FUNCTIONS OF L^p -MULTIPLIERS II

SATORU IGARI

(Received September 19, 1973)

1. Introduction. Let G be a locally compact abelian group and Γ be the dual to G. Let $1 \leq p \leq \infty$. A function ϕ on Γ is called L^p -multiplier if for every f in $L^p(G)$ there exists a function g in $L^p(G)$ such that $\phi \hat{f} = \hat{g}$, where \hat{f} denotes the Fourier transform of f. In this case g will be denoted by $T_{\phi}f$. The set of all L^p -multipliers will be written by $M_p(\Gamma)$ and the norm of ϕ in $M_p(\Gamma)$ is defined by

$$||\phi||_{M_p(\Gamma)} = \sup \{||T_{\phi}f||_{L^p(G)}; ||f||_{L^p(G)} \leq 1\}.$$

 $M_p(\Gamma)$ is a unitary commutative Banach algebra with the product of pointwise multiplication. In the previous paper [3] we have proved the following: Let Γ be a locally compact non-compact abelian group. Assume $1 \leq p < 2$ and Φ is a function in [-1,1]. Then $\Phi(\phi) \in M_p(\Gamma)$ for all ϕ in $M_1(\Gamma)$ whose range is contained in [-1,1], if and only if Φ is extended to an entire function.

This theorem does not hold if Γ is compact, which is due to Wiener-Lévy theorem. In this paper we restrict our attension to the case when G = Z, the integer group. The dual to Z will be denoted by T or [0, 1). Put $m_p(T) = M_p(T) \cap C(T)$, where C(T) is the set of all continuous functions on T. $m_p(T)$ is a closed subalgebra of $M_p(T)$.

Our main object is to prove the following

THEOREM 1. Assume $1 < q \le p < 2$ and Φ is a function in [-1, 1]. Then $\Phi(\phi) \in M_p(T)$ for all ϕ in $M_q(T)$ whose range is contained in [-1, 1], if and only if Φ is extended to an entire function.

THEOREM 2. Let $1 and O be any non-empty open set in the real line R. Then there exists a function <math>\phi$ in $M_p(R)$ such that $\phi \ge 1$ in O and $1/\phi$ restricted in O is not contained in the restriction of $M_p(R)$ in O.

2. The multiplier $\exp i\theta(\xi)$. In the following we put $m_j = 2^{2^j}$, $j = 0, 1, 2, \cdots$. Define a function in T by $\theta(\xi) = m_{j+1}\xi$ for $\xi \in [m_j^{-1}/2, m_j^{-1}]$ and 0 outside $\cup [m_j^{-1}/2, m_j^{-1}]$.

THEOREM 3. $\exp 2\pi i t \theta(\xi) \in M_o(T)$ for every $1 < q < \infty$ and the norm

is uniformly bounded in $1 \leq |t| \leq 2$.

Let k be a function in R such that $\hat{k}(\xi) = \int_{-\infty}^{\infty} k(x)e^{2\pi i \xi x} dx \in C^{\infty}(R)$, the support of \hat{k} is contained in (1/4, 5/4), $\hat{k}(\xi) = 1$ in (1/2, 1) and $\int_{-\infty}^{\infty} \xi \hat{k}(\xi) d\xi = 0$. Then we have

(2.1)
$$k(x) = O(x^{-3}), \quad k'(x) = O(x^{-3}) \text{ as } x \to \infty$$

and

(2.2)
$$k(x) = O(1)$$
, $k'(x) = O(x)$ as $x \to 0$.

For non-negative integer s not of the form 2^{j} define

$$k_s(x) = \int_{-\infty}^{\infty} \hat{k}(2^s \xi) \, \exp 2\pi i x \xi d\xi$$

and

$$k_{2j}(x) = \int_{-\infty}^{\infty} \hat{k}(m_j \xi) \, \exp 2\pi i (x - m_{j+1} t) \xi d \xi \; .$$

LEMMA 1. We have

$$\sum_{|n|>2^{M+2}} \left(\sum_{s=0}^{\infty} |k_s(n-m)-k_s(n)|^2\right)^{1/2} < c$$

for all $1 \le |t| \le 2$ and $|m| < 2^{M}$, $M = 1, 2, 3, \dots$, where c is a constant not depending on t and M^{1} .

PROOF. To simplify the notations we put $k_{i} = k_{i}^{*}$ and prove that

(2.3)
$$\sum_{|n|>2^{M+2}} \left(\sum_{j=0}^{\infty} |k_{j}^{*}(n-m) - k_{j}^{*}(n)|^{2} \right)^{1/2} < c$$

for t=1.

