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A THEOREM ON LIMITS OF KLEINIAN GROUPS
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1. Let G kle a group of conformal automorphisms of the extended
complex plane C = C U {«}. Every element of G is a Mobius transforma-
tion of the form

az + b

T:iz— 21—
cz+ d

where a, b, ¢ and d are complex numbers with ad — bc = 1. This trans-
formation T is often identified with (g 2) in PSL(2, C) and, in this case,

@ + d is called the trace of T and is denoted by trace T.

If there does not exist a sequence of G which converges to the identity
under the topology of PSL(2, C), then G is called discrete.

A point we C is called a limit point of G provided that there exist
a point zeC and a sequence {T,}2, of elements of G such that T; +#
T.(j # k) and such that T,(2) > w as 1— . If a point we C is not a
limit point of @G, it is called an ordinary point of G. Denote by A(G) the
set of all limit points of G and by 2(G) the set of all ordinary points of
G. If 2(G) is not empty, then G is called a discontinuous group. If the
limit set of a discontinuous group G contains more than two points, then
G is called kleinian. A discontinuous group not being kleinian is said to
be elementary. It is known that a kleinian group contains infinitely many
loxodromic elements and the set of attracting fixed points of loxodromic
elements in G is dense in A(G).

An isomorphism ¢ of a kleinian group G, onto a kleinian group G, is
said to be type preserving if ¢(T) is parabolic if and only if T is parabolic.

Let T be a Mobius transformation of the form

az + b
cz+d

Then we call two circles I(T): |z + d/c| = 1/|¢| and I(T™"): |z—a/c| = 1/|¢]|
the isometric circles of T and of T, respectively. It is known that T
maps the exterior of I(T) onto the interior of I(7™'). Since the radii of
I(T) and I(T™") are both equal to 1/| ¢| and since the distance of the center
of I(T) from that of I(T™') equals |(¢ + d)/c|, a necessary and sufficient

T:z+—

, c+0.
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condition in order that the two isometric circles I(7T') and I(T*) bound a
doubly connected domain containing the point o is |trace T'| = |a + d | > 2.

The following theorem is due to Chuckrow [1].

CHUCKROW’S THEOREM. Let G = (S, S, ---} and G(n) = {S,(n), Sx(n),
b (m=1,2 --.) be kleinian groups. Assume that for every m there
exists a Mobius transformation 2, such that lim,_. S,(n) = X, and denote
by I" the group {X,, 2, ---}. Assume further that all mappings ¢,: S, —
S.(n) of G onto G(n) are type preserving isomorphisms. Then the map-
ping ¢: S, — X, 18 an isomorphism of G onto I” and I" contains no elliptic
element of infinite order.

The purpose of this paper is to supplement the above theorem in the
following form.

THEOREM. Under the same assumption of Chuckrow’s theorem, the
group I" is discrete.

REMARK 1. Our theorem is not valid if discontinuous groups G and
G(n) are elementary. The fact is easily verified from the following
examples.

ExaMPLE 1. Let G(n) = <<(1) %), <é V2 + 11/—1/n>>, where (T, U,
.++> denotes the group generated by the Mobius transformations T, U, - - -.

Then clearly I = <<(1) %), <(1) 1/1§>> is not discrete.

EXAMPLE 2. Let G(n) = <<f$% /17{)2/;]’) o _1 0)>>, where 6 is an ir-

rational number and e(d) = exp (271 —16). Then clearly
e(9) 1
r= (( )\,
0 e(—0)
which is not discrete.
REMARK 2. It is easily seen that our theorem implies the following.

MARDEN’S THEOREM. (Marden [3]). A boundary group of the Schottky
space is discrete.

2. In this section we shall state lemmas which are concerned with
discontinuous groups. The following lemma is due to Chuckrow and was
used to prove Chuckrow’s theorem stated above.

LEMMA 1. (Chuckrow [1]). If {{(T,, U,}r. 18 a sequence of marked
Schottky groups and if U, converges to U, a Mobius transformation, then
T, does mot converge to the identity.
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Next, we prove an elementary lemma.

