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NEGATIVE QUASITHARMONIC FUNCTIONS*
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1. The radial quasiharmonic function
s(r) = — 3 b,
1=0

defined by 4s =1, plays a crucial role in the problem of the existence
of bounded quasiharmonic functions on the Poincaré ball B, = {r < 1, ds =
(1 — ) |dx |} (see [18]). In the present paper we shall show that s has
the striking property

§s<0 on B, for every «.

This will lead us to the introduction of the class QN of negative quasi-
harmonic functions.

We shall carry out our reasoning for dimension M = 3. This is the
essential case, as for M = 2 the harmonicity and the Dirichlet integral
are independent of «. We conjecture that the reasoning developed in
this paper will allow a generalization to an arbitrary M.

2. We start by stating our main result:

THEOREM 1. The radial quastharmonic function s(r) = —3, bttt
belongs to QN.

The proof will be given in Nos. 3-12.
3. First we determine the coefficients b,.

LEMMA 1. The function

(1) s(r) = — 3, b
1=0

with 4s =1 on B, has

(2) b, = %" ’

and the other coefficients are determined by the recursion formula
(3) b; = b, + q; -
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Here
2i(21 + 1 + 2a)
4 i = T -
(4) P @i 9@+ 3
and
(5) @ = (fI ”;2.‘3‘“—2>/(2@'+2)(2i+3).
=1 J
Proor. On B,, the metric tensor is
A0 0
gi; =10 A? 0 ,

0 0 Mrisin’q
the determinant is g = \%*sin®+, and the Laplacian reduces to
1 o0, —
4s(r) = ——— — rrgt
() e ar(l/gg s'(r))

_ —x“z[s”(r) L <2 2ar >s’('r)] )

r 1 —

The equation 4s = 1 takes the form
(6) —r(1—r)s'(r)—r[20 — r*) — 2ar?]s'(r) — r*(L — r¥)*+ =1.

On substituting s(r) from (1) we obtain

(1 — 1) (20 + 2)(2 + Db + 7[2 — 21 + a)r?] 3 (20 + 2)baitt
=0 =0

_,,.2_,’.25’:'(11[ J "24_2},.21‘:0’
=1 \j=1 j

that is,
> 120 + 2)(20 + 1) + 220 + )bt
_[i (2¢ 4+ 2)(27 + 1) + 21 + a)(2i + 2)]bi1,2i+4
DY (H _7'__"2_“—_?_>,.2i+z —0.
i=1 \j=1 3

This is equivalent to the following final form of our equation:

(7) $(2 + 2)(20 + )bt — 2020 + 1 + 2a)b,_ ¥+
1=0 i=1
= 5 (f A== 2y o,
i=1 \j=1 j
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To determine the constants b;,, we first equate to zero the coefficient
of 7* and obtain 6b, — 1 = 0, that is, (2). The coefficient of 7**2 for >0
gives

@i + 2)(2 + )b, = 2i(2 + 1 + 2a)b,_, + [[ L= 24 =2
J=1
hence (3)-(5).
4. The following consequence of Lemma 1 is immediate:

LEMMA 2. The coefficients b; are

1 i—1 i
(8) bi=bojI=[1pj+;]=lqjk=I]IHpk+qi,
with b, = 1/6.
We shall also use the notation
( 9 ) b; = 2 Bij
J=0
with

'3';°:b°1_11pi’ Bii = Qi »
(10) -
Bii = 4; p, for 1<j<i-—1.

k=j+1
An inspection of (8) shows readily:

LEMMA 3. For a fixed i, and all 7 > 4,

bi:biO.H p; + i Bij -

J=1p+1 J=tp+1

5. The signs of p; and g; will be instrumental. For a given a¢e R
we set

. o 1 }
T, =max {11 < —a — =
(11) { » { e < 2
1, =max{i|1 < 2a + 2}.
The following immediate observations are compiled here for easy reference:

LEMMA 4. If a > —3/2, then all p; > 0. If a = —3/2, then p, =0
and p; >0 for :>1. If a < —38/2, then p; <0 for i <1, and p; =0
for © > 1,, with equality at most for © =14, + 1.

LemMMA 5. If a <—1/2, then all ¢; > 0. If a = —1/2, then all q; = 0.
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If a> —1/2 and © < 1, then q; > 0 for 1 even and q; <0 for ¢ odd. If
a> —1/2 and © > 1, then q; =0 for i, even, and q; < 0 for 1, odd.

