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1. Introduction. Let G be a locally compact abelian group and I”
be the dual to G. Let 1 < p < «. A function ¢ on I" is called L’
multiplier if for every f in L”(G) there exists a function g in L?(G) such
that ¢f = §, where 7 denotes the Fourier transform of f- In this case
g will be denoted by T,f. The set of all L®-multipliers will be written
by M,(I") and the norm of ¢ in M,(I') is defined by

16 1la,iry = sup {l| Tsf oo | fllzoier = 1} -

M,(I') is a unitary commutative Banach algebra with the product of
pointwise multiplication. In the previous paper [3] we have proved the
following: Let I" be a locally compact non-compact abelian group. Assume
1<p<2and @ is a function in [—1,1]. Then @(g) € M,(I") for all ¢
wn M(I") whose range is contained in [—1, 1], if and only if @ is extended
to an entire function.

This theorem does not hold if I" is compact, which is due to Wiener-
Lévy theorem. In this paper we restrict our attension to the case when
G = Z, the integer group. The dual to Z will be denoted by T or [0, 1).
Put m,(T) = M,(T) N C(T), where C(T) is the set of all continuous func-
tions on T. m,(T) is a closed subalgebra of M,(T).

Our main object is to prove the following

THEOREM 1. Assume 1 < q < p-<2 and @ is a function in [—1, 1].
Then @(g) € M,(T) for all ¢ in M,(T) whose range is contained in [—1, 1],
if and only if @ is extended to an entire funmction.

THEOREM 2. Let 1 < p <2 and O be any non-empty open set in the
real line R. Then there exists a function ¢ in M,(R) such that ¢ =1
in O and 1/¢ restricted in O is not contained in the restriction of My(R)
wn O.

2. The multiplier exp i6(¢). In the following we put m; = 2%, j =
0,1,2 ++.. Define a function in T by 6(§) = m;.,& for &e[m;Y2, m7']
and = 0 outside U [m;'/2, m;'].

THEOREM 3. exp 2mit0(§) € M(T) for every 1 < q < = and the norm
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18 uniformly bounded in 1 < |t| < 2.

Let % be a function in R such that IE(E) = S k(x)e*™**dx € C*(R), the
support of k is contained in (1/4, 5/4), £(¢) = 1 in'(1/2, 1) and S ek(&)de = 0.
Then we have )

2.1) kx) =0, K(x)=O0@@?) as £ — o
and
2.2) kx)=0Q), K@)=0&) asx—0.

For non-negative integer s not of the form 27 define
k() = S“ f(2:¢) exp 2miztde
and

kyi(x) = Sm l?(m,-&) exp 2wi(x — m; t)edE .

—00

LEMMA 1. We have

o /2
(S kn = m) — k)" <
|n|>2M+2 \8=0
forall 1= |t| =2 and |m|<2%, M=1,2,8, ---, where ¢ is a constant
not depending on t and M".

PrOOF. To simplify the notations we put k,; = k¥ and prove that

. 3L EEe - m - E) <

for ¢t = 1.
Since k}(x) = mj'k(m;j'c — m;), we get, by (2.1) and (2.2),
-3 —_ —_ R
@0  |km—m)— ko)< {“m’ I = m = | | m]
em;|n — nm — miy, |7 [ m|

where 0 <7 <1 and
(2.5) )| < {j:m S
Let N be a smallest integer such that 2¥*' < my,,. Put
I(N) = {n; 2" < [n| < My}
and
Ik) = {nympy, < |n| < myy) for £>N.

b ¢ will be different in each occasion.
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Suppose that ne€ I(k). Then |[n —ym — m;,,| < |n]|/2 for 0 <7<k and
> m;,./2 for § >k + 1. Note that

@8 (Z1ke—m - kmE) S 5 ke - - k).

Thus if ne I(k), by (2.4) and (2.5) the left hand side of (2.6) is bounded
by

@.7) cz f|m|+chm( I n—nm — mjy |, o ;)Im|
| —nm — m;,,|
i=k+ j

Therefore

oo 1/2
@8 3 (S (n—m)—k}‘(n)P)

nel(k) =
e ™ |m|+c2(m~3m+m ) [m | 4 S M
=0 My, ik My

Sclm|mii + c|m|mit + emil, < ¢ [m|mi!

for k> N. If k = N, we replace the second term of (2.7) by ¢ 37 i,
min (m;', m%|n — m;,,|™®). Then we get, by the same way,

0o o 12
@9 3 (S1krn—m) = ke F) Selm|mil + o+ omt, <o

Therefore the left hand side of (2.3) is bounded by ¢ + ¢ Son |m | mMi' <
c+clm|myi, <ec.
To prove our lemma it remains to show
’ ) 1/2
@10) 5 (S lke—m - k@) <c, |m|<2,
|m|>2M+2 8 /
where the summation >} runs over all s not of the form 2/, This is
proved by the similar way to the above and it will be simpler. Actually
(2.10) is given in S. Igari [2], so that we omit the proof.