LEMMA 2. Let G be a kleinian group and let {T,}:, be a sequence of
loxodromic elements in G. Then there exists a subsequence {T,}i., of
{T.}, such that all the fixzed points of {Ty};=, are in the complement of
a domain Dc C which contains at least a limit point of G.

PROOF. Let D, D, and D, be domains in C satisfying

(i) Ui D, DAG),

(ii) D, NAG)+* @, p=1,2,3,
and

(iliy D,ND, =@, p*4q, p,a=12,3.

Here D, is the closure of D,.

Let (&, &) be the pair of fixed points of T;, where & and &, are
attracting and repelling fixed points of T, respectively.

If there is a set D,, say D, containing infinitely many pairs {(&:;»
&i,)}i= of fixed points of elements {T;};, belonging to the given sequence
{T,}-, then clearly D, can be considered as a desired domain D.

In the other case, the property (i) implies that there is a set D,, say
D,, which contains &, for an infinite number of ¢ and that there is a set
D, (p # q), say D,, containing repelling fixed points &, of T,; for an infinite
number of T;, whose attracting fixed points are contamed in D,. By (ii)
and (iii), we see that the domain D, is a desired domain D.

By the same argument as in the above proof, we can immediately
show the following.

LEMMA 3. Suppose that G is a group of Mobius transformations and
has an infinite number of elements {T,}, and at least three loxodromic
elements and that fized points of those loxodromic elements are different
from each other. Then there exist a loxodromic element Le G and a
subsequence {T;};=, of {T.}ii, such that L does not fix any fized point of
T, (G=12-.--).

ProorF. Let L, (p =1, 2, 3) be loxodromic elements in G whose fixed
points are different from each other and let D, be a domain containing
the fixed points of L, and satisfying U, D, = Cand D,ND, = @ (p #
q). Then clearly the argument in the proof of Lemma 2 establishes our
lemma.

The following lemma is well known. For the proof we refer to [2].

LEMMA 4. Let G be a discontinuous group and let the point o be
an ordinary point of G. Then there are only a finite number of T =

(Z 3> wn G such that |c| is less than any preassigned real number c,.
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The following lemma with Lemma 7 occupies the main part of the
proof of our theorem.

LEMMA 5. Let G be a kleinian group such that the point o is an
ordinary point and no element in G fixes the point . Let {T;}z, be a
sequence of the loxodromic elements in G. Then there exists a sequence
of Schottky subgroups {{L, A,y}r-, of G such that any A, is some T, or
is of the form T,Ti', where v > 1 and 1 tends to «~ as k tends to .

ProoF. We shall prove our lemma by classifying the situation into
two cases: (i) the case where |trace T;| > 3 for infinitely many T, and
(ii) the case otherwise.

In the case (i) we may assume that |trace T,| > 3 for all ¢, so I(T))
and I(T;) are disjoint for every ¢. By Lemma 2 we can find a subsequence
{T;};=, of {T;}:L, such that all the fixed points of {7}, are contained in
the complement of a domain D, which contains a point w € A(G).

Since the isometric circle of a loxodromic element contains the repelling
fixed points of that element, Lemma 4 implies the existence of a subsequence
{Ti}ee, of {T.)5- and a subdomain D* of D which contains the point we
A(G) such that C — D* contains I(T}) and I(T:;™) (k= 1, 2, ---) together
with their interior. From we A(G) N D*, we see that there exists a
loxodromic element Ue G such that its attracting fixed point & lies inside
D*. Let Ve G be another loxodromic element, none of whose fixed points
7 and 7’ is & For a sufficiently large integer M, fixed points U¥(n) and
U*(®') of the loxodromic element U* VU™ are in D*. Since the centers
(UXVU¥)¥(o) and (UYVU ™)¥(<) of isometric circles of (U¥* VU ™)
and (U VU ¥)¥ tend to U¥(%') and U™(n), respectively, as N — c, and
since by Lemma 4 radii of isometric circles of (UY VU ¥)~¥ and (U* VU )"
tend to zero as N — o, we can find an integer N such that I((U* VU~ *)¥)
and I(U*VU¥)"") are disjoint and are contained in D*. Put A, = T}
and L = (U*VU™)". Then it is immediate that the sequence of the
Schottky groups {{L, A,>}r-, has the required property.