Since $k_i^*(x) = m_i^{-1}k(m_i^{-1}x - m_i)$, we get, by (2.1) and (2.2),

$$|k_{j}^{*}(n-m)-k_{j}^{*}(n)| \leq \begin{cases} cm_{j}^{-3} |n-\eta m-m_{j+1}| |m| \\ cm_{j} |n-\eta m-m_{j+1}|^{-3} |m| \end{cases}$$

where $0 \le \eta \le 1$ and

(2.5)
$$|k_{j}^{*}(n)| \leq \begin{cases} cm_{j}^{-1} \\ cm_{j}^{2} |n - m_{j+1}|^{-3} \end{cases}.$$

Let N be a smallest integer such that $2^{M+1} < m_{N+1}$. Put

$$I(N) = \{n; 2^{M+2} < |n| \le m_{N+2} \}$$

and

$$I(k) = \{n; m_{k+1} < |n| \le m_{k+2}\} \text{ for } k > N.$$

c will be different in each occasion.

Suppose that $n \in I(k)$. Then $|n - \eta m - m_{j+1}| \le |n|/2$ for $0 \le j < k$ and $> m_{j+2}/2$ for j > k+1. Note that

$$(2.6) \qquad \left(\sum_{j=0}^{\infty} |k_j^*(n-m) - k_j^*(n)|^2\right)^{1/2} \leq \sum_{j=0}^{\infty} |k_j^*(n-m) - k_j^*(n)|.$$

Thus if $n \in I(k)$, by (2.4) and (2.5) the left hand side of (2.6) is bounded by

$$(2.7) \quad c \sum_{j=0}^{k-1} \frac{m_j}{n^3} \mid m \mid + c \sum_{j=k}^{k+1} \min \left(m_j^{-3} \mid n - \eta m - m_{j+1} \mid, \frac{m_j}{\mid n - \eta m - m_{j+1} \mid^3} \right) \mid m \mid + c \sum_{j=k+2}^{\infty} \frac{1}{m^4}.$$

Therefore

$$(2.8) \qquad \sum_{n \in I(k)} \left(\sum_{j=0}^{\infty} |k_{j}^{*}(n-m) - k_{j}^{*}(n)|^{2} \right)^{1/2}$$

$$\leq c \sum_{j=0}^{k-1} \frac{m_{j}}{m_{k+2}^{2}} |m| + c \sum_{j=k}^{k+1} (m_{j}^{-3} \cdot m_{j}^{2} + m_{j} \cdot m_{j}^{-2}) |m| + \sum_{j=k+2}^{\infty} \frac{m_{k+2}}{m_{j}^{4}}$$

$$\leq c |m| m_{k+1}^{-1} + c |m| m_{k}^{-1} + c m_{k+2}^{-3} \leq c |m| m_{k}^{-1}$$

for k>N. If k=N, we replace the second term of (2.7) by $c\sum_{j=N}^{N+1}\sum_{j=0}^{1}\min\ (m_{j}^{-1},\ m_{j}^{2}\ |\ n-m_{j+1}|^{-3})$. Then we get, by the same way,

$$(2.9) \qquad \sum_{n \in I(N)}^{\infty} \left(\sum_{i=0}^{\infty} |k_i^*(n-m) - k_i^*(n)|^2 \right)^{1/2} \leq c |m| m_{N+1}^{-1} + c + c m_{N+1}^{-3} < c.$$

Therefore the left hand side of (2.3) is bounded by $c + c \sum_{k>N} |m| m_k^{-1} \le c + c |m| m_{N+1}^{-1} < c$.

To prove our lemma it remains to show

(2.10)
$$\sum_{|m|>2M+2} \left(\sum_{s}^{'} |k_{s}(n-m)-k_{s}(n)|^{2}\right)^{1/2} < c$$
 , $|m|<2^{M}$,

where the summation \sum' runs over all s not of the form 2^{j} . This is proved by the similar way to the above and it will be simpler. Actually (2.10) is given in S. Igari [2], so that we omit the proof.

PROOF OF THEOREM 3. We use the following two facts whose proof is given, for example, in S. Igari [2].

