in N, so that it is open in M. If the set G is empty, then λ and
μ are constant on each component of N. Since X Φ μ on N and λ and
μ are continuous on M, we have the same property on the boundary of
N. Accordingly N is closed in M. It follows from the fact that M is
connected that N must coincide with M itself, so this implies that λ
and μ are constant on M. Therefore, we may consider the other case
G Φ 0. Then, on a neighborhood V of a point q e G in G, there exist
frame fields in B satisfying the condition (1.3). Using the structure
equations (1.1), we obtain

(dX Λ co1 + (λ - μ)dω1 = 0 ,

\dμ Λ ωa - (λ - μ)ω1 A ωla = 0 for a = 2, 3, , m .

From the second equation of (2.1) we get

(2.2) dμ = μ,ω, ,

because of the assumption of dimension and E. Cartan's lemma. By the
condition Xμ = —c = constant, we have

(2.3) dx = Xxωx .

It follows from the equations (2.1), (2.2) and (2.3) that we have

(2.4) dω1 = 0 ,

which implies that there exists a function u on a neighborhood W in V
such that o)ι = du. In W, u may be considered as a distance from the
integral submanifold through q corresponding to μ. Since the multi-
plicities of λ and μ are constant on N and M is complete, we may consider
u as a function defined on N. In particular, there exists a geodesic
Γ = {y(u)} parametrized by arc length u in such a way that

(2.5) 7(0) = q , τ'(0) = ex , ωx = du .

Since M is complete, we can extend this geodesic Γ infinitely in both
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directions. We denote the extended geodesic by the same symbol Γ =
{Ύ(U)}. It follows from the equations (2.1) ~ (2.4) that the principal
curvature μ is constant along the integral submanifold corresponding to
μ, and μ is a function of u. From (2.1) we get

(2-6) ωιβ = (μ'/(X - μ))ωβ, β = 2, 3, . , m ,

where μf = dμ/du = μ,. Using (1.1) and (1.2), from (2.6) we have

(2.7) (μ?/(\ - μ)Y + (μ'/(\ - μ))2 = 0 .

Since μ' = grad μ Φ 0 on G, it follows from (2.7) on G that the follow-
ing equation

(2.8) μ'l(x - μ) = l/(w + c,) , cx = constant Φ 0

is obtained, so that on G we have the solution

(2.9) μ2 + c = c2/(^ + c j 2 , c2 = constant ^ 0.

Now, we may consider the following two cases:

Case (1): dG n Γ = 0 , Case (2): dG Π Γ Φ 0 .

In the first case, since i(u) is defined on — oo < u < oo, there exists
Wo = —cxφ0, so that we have

lim (μ2 + c) = +oo or — oo ,
u-*u0

which contradicts the continuity of μ2 + c.
In the case (2), let q1 = τ(^) be the first point at which the geodesic

Γ = {Ί{U)} meets the boundary of G. In this case we may suppose that
0 < u19 Ί(U) e G for 0 < yu < uL and y(uj) £ G. Then we can consider the
following two cases:

Case (a) q1 = Ί(U^ e N, Case (b) qι = J(UJ) e dN.

In the case (a), we can see that

lim grad μ Φ 0 ,
u-+u^—0

which contradicts grad μ = 0 at qt. In the case (b), we have

lim (μ2 + c) Φ 0 ,
u—>u±—0

which contradicts μ2 + c = 0 at qx. Thus G must be empty. This
completes the proof.

REMARK. Using Theorem in this section, we see that Theorem of
S. Tanno and T. Takahashi [4] holds for m = 3.
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3. Hypersurfaces in a hyperbolic space. Let M be an ra-dimen-
sional connected and complete Riemannian manifold isometrically immersed
in an (m + l)-dimensional hyperbolic space Hm+1(c) of constant curvature
c. In this section, we assume that M is also of constant curvature c.
Then we shall give many examples of such hypersurfaces which are not
totally geodesic.

Let g = (gtj), A = (Ai3) and <?Λ be the metric tensor of M, the

second fundamental tensor of M and the ChristoffeFs symbols of g. Then,
in our situation, as is well known, the Gauss' and the Codazzi's equations
are written by

(3 1) AikAij AuAjk = 0 ,

(3.2) Aijtk + Σ j l)rAιk = Aikfj + Σ I 1

' [13) ι U

where Aij>k = dAij/dxk when (x\ x2, , xm) is a local coordinate system
of M.

Now, as a model space of an m-dimensional hyperbolic space Hm(c)
of constant curvature c, we take the upper half space R™ = {(x1, x2, , xm) 6
Rm I xm > 0} with the metric tensor given by

(3.3) 9ii= - δ ί 3 /{φw)2}.

In this case, ChristoffeFs symbols of g are

(3.4) I k\ = -(δkjδim + dkiδjm - δtfoj/x* .

By Sasaki's Theorem 1 in [3], if we give a non-trivial symmetric tensor
A of type (0, 2) on R™ satisfying (3.1) and (3.2), then we obtain a hyper-
surface in Hm+1(c) which has A as its second fundamental tensor and is
not totally geodesic. Hence, in order to find a complete hypersurface of
constant curvature c in Hm+1(c) which is not totally geodesic, it is
sufficient to find only a non-trivial symmetric tensor A of type (0, 2)
on R+ satisfying (3.1) and (3.2). From (3.1), we see that the matrix
A — (A^) is at most of rank 1, so that we may consider the special case

(3.5) An = X and Ai5 = 0 if (i, j) Φ (1,1) ,

where λ is a differentiate function on iϋ+. Then, it is clear that (3.1)
holds. Using (3.4) and (3.5), we see that (3.2) is equivalent to the
following differential equations:
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(3.6)
(λ,j = 0 for A; = 2, 3, , m - 1,

Iλ,. = -X/xm .

We easily see that a function

(3.7) λ = X(x\ xm) =

is a solution of (3.6), where g(x1) is an arbitrary non-zero differentiable
function on R+ of x1. For two distinct functions g{xx) and g{xι), we have
two distinct solutions λ and λ of (3.6), that is, two distinct non-trivial
symmetric tensors A and A on R+ satisfying (3.1) and (3.2). On the
other hand, by Sasaki's Theorem 2 in [3], we see that there exist two
hypersurfaces of constant curvature c in Hm+1(c) which have A and A
as their fundamental tensors respectively and they are not congruent in
the large under the group of motions of Hm+1(c). Thus, we obtain many
examples of hypersurfaces of constant curvature c in Hm+1(c) which are
not totally geodesic.

By the above argument, we have shown that there exist many
examples of complete hypersurfaces with type number 1 in a hyperbolic
space Hm+1(c) of constant curvature c which are not congruent in the
large under the group of motions of Hm+1(c).
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