Tôhoku Math. Journ. 26 (1974), 73-76.

ERGODIC THEOREMS FOR SEMI-GROUPS IN L_p , 1

RYOTARO SATO

(Received November 30, 1972)

1. Introduction. In what follows we shall assume p fixed, 1 . $Let <math>(X, \mathcal{M}, m)$ be a σ -finite measure space and let $\{T_t; t \ge 0\}$ be a semigroup of positive linear operators in $L_p(X) = L_p(X, \mathcal{M}, m)$ which is strongly integrable over every finite interval. It is then known (cf. [2], p. 686) that for each $f \in L_p(X)$ there exists a scalar function $T_t f(X)$, measurable with respect to the product of Lebesgue measure and m, such that for almost all $t, T_t f(x)$ belongs to the equivalence class of $T_t f$. Moreover there exists a set E(f) with m(E(f)) = 0, dependent on f but independent of t, such that if $x \notin E(f)$ then $T_t f(x)$ is integrable on every finite interval [a, b] and the integral $\int_a^b T_t f(x) dt$, as a function of x, belongs to the equivalence class of $\int_a^b T_t f dt$. We write $S_a^b f(x)$ for $\int_a^b T_t f(x) dt$. The purpose of this note is to investigate the almost everywhere convergence of $S_0^b f(x)/S_0^b g(x)$ and $S_0^b f(x)/b$ as $b \uparrow \infty$.

2. Preliminaries. If $A \in \mathcal{M}$ then $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish a.e. on X - A. A set $A \in \mathcal{M}$ is called *closed* under a positive linear operator T on $L_p(X)$ if $f \in L_p(A)$ implies $Tf \in L_p(A)$. The adjoint operator of T is denoted by T^* .

PROPOSITION. If T is a positive linear operator on $L_p(X)$ such that $\sup_n ||(1/n) \sum_{k=0}^{n-1} T^k ||_p < \infty$ and $\lim_n ||(1/n) T^n f ||_p = 0$ for every $f \in L_p(X)$, then the space X uniquely decomposes into two measurable sets Y and Z such that

(a) Z is closed under T,

(b) if $f \in L_p(Z)$ then $\lim_n || (1/n) \sum_{k=0}^{n-1} T^k f ||_p = 0$,

(c) there exists a nonnegative function u in $L_q(Y)$ such that u > 0a.e. on Y and $T^*u = u$, where q = p/(p-1).

PROOF. We may choose a nonnegative function u in $L_q(X)$ such that $T^*u = u$ and if $0 \leq v \in L_q(X)$ is invariant under T^* then $\operatorname{supp} v \subset \operatorname{supp} u$. Let $Y = \operatorname{supp} u$ and Z = X - Y. Since $T^*u = u$, (a) is obvious. To see (b), let $0 \leq g \in L_p(Z)$. Then the mean ergodic theorem ([2], p. 661) implies that strong-lim_n $(1/n) \sum_{k=0}^{n-1} T^k g = g_0$ for some $0 \leq g_0 \in L_p(Z)$ with $Tg_0 = g_0$. Here R. SATO

if we assume that $||g_0||_p > 0$, then $\int g_0 v dm > 0$ for some $0 \leq v \in L_q(X)$. Since the mapping $f \to \lim_n \int ((1/n) \sum_{k=0}^{n-1} T^k f) v dm$ is a positive linear functional, there exists a nonnegative function v_0 in $L_q(X)$ such that

$$\lim_n \int \Bigl(\frac{1}{n} \sum_{k=0}^{n-1} T^k f \Bigr) v dm = \int f v_0 dm \quad \text{for any} \quad f \in L_p(X) \; .$$

It is then clear that $T^*v_0 = v_0$, and hence $\sup v_0 \subset Y$. Therefore $\int g_0 v dm = \int g v_0 dm = 0$. This is a contradiction, and the proof is complete.

COROLLARY 1. For any $f \in L_p(X)$, the limit

$$\lim_{n}\frac{1}{n}\sum_{k=0}^{n-1}T^{k}f(x)$$

exists and is finite a.e. on Y.

PROOF. For $uf \in L_1(Y)$, where $f \in L_p(Y)$, define U(uf) = u(Tf). Since $\{uf; f \in L_p(Y)\}$ is a dense subspace of $L_1(Y)$ and $||U(uf)||_1 = ||u(Tf)||_1 = 1$. Let g be any strictly positive function in $L_p(Y)$, and let strong-lim_n $(1/n) \sum_{k=0}^{n-1} T^k g = g_0$ for some $g_0 \in L_p(X)$. Then it follows that

$$\lim_{n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} U^{k}(ug) - ug_{0} \right\|_{1} = 0.$$

Hence the ergodic theorem of [5] implies that for any $f \in L_p(Y)$, the limit

$$\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x) = \frac{1}{u(x)} \lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} U^{k}(uf)(x)$$

exists and is finite a.e. on Y. This completes the proof.