Let H be the Hilbert space of square summable sequences on non-negative integers. Assume $1 < q < \infty$. For H-valued $L^q(Z)$ -function $f = \{f_j\}$ define $Tf = \{T_jf\}$ by $(T_jf)^{\hat{}}(\xi) = \chi_{I_j}(\xi)\hat{f}_j(\xi)$, where $\hat{f}_j(\xi) = \sum_{n=-\infty}^{\infty} f_j(n)e^{2\pi i n \xi}$ and χ_{I_j} is the characteristic function of the interval I_j in T. Then we have

$$||Tf||_{L^{q}(Z,H)} \leq A_{q} ||f||_{L^{q}(Z,H)},$$

where A_q is a constant which does not depend on the choice of $\{I_j\}$ and f.

For
$$f \in L^q(Z)$$
 define $\Delta(f) = \{\Delta_j(f)\}$ by

$$(\Delta_j f)^{\hat{}}(\xi) = \chi_{\lceil 2^{-j-1}, 2^{-j} \rceil}(\xi) \hat{f}(\xi)$$
.

Then

$$(2.12) A'_{q} ||f||_{L^{q}(Z)} \leq ||\Delta(f)||_{L^{q}(Z,H)} \leq A''_{q} ||f||_{L^{q}(Z)},$$

where constant A'_q and A''_q depend only on q.

Put $K = (k_0, k_1, k_2, \cdots)$. Then the mapping $f \to K * f$ of $L^q(Z)$ to $L^q(Z, H)$ is bounded, by the argument of [2] with Lemma 1, that is,

$$(2.13) || K*f||_{L^{q}(Z,H)} \leq c_q ||f||_{L^{q}(Z)}.$$

Apply (2.11) and then (2.10) to (2.13). Then we get

$$||T_{\exp 2\pi i t \theta} f||_{L^{q}(Z)} \leq A_q^{\prime - 1} ||\Delta(T_{\exp 2\pi i t \theta} f)||_{L^{q}(Z, H)}$$

$$\leq A_q^{\prime - 1} A_q ||K * f||_{L^{q}(Z, H)} \leq A_q^{\prime - 1} A_q c_q ||f||_{L^{q}(Z)},$$

which implies Theorem 3.

3. Proof of Theorem 1. We prove the sufficiency. The necessity is obvious. Let $1 < q \le p < 2$. Remark that $M_1(T) = A_1(T) \subset M_q(T)$ and $M_p(T) \subset A_p(T)$, where $A_p(T)$ is the set of Fourier transforms of functions in $L^p(Z)$. Thus by the theorem of W. Rudin [7], Φ is extended to an analytic function in a neighborhood of [-1,1]. We may assume that $\Phi(0) = 0$ and Φ is periodic with period 1 considering $\Phi(\sin 2\pi x)$ and $\Phi(\varepsilon \sin 2\pi x)$, $0 < \varepsilon < 1$.

LEMMA 2. (1) (K. de Leeuw [1]) Let $1 \le r \le 2$ and $\phi \in M_r(T)$. If $\tilde{\phi}$ is the periodic extension of ϕ , then

(3.1)
$$||\phi||_{M_{r}(T)} = ||\tilde{\phi}||_{M_{r}(R)}$$
.

(2) ([1] and S. Igari [3]) If $\psi \in M_r(R)$ and ψ is regulated, then

for every arepsilon>0. If, furthermore, ψ is continuous almost everywhere,

LEMMA 3 (J.-P. Kahane and W. Rudin [5]). For a given sequence $\{n_j\}$ of positive integers, there exist $\{\nu_j\}$ and $\{\mu_j\}$ of positive integers satisfying:

$$(3.4) m_{i_j}/2\nu_j < -n_j + \mu_j < n_j + \mu_j < m_{i_j}/\nu_j < m_{i_{j+1}}/2\nu_{j+1}$$

$$j = 1, 2, 3, \cdots \text{ for some } 0 < i_1 < i_2 < \cdots \text{ Thus the sets}$$

$$S_{i} = \{m = \nu_{i}(n + \mu_{i}); |n| \leq n_{i}\}$$

are mutually disjoint.

For every continuous function g in T such that supp $\hat{g} \subset \bigcup S_j$, we have

(3.5)
$$||g||_{\infty} \leq \sum_{j=1}^{\infty} \left\| \sum_{m \in S_{j}} \hat{g}(m) e^{2\pi i m x} \right\|_{\infty} \leq 2 ||g||_{\infty}.$$

Lemma 4. For every s > 1 there is a constant c_s such that

$$|| \Phi(\phi) ||_{M_{\mathcal{D}}(T)} < c_s$$

for every real valued function ϕ in $M_1(T)$ satisfying $||\phi||_{M_1(T)} < s$.