In the case (i) we may assume that for all ¢

a; b,
(1) |trace T,| = |a, +d;| <3, Tiz( d)'
ci k3
If lim|a;| < o, we can find a subsequence {T,};, of the given
sequence {T;}iZ, such that the sequences {a,]};=, and {d,]};Z, converge to
ay; by . Hence we

complex numbers a and d, respectively, where T, = (
may assume that, for all j,

(2) la,l <2lal+1, |d;|<2]|d|+1.
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Here two cases can occur: the case where b;; # 0 for infinitely many j
and the case otherwise.

If there are infinitely many T,; with b,; # 0 in {T,}7,, then Lemma
4 and (2) imply the existence of a subsequence {T}};-, of {T',}i-, such that

(3) [0c] > b | >0
and
(4) [biciis| > 8+ 2@2|a| + 1)@2|d| + 1) + |bic],

where T} = <g’£" gi;) By (2), (3) and (4) we have

|trace TiT:7}

r .’ [N ’ ’ ’ ’
= la‘kdk+1 — biCry1 — bipsCr + a/k+1dkl

= 'bl,cC;c+ll - Ial’cd1’c+1l — | bkssCh | — | @t 1 |
=3+2CQlal+1)2|d|+ 1)+ |bier] — 22 |a| + 1)@ |d]| + 1) — | brcr ]
=3.

Thus the case has been reduced to the case (i) again.

In the remainder case, we may assume that b;,; always vanishes.
Since all loxodromic elements T, have a common fixed point 0 and since
G is discontinuous, the set {&, &'} of fixed points of T is identical with
of every T;; (j > 1). Let Be PSL(2, C) satisfy B(¢) = 0 and B(¢') = .
We may assume that

.0
BT, B~ = (p(;’ p;‘) oy > 1.
J

Since G* = BGB™ is discontinuous again, any |p,;| must be greater
than a real number o > 1. Hence we can find ring domains 4; such that
4; is a fundamental domain of the cyclic group (BT;,B~*) and all 4;
contain a ring domain 4 such that 4 contains a limit point of G*. This
last property of 4 can be easily verified from the fact that G* is kleinian.
As in the case (i) we can find two loxodromic elements BLB™* and BL™'B™*
in G* = BGB™ whose isometric circles are contained in 4 and are disjoint
each other. Obviously Schottky subgroups {<L, T;)}i., of G are desired.

If Tim,., @, = o, there exists a subsequence {T,;}i=. of {T}:, such
that

(5) lim|a,;| = lim |d,| = = .

First we assume lim,_,, (d;;/c,;}) = 0. We can take a suitable subsequence
{T}} of {T,);., such that
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&), mo (%),
cr cr dj

By an easy computation we have

Qiss

’
Ch+1

9 <

trace TiTiii = @iy — biCiry — bipich + aiidi
d’ ’
= akdk+1[ - (—k - "—1 Lty

cr aiCr dk+1
’
o Qi1 1 ck + @i Qi
’ ’ I d
Cit1 [ A A (1570 97

From (1) and (5) we can conclude that, for a sufficiently large k,

1ldi| | _ 1
2lel Tie  aicil’

a;:+1 _ 1 <2 ‘ dk+1

cl’c+1 cI'c+1dk+1 Clt1

d, a
<2|=£| and |2t .2kl 2,
ak dk a. Qs
By using these, we have
| trace T;:Ti+:
1|d, e di
Iakdk I( Yr , Ckt1 1 — Dkt =k _2>
i 2 Ck ;+1 C;_H dk