PrROOF OF THEOREM 3. We use the following two facts whose proof
is given, for example, in S. Igari [2].

Let H be the Hilbert space of square summable sequences on non-
negative integers. Assume 1<¢<c. For H-valued L*(Z )-function f={f;}
define Tf = {T;f} by (Tif)"(§) = x1,()fi(§), where f,(§) = 37 . fi(n)e™™*
and Xr; is the characteristic function of the interval I; in 7. Then we
have

(2.11) T llzazm = Al fllzazm
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where A, is a constant which does not depend on the choice of {I;} énd -
For fe LU(Z) define 4(f) = {4;(f)} by

Lif Y () = Lmim -1 EFE) -
Then

(2.12) AN fllzaa S N4 ez m = AL fllzaz »
where constant A, and A, depend only on gq.

Put K = (k,, ki, ko) <++). Then the mapping f— Kxf of L%Z) to
LY(Z, H) is bounded, by the argument of [2] with Lemma 1, that is,

(2.13) K= fllzazm < e | fllzacz -
Apply (2.11) and then (2.10) to (2.13). Then we get

II Texpzrrit!?f”Lq(Z) é A;_l ” A(Texpzmwf) HL‘I(Z,H)
S ATANK* fllooam = ATAl | flleas »

which implies Theorem 3.

3. Proof of Theorem 1. We prove the sufficiency. The necessity is
obvious. Let 1 < ¢ =< p <2. Remark that M(T) = A(T)c M/(T) and
M,(T) c Ax(T), where A,(T) is the set of Fourier transforms of functions
in L?(Z). Thus by the theorem of W. Rudin [7], @ is extended to an
analytic function in a neighborhood of [—1,1]. We may assume that
@(0) =0 and @ is periodic with period 1 considering @(sin27x) and
@(esin 2mx), 0 < e < 1.

LeEMMA 2. (1) (K. de Leeuw [1]) Let 1 <r < 2and ¢ M(T). If¢
18 the periodic extension of @, then

(3.1) 1 lwpiry = 1 G llsepemr -

(2) ([1] and S. Igari [3]) If v € M.(R) and + tis regulated, then

(3.2) 1Y oy = 1] ¥(en) i, )

“for every € > 0. If, furthermore, + 18 continuous almost everywhere,
(3.3) 19l = i [ 6 L -

LEMMA 3 (J.-P. Kahane and W. Rudin [5]). For a given sequence
{n;} of positive integers, there exist {v;} and {;} of positive integers
satisfying:

(3.4) mij/zvj < =+ <my < mij/”j < mij+1/2vj+1
§=1,2,8, -+« for some 0 <1, <, < -+-. Thus the sets
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S; = {m =vi(n + #;); [n| = n;}
are mutually disjoint.

For every continuous function g in T such that suppgc U S;, we
have

(3.5) loll. = 3 ” 5, dmye
LEMMA 4. For every s > 1 there ts a constant ¢, such that

Il 2(¢) HMI,(T) <e¢
for every real valued function ¢ in M,(T) satisfying || ¢ ||w,m < 8.

=29l -

S}

Proor. Fix s > 1. If the lemma were false for s, there exists a
sequence {¢;} in M(T) such that

[ ¢5 llyrs <8, range of ¢ CR and [[9(3))[lu,rr > J

for j=1,2,8, +--.
Let ¢, be the periodic extention of ¢; with period 1. Then by
Lemma 2, there is ¢; > 0 such that

Il & i(em) i,y <s and || o($ ;(em)) HM,,(Z) >7.

Let  V.(&) = 24.,,(5) — 4.,(6), where 4,6)=max(l — |&]|/a,0). Then
[| Valluyw =8 for all @ >0. Thus if a; > 0 is sufficiently large and
/'/’J(n) = Vuj(n)¢j(6in)’ then

(3.6) [|¥; HMl(Z) <3s and |[|O(y;) ”MP(Z) >7J.