COROLLARY 2. If $f \in L_p(X)$ and $0 \leq g \in L_p(X)$, then, (i) for each fixed integer j,

$$\lim_{n} T^{n+j} f(x) / \sum_{k=0}^{n} T^{k} g(x) = 0$$

a.e. on $Y \cap \{x; \sum_{k=0}^{\infty} T^k g(x) > 0\}$, (ii) the limit

$$\lim_{n}\sum_{k=0}^{n}T^{k}f(x)/\sum_{k=0}^{n}T^{k}g(x)$$

exists and is finite a.e. on $Y \cap \{x; \sum_{k=0}^{\infty} T^k g(x) > 0\}$.

If there exists a function $0 \leq g \in L_p(Z)$ such that the set $\{x; \sum_{k=0}^{\infty} T^k g(x) = \infty\}$ is nonnull, then the ratio theorem fails on this set.

PROOF. The first statement of the corollary follows from [1], since

$$\frac{T^{n+j}f(x)}{\sum_{k=0}^{n}T^{k}g(x)} = \frac{U^{n+j}(uf)(x)}{\sum_{k=0}^{n}U^{k}(ug)(x)}$$
 a.e.

and

$$rac{\sum\limits_{k=0}^{n} T^k f(x)}{\sum\limits_{k=0}^{n} T^k g(x)} = rac{\sum\limits_{k=0}^{n} U^k (uf)(x)}{\sum\limits_{k=0}^{n} U^k (ug)(x)}$$
a.e.

The second statement follows from the same argument as in [3], p. 77, and we omit the details.

3. Theorems. Let $\{T_t; t \ge 0\}$ be a semi-group of positive linear operators in $L_p(X)$ strongly integrable over every finite interval, such that

$$\sup_n \left\| \frac{1}{n} \sum_{k=0}^{n-1} T_k \right\|_p < \infty \quad \text{and} \quad \lim_n \left\| \frac{1}{n} T_n f \right\|_p = 0$$

for each $f \in L_p(X)$. Then, by Proposition, the space X uniquely decomposes into two disjoint measurable sets Y and Z such that (a) Z is closed under T_i , (b) if $f \in L_p(Z)$ then $\lim_n || (1/n) \sum_{k=0}^{n-1} T_k f ||_p = 0$, and (c) there exists a nonnegative function u in $L_q(Y)$ with u > 0 a.e. on Y and $T_1^* u = u$. The main results of this note are the following two individual ergodic theorems.

THEOREM 1. For any
$$f \in L_p(X)$$
, the limit $\lim_{b \uparrow \infty} S_0{}^b f(x)/b$

exists and is finite a.e. on Y.

THEOREM 2. If
$$f \in L_p(X)$$
 and $0 \leq g \in L_p(X)$, then the limit
$$\lim_{b \uparrow \infty} S_0^{\ b} f(x) / S_0^{\ b} g(x)$$

exists and is finite a.e. on $Y \cap \{x; S_0^{\infty}g(x) > 0\}$.

PROOF OF THEOREM 1. We may assume that f is nonnegative. Let $f' = \int_0^1 T_t f dt$. For each b > 0, write b = n + r, where n = [b] and $0 \le r < 1$. Then, as in [2], p. 688, we have

$$S_{0}^{b}f(x)/b = \frac{n}{b} \Big(\frac{1}{n} \sum_{k=0}^{n-1} T_{k}f'(x) + \frac{1}{n} T_{n} \Big(\int_{0}^{r} T_{t}fdt \Big)(x) \Big)$$
 a.e.

Since $0 \leq \int_{0}^{r} T_{t} f dt \leq \int_{0}^{1} T_{t} f dt = f' \in L_{p}(X)$, it follows from Corollary 1 that

R. SATO

$$0 \leq \lim_{n} \frac{1}{n} T_n \left(\int_0^r T_t f dt \right)(x) \leq \lim_{n} \frac{1}{n} T_n f'(x) = 0 \qquad \text{a.e.}$$

on Y and uniformly on the interval $0 \le r \le 1$. Hence Corollary 1 completes the proof.

PROOF OF THEOREM 2. We may assume that f is nonnegative. Then, as in [4], p. 660, we have

$$\frac{\sum\limits_{k=0}^{n-1} T_k f'(x)}{\sum\limits_{k=0}^n T_k g'(x)} \leq \frac{S_0^{\ b} f(x)}{S_0^{\ b} g(x)} \leq \frac{\sum\limits_{k=0}^n T_k f'(x)}{\sum\limits_{k=0}^{n-1} T_k g'(x)} \quad \text{a.e.} \ .$$

Since the first and last terms of the above formula converge to the same finite limit on the set $Y \cap \{x; S_0^{\infty}g(x) > 0\}$ by Corollary 2, the proof is complete.

REFERENCES

- R. V. CHACON ANC D. S. ORNSTEIN, A general ergodic theorem, Illinois J. Math., 4 (1960), 153-160.
- [2] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators I, Interscience, New York, 1958.
- [3] H. FONG, On invariant functions for positive operators, Colloq. Math., 22 (1970), 75-84.
- [4] H. FONG AND L. SUCHESTON, On the ratio ergodic theorem for semi-groups, Pacific J. Math., 39 (1971), 656-667.
- [5] R. SATO, On the individual ergodic theorem for positive operators, Proc. Amer. Math. Soc., 36 (1972), 456-458.

DEPARTMENT OF MATHEMATICS JOSAI UNIVERSITY SAKADO, SAITAMA 350-02, JAPAN