These rules motivate the division of our discussion in the sequel into
the cases a < —38/2; —8/2<a<-1/2; and a=1. If ae(—1,1), there
exist functions u € @B (Sario-Wang [16]), and

% —supueQN,
Ba

that is, B,¢ Ogy. Thus it will suffice to discuss the above three cases.

We shall first show, in Nos. 6-10, that the b, > 0 for all sufficiently
large %, and then in Nos. 11-12 that the series s = —3; br*** converges,
hence s — ¢ QN for some constant c.

6. Case a < —3/2. By Lemma 3, we have for 7 > 1,

(12) b;=0b;, II »i+ 3 B

J=iptl j=ipt1

where
ip
bip = Z{) ,3&,,1‘ .

LEMMA 6. For a < —3/2, b,-p > 0.

PrROOF. Set
Biyi .
ipi = ——— 25751,
? Bip,.i-l ?
with
Bii =i 1 2.
k=j+1
We have
(18 6, ,=—3i <o
) » Qj—-lpi
and
- .
|0,5] =14+ L= 2a+ DG L)
—7325 + 1 + 2a)
452+ 7 + 1
>1 4 — .
—3(25 + 1 + 2a)
Therefore

(14) [0, >1 for 25j5<14,.
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Suppose first 7, even. Then

(1/2)3
(15) b;, = Bip + j;lp (Bipriet t Biyi) -

Since B;;, = ¢;, > 0, we see by (13) and (14) that each sum in parentheses
is > 0. The same is true of B;,= b, II;2, p;; as each p; <0, and we
conclude that b; , > 0.

If ¢, is odd, we first observe that

_,Bipl . q _3_—1—2a

B, =t = = <0
? ,Bipo bop1 3 + 2a
for ¢ < —3/2, and
_ 2
PN _3<1+ﬂ)>3.

Since Bin <0 and Bi, > 0,
Bipo + B‘pl > 0
and by (14)
Biyzi T Biyeivs > 0
for 1 <7 =< (1/2)(, — 1). Therefore
1/2) (ip—1)
b, = ,Zfa (Bijei + Biyiv) > 0.

7. We can now go further than Lemma 6:

LEMMA 7. For a < —3/2,

(16) >0, =4,
and
(17) Sh=oco.

=0

I

PrOOF. Inequality (16) is a direct consequence of (12). To prove (17)
set s = s, + s, with
ip—1 0
8 = — 3 bt 8 = — ) bt
=0 1'=ip
Here 5,€QB and |s,| < 337 b;. If this sum converges, we have s, QB,
hence se QB, a contradiction since a ¢ (—1,1). This proves the lemma.
Note that the condition on @ in Lemma 7 cannot be suppressed, as
e.g. a =0 gives b, =0 for 2 = 1.

8. Case —8/2<a< —1/2. For ¢ = —8/2,p, =0, p;, >0 for > 1.
For —-32<a< —1/2,all p;,>0. Fora= —1/2,all ¢; =0. For —38/2 <
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a< —1/2, all ¢; >0. For —3/2 < a < —1/2 we therefore have B, =0,
Bii = 0’ -7 > 1
LEmMMA 8. If —38/2=a £ —-1/2,
(18) b, >0 forall <.

9. Case a=1. Now we cannot specify an ¢ beyond which all
b, > 0. However:

LEMMA 9. For a =1, there exists an i, = i, such that
(19) b, >0.

ProOOF. All b; cannot vanish, since 4s = 1. Suppose there exists
an %, such that b, <0 for ¢ >4, If s is bounded, we have B,¢ Oy; a
contradiction since a¢ (—1,1). Thus s is unbounded and

K
Z b.pr2i+e
=0 *

eQP,

—8 + sup
B

again a contradiction. We conclude that there exist infinitely many
b; > 0. In particular, there is some %, = i, such that b, > 0.