Pick n; so that 2a; <n,;. Choose v; and f;, and define S; by Lemma 3.
Put X ={feC(T);suppS U, S;}. Then X is a closed subspace of
C(T). If Tf = 35 Dimes; ¥im)f(m), m = v;(n + 1), '

| Tf| = gl l m%-."[f"(n)f(m)emme

applying Lemma 3. Since T is extended to a bounded linear functional
on C(T), there is a bounded Borel measure f# on T such that

1r = | raz

for fe X. In particular fi(m) = ¥;(n), m = v(n + ;).
Put 4(¢) = %eﬁ(é)e‘z”“. Since ¢(6(%)) = ?Res e IO g (),

=65/l

190) i = |, sup 1167 [l [ dpt (&) < o= -
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Now put (@ogod)* (&) = [@Pogob(é + 0) + Dogof(&— 0)]/2 if & is not integer
and = ®(Ref(0)) otherwise, where fog denotes the composition function
fg(+)). Then (@opof)* is regulated. In fact put u;(&) = m;'x;(8),
where yx; is the characteristic function of the interval (—1/2m;, 1/2m;).
Then it is not hard to prove that wu;* (@ oo 8)*(&) — (Do o F)*(§) for every
£. Thus by the assumption and Lemma 2,

(@cgo8)*(a(n + b)) [l < [ (@ g0F)(alé + b)) llu,
= |[(@cg°0)(¢) HM,,(R) =|[Qogob HM,,(T) < oo
for every a and b.

Choose a and b so that a = y,m;}, and b = g;. Then 6(a(n + b)) =
vi(n + y;) for |n| <n;. Remark that 6(a(¢ + b)) has no point of discon-
tinuity in [é] < n;. Thus ¢of(a(n + b)) = ¥;(n) for |n| <n;. Thus by
(3.6) and M. Riesz theorem the left hand side of (8.7) is arbitrarily large.
The contradiction implies the lemma.

LEmMMA 5 ([3], ef. [7T]). If p #= 2,
sup {|| e* HM,,(T); [V s,y <8, range of ¥ C R} > Ae”,

where A and B are constants independent on s.

3.7

PROOF OF THEOREM 1. If &(n) is the n-th Fourier coefficient of @,
then

D(n)eriné = Sl O(x + g)e > "*dx .
0

Taking supremum over real valued ¢ such that [[¢[[y,r <S8, we get
| @(n) | Ae*™5'™* < ¢,,,, Which proves the theorem.

4. Corollaries of Theorem 1. By the well-known argument we get
the following corollaries of Theorem 1 (cf. S. Igari [3] or Y. Katznelson
[6]).

COROLLARY 1. Assume p # 1,2. Then there exists ¢ in My(T) such
that ¢ =1 on T but 1/¢¢ M,(T).

COROLLARY 2. If p # 1,2, then the Banach algebra My(T) is asym-
metric and not regular.

PrROOF OF THEOREM 2. We may assume that O = (0, 1). Take ¢ pos-
sessing the properties of Corollary 1. Then the periodic extension ¢ of
¢ satisfies the conditions, in fact, otherwise, 1/¢ ¥, € My(R). Thus
1/¢ € M,(T) by a theorem of M. Jodeit, Jr. [4].

5. Remarks. (1) In Theorem 1 we cannot replace M (T) by m(T),
if ¢g<p<2. In factif gem,(T)
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g — Fixlluyr S Ml¢ — Fixolliifiny I 6 — Fixglle

where 1/p = (1 — 0)/q + 6/2 and F; is the Fejér kernel. Since the first
term of the right hand side is bounded by (2|4 |/x,r)' "’ and the second
term tends to zero as m — oo, ¢ is approximated by polynomials. Let 2
be a non-trivial homomorphism on M,(T). Then there is a point ¢ in T
such that A(y) = ¥(¢) for all polynomials 4+. Thus the range of Gelfand
transform of ¢ on the maximal ideal space of M,(T) coinsides with ¢(T).

Therefore for the continuous multipliers the possibility of Theorem
1 comes into question only if p = g.

(2) Corollary 1 does not hold for » =1 and 2. The former case is
due to N. Wiener and the latter to O. Toeplitz.

REFERENCES

[1] K. pE LEeuw, On LP-multipliers, Ann. of Math., 81 (1965), 364-378.

[2] S. IcARri, On the decomposition theorems of Fourier transforms with weighted norms,
Téhoku Math. J., 15 (1963), 6-36.

[8] 8. IcARi, Functions of LP-multipliers, Téhoku Math. J., 21 (1969), 304-320.

[4] M. JopEIT, JR., Restrictions and extensions of Fourier multipliers, Studia Math., 34
(1970), 215-226.

{5] J.-P. KAHANE AND W. RUDIN, Caractérisation des fonctions qui opérent sur les coef-
ficients de Fourier-Stieltjes, C. R. Acad. Sci. Paris, 247 (1958), 773-775.

[6] Y. KaTzNELSON, An Introduction to Harmonic Analysis, John Wiley & Sons, Inc., 1968.

[7] W. RUDIN, A strong converse of the Wiener-Lévy theorem, Canad. J. Math., 14 (1962),
694-701.

MATHEMATICAL INSTITUTE
TOHOKU UNIVERSITY,
SENDAI, JAPAN