PROOF. Fix s > 1. If the lemma were false for s, there exists a sequence $\{\phi_i\}$ in $M_i(T)$ such that

$$||\,\phi_j\,||_{{\mathtt M}_1(T)} < {\mathtt s}$$
 , range of $\phi \subset R$ and $||\, arPhi(\phi_j)\,||_{{\mathtt M}_p(T)} > j$

for $j = 1, 2, 3, \cdots$.

Let $\tilde{\phi}_j$ be the periodic extention of ϕ_j with period 1. Then by Lemma 2, there is $\varepsilon_j > 0$ such that

Let $V_a(\xi) = 2 \mathcal{L}_{2a}(\xi) - \mathcal{L}_a(\xi)$, where $\mathcal{L}_a(\xi) = \max(1 - |\xi|/a, 0)$. Then $||V_a||_{\mathcal{M}_1(R)} \leq 3$ for all a > 0. Thus if $a_j > 0$ is sufficiently large and $\psi_j(n) = V_{a_j}(n) \tilde{\phi}_j(\varepsilon_j n)$, then

(3.6)
$$||\psi_j||_{M_{\eta}(Z)} < 3s$$
 and $||\Phi(\psi_j)||_{M_{\eta}(Z)} > j$.

Pick n_j so that $2a_j < n_j$. Choose ν_j and μ_j , and define S_j by Lemma 3. Put $X = \{f \in C(T); \operatorname{supp} \widehat{f} \subset \bigcup_{j=1}^{\infty} S_j\}$. Then X is a closed subspace of C(T). If $Tf = \sum_{j=1}^{\infty} \sum_{m \in S_j} \psi_j(n) \widehat{f}(m)$, $m = \nu_j(n + \mu_j)$,

$$\mid Tf \mid \leqq \sum_{j=1}^{\infty} \left| \sum_{m \in S_j} \psi_j(n) \hat{f}(m) e^{2\pi i m \xi} \right|_{\infty} \leqq 6s \mid\mid f \mid\mid_{\infty}$$

applying Lemma 3. Since T is extended to a bounded linear functional on C(T), there is a bounded Borel measure μ on T such that

$$Tf = \int_0^1 f d\bar{\mu}$$

for $f \in X$. In particular $\hat{\mu}(m) = \psi_j(n)$, $m = \nu_j(n + \mu_j)$.

Put
$$\phi(\xi) = \Re e^{\hat{\overline{\mu}}(\xi)} e^{-2\pi i \xi}$$
. Since $\phi(\theta(\xi)) = \Re e^{\int_0^1 e^{-2\pi i \theta(\xi)(x+1)}} d\overline{\mu}(x)$,

$$||\phi(\theta)||_{M_{q^{(T)}}} \leq \int_{0}^{1} \sup_{1 \leq t \leq 2} ||e^{-2\pi i t \theta}||_{M_{q^{(T)}}} |d\mu|(x) < \infty.$$

Now put $(\Phi \circ \phi \circ \tilde{\theta})^*(\xi) = [\Phi \circ \phi \circ \tilde{\theta}(\xi+0) + \Phi \circ \phi \circ \tilde{\theta}(\xi-0)]/2$ if ξ is not integer and $= \Phi(\Re \hat{\mu}(0))$ otherwise, where $f \circ g$ denotes the composition function $f(g(\cdot))$. Then $(\Phi \circ \phi \circ \tilde{\theta})^*$ is regulated. In fact put $u_j(\xi) = m_j^{-1}\chi_j(\xi)$, where χ_j is the characteristic function of the interval $(-1/2m_j, 1/2m_j)$. Then it is not hard to prove that $u_j * (\Phi \circ \phi \circ \tilde{\theta})^*(\xi) \to (\Phi \circ \phi \circ \tilde{\theta})^*(\xi)$ for every ξ . Thus by the assumption and Lemma 2,

$$(3.7) \qquad ||(\varPhi \circ \phi \circ \tilde{\theta})^*(a(n+b))||_{\mathcal{M}_p(Z)} \leq ||(\varPhi \circ \phi \circ \tilde{\theta})(a(\xi+b))||_{\mathcal{M}_p(R)}$$

$$= ||(\varPhi \circ \phi \circ \tilde{\theta})(\xi)||_{\mathcal{M}_p(R)} = ||\varPhi \circ \phi \circ \theta||_{\mathcal{M}_p(T)} < \infty$$

for every a and b.