> Ia;du(%@— 1_4-%—2>

= |aidi] .
The condition (5) yields that 7,7;;! is a loxodromic element in G and

satisfies |trace T;T;7i| > 3 for a sufficiently large k. Thus our case can

be reduced to the case (i).
When lim;._., (d;,;/c;;) # 0, we consider a suitable conjugate WGW ™ =
G of G such that « is also an ordinary point of G’ and such that for

WT, W~ = <“;: 32), it holds lim (d%/ef) = 0. 1f Iim |aZ| = co, then the
above argument shows that our lemma holds for G’, which establishes
Lemma 5 itself. If lim|a}| < c, then the proof in the caselim|a,;| <
o gives validity of Lemma 5 for &, so Lemma 5 also holds for G. Thus
the proof of the lemma is complete.

3. In this section we prepare some results obtained under the assump-
tion in our theorem. Let G ={S,, S, ---} and G(n) = {S\(»), S:(n), - - -} be
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kleinian groups. We restate the assumption of the theorem as follows:
there exists a Mobius transformation X, such that lim,_. S,.(») = 2, for
every m and there exists a type preserving isomorphism 4,: S, — S,(n)
of G onto G(n) for every n(m =1, 2, --.).

Denote by I" the group {¥, %,, ---}. First we prove the following.

LEMMA 6. In addition to the assumption in our theorem, suppose
that o € Q@) and is not fixed by any element of G. Then I' contains
infinitely many loxodromic elements {V;}2, such that trace V, is identical
with trace V, for any i and such that V; and V, have no common fixed
point for any j and k.

ProoF. First, we shall show that I” contains a loxodromic element
V.. Let U, be a loxodromic element in G. If ¢(U,) is loxodromic, we
have nothing to prove. If ¢(U,) is not loxodromie, then by using Chuck-
row’s theorem we see ¢(U,) is parabolic. Let U, be a loxodromic element
in G whose fixed points are different from the fixed points of U,. Again
we may assume ¢(U,) is parabolic. We observe that ¢(U,) and ¢(U,) have
no common fixed point. In fact, if #(U,) and ¢(U,) have a common fixed
point, then ¢(U,) and ¢(U,) are commutative. Hence U, and U, are com-
mutative, which contradicts the fact that loxodromic elements U, and U,

have no common fixed point. Therefore, we may assume that ¢(U,) and

#(U,) are parabolic and of the form ¢(U,) = ((]3 7;>, A0 and ¢(U,) = (g’ 3),

¢ # 0. Clearly we have trace ¢(U)"¢(U,) = a + Nxc + d, which shows
that for a sufficiently large integer N such that V, = ¢(U)"s(U,) is a
loxodromic element in 1.

Next we shall show that I” contains a transformation W which is not
elliptic and has no common fixed point with V.. It is of no loss of
generarity to assume

0
K:(“ _1>, la| > 1.
aQ

The fixed points of V, are 0 and «. We shall show the existence of a
loxodromic element U in G such that W = ¢(U) fixes neither 0 nor oo.
For the aim, suppose that for each loxodromic element U, ¢(u) fixes either
0 or «. By our assumption we can find loxodromic elements U, U,, U,
and U, in G such that their fixed points are different from each other
and such that ¢(U), ¢(U,), ¢(U;) and ¢(U,) fix the point oo, one of the
fixed points of V,. Since the centers U,”(«) and U} () (p =1, 2, 3, 4)
of isometric circles of UY and U,” tend to the repelling and attracting
fixed points of U,, respectively, as N— o, and since by Lemma 4 radii