10. We can sharpen Lemma 9:

LemMMA 10. For a = 1, and %, of Lemma 9,

(20) b, >0 for i1,
and
(1) S b= oo

-,
]
=3

Proor. For 7 > 1,

i i

(22) b; = biojH i+ > Bij-

=1p+1 J=ip+1

Each p; > 0, hence the first term on the right is > 0. If 4, is even,
then ¢; = 0 for ¢ > i, and B;; = 0 for 4 > 4,. Therefore b, > 0 for ¢ > .
If 4, is odd, then ¢; <0 for 7>, Suppose b;, <0 for some 7, = 1,
Then

(23) bi1+1 = Piyibi, + €0 =0

and by induction we infer that b, <0 for ¢ =4, a contradiction. Con-
sequently b; > 0 for 7 = 7,.

The proof of (21) is the same as in that of Lemma 7.

Note that Lemma 10 cannot be sharpened to b, >0 for all ¢ =0,
since e.g. b, = — «a/15.
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We have established that, in all cases, b; >0 for all but a finite
number of 7. It remains to show that the series 3 b, **** converges.
11. Convergence when a < —1. We claim:

LEMMA 11. For a £ —1,
(24) bt < oo
2=0

Proor. The ratio of subsequent terms being b,,,7%/b;, it suffices to
show that b,,,/b; — 1. In view of (3) we have

b

it Qi1

bi pﬁ-l + b,; ’
where p,,, —1 by (4). We shall show that ¢;.,/b; — 0, that is, for any
positive integer =, fixed henceforth, there exists an 7, such that b;/q;., > n
for 4 = 4,. For ¢ > 1,

(25)

bi _ bi,, i i—1 q; i q;
(26) —=—2 11 p;+ > =L Il »+ ’

Qit1 Qiy 5=7p 12 J=iptl @iy k=i+1 Qi1
where b;, > 0. Note that the case —3/2 < a = —1 is included, for then
b;, = b, = 1/6. Since p; = 0 for j > 1,, with equality at most for j = ¢, + 1,
and since ¢; > 0 for all j, we obtain for a < —land i1 =7, =14, + n + 1,

bh>fiy=5 9511 p+ L.

qit+1 J=imn iy b=+t Qi+

(27

It suffices to show that the function f(¢) introduced herewith dominates
n for all sufficiently large <.

Since f(¢) and hence f'(7) are rational in %, there exists an ¢, such
that f’(¢) is of constant sign and f(¢) is monotone for ¢z = ¢. In (27),

¢ _ 1+l (242 +5)
G 1—1—2a (21+ 2)(21 + 3)

as 17— oo, and so does each gq;/q;., for 1 — n < j<i—1. Since also each
p; — 1, we have f(i) — n + 1, the convergence being monotone for 7 = 4.
We conclude that there exists an %, = max (i}, ¢;/) such that

f@)>n for 1=1,.

This completes the proof of Lemma 11.

12. Convergence when a = 1. We proceed to show:
LEMMA 12. For ¢ = 1,

(28) S bt < oo
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Proor. If 4, is even, then ¢; = 0 for ¢ > ¢,. Since each p; > 0, the

proof of Lemma 11 continues to be valid in the present case, with 1,
replaced by %, of Lemma 9.

If ¢, is odd, then ¢; <0 for ¢ > 4,. Again each p; > 0, and since by
Lemma 10, b; > 0 for 7 = 4, we have by (25)

0<b£—-f1'§pi+1_’1-

k3

The proof of Theorem 1 is herewith complete.

13. Let O; be the class of parabolic Riemannian manifolds, and O,
the class of Riemannian manifolds which carry no functions in a given
class QX, with X = N, P, B, or D, the class of negative, positive, bounded,
or Dirichlet finite functions, respectively. In [16] we showed that

B, ¢0, =a<1,
B,¢ Ogp =ac(—1,1),
B,¢ 0y =aec(—1,1),

3
BanQD‘i’ae (—E', 1) .
From Theorem 1 we have the following consequences, which also can be
established directly:

THEOREM 2. There exist both parabolic and hyperbolic 3-mamnifolds
which carry QN-functions but mo QP-functions.

Explicitly, if we denote by O the complement of an O-class, then
(29) B.c0gNOgyNOgp=a < —1,
(80) B.c0;N0gyNOgp=a=1.

THEOREM 3. There exist Riemannian 3-manifolds which carry QN-
and QP-functions but no QD-functions.

Explicitly,
(31) BaeGQNnGQPnoQD=—1<ag—%.

We conjecture that Theorems 1-3 hold for manifolds of any di-
mension.
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