Choose a and b so that $a = \nu_j m_{i_j+1}^{-1}$ and $b = \mu_j$. Then $\theta(a(n+b)) = \nu_j(n+\mu_j)$ for $|n| < n_j$. Remark that $\theta(a(\xi+b))$ has no point of discontinuity in $|\xi| \le n_j$. Thus $\phi \circ \theta(a(n+b)) = \psi_j(n)$ for $|n| < n_j$. Thus by (3.6) and M. Riesz theorem the left hand side of (3.7) is arbitrarily large. The contradiction implies the lemma.

LEMMA 5 ([3], cf. [7]). If $p \neq 2$,

$$\sup \{||e^{i\psi}||_{M_p(T)}; ||\psi||_{M_1(T)} < s, \ range \ of \ \psi \subset R \} > A e^{Bs}$$
 ,

where A and B are constants independent on s.

PROOF OF THEOREM 1. If $\widehat{\Phi}(n)$ is the *n*-th Fourier coefficient of Φ , then

$$\widehat{\varPhi}(n)e^{2\pi in\phi}=\int_0^1 arPhi(x+\phi)e^{-2\pi inx}dx$$
 .

Taking supremum over real valued ϕ such that $||\phi||_{M_1(T)} < s$, we get $|\widehat{\Phi}(n)| A e^{2\pi B|n|s} \leq c_{s+1}$, which proves the theorem.

4. Corollaries of Theorem 1. By the well-known argument we get the following corollaries of Theorem 1 (cf. S. Igari [3] or Y. Katznelson [6]).

COROLLARY 1. Assume $p \neq 1$, 2. Then there exists ϕ in $M_p(T)$ such that $\phi \geq 1$ on T but $1/\phi \notin M_p(T)$.

COROLLARY 2. If $p \neq 1$, 2, then the Banach algebra $M_p(T)$ is asymmetric and not regular.

PROOF OF THEOREM 2. We may assume that O=(0,1). Take ϕ possessing the properties of Corollary 1. Then the periodic extension $\widetilde{\phi}$ of ϕ satisfies the conditions, in fact, otherwise, $1/\widetilde{\phi} \cdot \chi_{[0,1)} \in M_p(R)$. Thus $1/\widetilde{\phi} \in M_p(T)$ by a theorem of M. Jodeit, Jr. [4].

5. Remarks. (1) In Theorem 1 we cannot replace $M_q(T)$ by $m_q(T)$, if $q . In fact if <math>\phi \in m_q(T)$

$$\|\phi - F_j * \phi\|_{M_n(T)} \leq \|\phi - F_j * \phi\|_{M_n(T)}^{1-\theta} \|\phi - F_j * \phi\|_{\infty}^{\theta}$$

where $1/p = (1-\theta)/q + \theta/2$ and F_j is the Fejér kernel. Since the first term of the right hand side is bounded by $(2 || \phi ||_{M_q(T)})^{1-\theta}$ and the second term tends to zero as $n \to \infty$, ϕ is approximated by polynomials. Let h be a non-trivial homomorphism on $M_p(T)$. Then there is a point t in T such that $h(\psi) = \psi(t)$ for all polynomials ψ . Thus the range of Gelfand transform of ϕ on the maximal ideal space of $M_p(T)$ coinsides with $\phi(T)$.

Therefore for the continuous multipliers the possibility of Theorem 1 comes into question only if p = q.

(2) Corollary 1 does not hold for p=1 and 2. The former case is due to N. Wiener and the latter to O. Toeplitz.

REFERENCES

- [1] K. DE LEEUW, On Lp-multipliers, Ann. of Math., 81 (1965), 364-378.
- [2] S. IGARI, On the decomposition theorems of Fourier transforms with weighted norms, Tôhoku Math. J., 15 (1963), 6-36.
- [3] S. IGARI, Functions of L^p-multipliers, Tôhoku Math. J., 21 (1969), 304-320.
- [4] M. JODEIT, JR., Restrictions and extensions of Fourier multipliers, Studia Math., 34 (1970), 215-226.
- [5] J.-P. KAHANE AND W. RUDIN, Caractérisation des fonctions qui opèrent sur les coefficients de Fourier-Stieltjes, C. R. Acad. Sci. Paris, 247 (1958), 773-775.
- [6] Y. KATZNELSON, An Introduction to Harmonic Analysis, John Wiley & Sons, Inc., 1968.
- [7] W. RUDIN, A strong converse of the Wiener-Lévy theorem, Canad. J. Math., 14 (1962), 694-701.

MATHEMATICAL INSTITUTE Tôhoku University, SENDAI, JAPAN