280 H. YAMAMOTO

of the isometric circles of UY and of U,” tend to zero as N— oo, it is
easy to see that for a sufficiently large integer N, these eight isometric
circles of UY and U;”¥ (p =1, 2, 3, 4) are mutually disjoint and bound an
8-ply connected domain containing the point . Obviously <UY, U¥) and
(UY, UY> are Schottky subgroups of G and it is easily seen that one of
the fixed points of the loxodromic element UY U} U U;? is in the isometric
circle of UY and the other is in the isometric circle of UY. For the
loxodromic element Uf UM U;Y U™, the situation is quite similar. Hence
two loxodromic elements UXUF U U,¥ and UYXUY U, YU have no com-
mon fixed point and they are not commutative. Therefore ¢(U” Uy U™ U; )
and (U U U;” U;™) must not be commutative. On the other hand, since
s(UY) (p =1, 2, 3,4) fix the point «~, we can write as

a,

b, a, b,
Ny —
0 ar‘) and 4(UY) = <0 a“‘) .

2

s(UY) = (

It is easy to see that

$(UM)g(UNs(U ) (U ™)
1 —ab, — a0, + ala,b, + a,b,

B (0 1 ) '
Hence ¢(UXUY U U;Y) = ¢(UM)g(UM)g(U (U, ™) is parabolic and fixes
the point «. For the element ¢(U¥ UFU; ¥ U™), we have the same prop-
erty. Therefore, they are commutative, which is absurd. Thus there
exists a loxodromic element Ue€ G such that W = ¢(U)e " has no fixed
point common with V.

Put V,,, = W'V,W, ¢=1,2, .... Then obviously the set {V,}2, of
loxodromic elements is the desired.

LEMMA 7. In addition to the assumption in our theorem suppose that
o € AG) and ts not fized by any element of G. If I' is mot discrete,
then there exists a sequence {Vi,}i-, of loxodromic elements in I" such that
{ V)=, converges to the identity.

ProoF. Since " is not discrete, we can find a sequence {T}}z, in I”
which converges to the identity. If {T.}i, contains an infinite number
of loxodromic elements, then we have nothing to prove more. So we may
assume that {7T};, contains no loxodromic elements. There are two cases:
(i) the case when {T};L, contains infinitely many elliptic elements and (ii)
the case when {T}});2, contains at most a finite number of elliptic elements.

First we consider the case (i). By Lemma 6 there exist loxodromic
elements L, (p = 1,2, 3) which have no common fixed point. Hence Lemma
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3 implies that there exist a loxodromic element L in I” and a subsequence
{T,,};=1 of {T.}, such that L does not fix any fixed point 7, ( = 1, 2, ---).
We normalize T;; into the form
e(9;,) 0

0 e("ﬁi,‘)
where W; is in PSL(2, C), not necessary in I”, and e(6) = exp (271 —16)
and put

WﬂEw7u=< ), e(6,,) # *1,

a; b;
C; d_.,'
Then we can see that trace X; = 2 + 2b;c;(1 — cos 26,;) for

X; = W;T,,LT;;]L™*W;* and trace X; = 2 + 2bse;(a; + d;)*(1 — cos 20,,)

I/I’jLWj—l = ( ) , bjCj #=0.

for X, = W,;T,,L*T:;' L W, R

Since both {W;'X;W;};, and {W;'X; W,}7., converge to the identity,
it is sufficient to show that W;"X; W; or W;‘X,- W; is loxodromic for every
j. For the purpose we have only to prove that X; or Xj is loxodromiec
for every j. If trace L is neither real nor pure imaginary, then trace
L = trace W;LW;* = a; + d; is neither real nor pure imaginary, and at
least one of trace X; or trace X; is not real, because bici(1 — cos 2;;) # 0.
If trace L is pure imaginary, we see easily that trace L?is real. There-
fore as remainder we consider the case, where trace L is real. Then
W,LW;* is hyperbolic. If W,LW;* transforms the disk {z; |z | < o} onto
itself, then W,LW;* is of the form

a; b
7, b; # 0.
(P_lbj aj) o0

Hence trace X; =2+ 2|b;[*(1 — cos 20,;) > 2 and X; is loxodromic. If
for any o > 0 the disk {2; |z| < p} is not invariant under W;L W, then
two elements L and T, have no common invariant disk. Hence we may
assume that L makes invariant the upper half plane and is of the form

_(?2 B
i-f F) s

and that T,; does not make invariant the upper half plane and is of the
form

a;; b,
£~ (% ), a1,

g iz
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where at least one of a,;, b, ¢;; and d;; is not real and ¢;; # 0. Obviously
trace L"T;; is equal to 2"a;; + (27" + 2"~ + ... 4+ 27%*)ge¢,. + 27"d,; and
is not real for a sufficiently large integer M. In fact if trace L*T;; is
real for any integer M, then a,, ¢;; and d,; are clearly real, and b,, =
(@;;d;; — 1)/c;; is also real. This contradicts the assumption that at least
one of a,, b, ¢;; and d,; is not real. Further, if trace L”T;; is purely
imaginary for infinitely many integers M and for any j, then a,, ¢,; and
d;; must be pure imaginary, for any j, which contradicts the fact that
T;; tends to the identity as j — . Thus we have shown that I” contains
a loxodromic element L* = L"T,, whose trace is neither real nor pure
imaginary. Hence by Lemma 3 and Lemma 6 we see the existence of a
subsequence {T%};-, of {T;;};_, and a loxodromic element L** such that L**
does not fix any fixed point of an arbitrary T, and trace L** = trace L*.
Therefore, this case can be reduced to the previous case.

In the case (ii), we may assume that each T, is parabolic. By the
same way as in the case (i), we can find a loxodromic element L and a
subsequence {T};-, of {T\},, in such that L does not fix the fixed points
of any T;,. Since the sequence {T} ., converges to the identity, the
sequence {T,LT;;'L™'} also converges to the identity, so our final task is
to show that T, LT:;'L™ is loxodromic for each j. For the purpose, we

normalize T;. into

J

1 N
WjTijW;‘=(0 1) A # 0,

where W; is in PSL(2, C). It is easily seen that W(LT,L™)W;* is
parabolic and does not fix the point . Hence
a; B

Wi{(LT, L™YW;* =
(LLLTIW. (71' d;

) w=o

and, therefore, immediately we have
trace T; LT;;'L™ = trace W(T,,LT;)L™") W;*
=24 TN,

which shows that T, LT;;'L™" is not parabolic. If thesequence {T; LT 'L '};,
contains an infinitely many elliptic elements, our case can be reduced to
the case (i). If {T,,LT:'L™'};, contains at most a finite number of elliptic
elements, this sequence contains infinitely many loxodromic elements. Thus
our lemma is proved completely.

4. Now we can give the proof of our theorem.
First we note that we may restrict ourselves to the case where the
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set 2(G) contains the point « and any element of G does not fix co.
Assume that I” is not discrete. Then Lemma 7 implies the existence of
a sequence {V;}, in I such that every V, is loxodromic and {V}2,
converges to the identity. Put ¢7'(V;) = T;. Then for a sufficiently large
n, ¢,(T;) is loxodromic and hence T; is also loxodromic. By Lemma 5 we
can find a sequence of Schottky subgroups {{L, 4,>};-, of G such that A,
is some T, or is of the form T,T;* where ¢’ > 1.

First we deal with the second case, that is, the case where A4, is of
the form T,T;*. For each kit holds that lim,_,, ¢,(4,) = lim,_, ¢, (T, T7") =
V,Vat. Consequently, there exists a subsequence {n,};-, of {n};_, such that
lim,_., ¢,,(A) = td. On the other hand (L, A,) is a free and purely
loxodromic group. Since ¢, is a type preserving isomorphism of G onto
G(ny), {$n, (L), ¢,,(Ar)) is also a free and purely loxodromic group. More-
over, since (g, (L), $.,(A;)> is a subgroup of a discontinuous group G(n,),
{pn,(L), ¢,,(Ay)) is also a discontinuous group. By a theorem of Maskit
[4], {$n,(L), #.,(AL)> is a Schottky group, which contradicts Lemma 1 due
to Chuckrow.

In the remainder case where A4, is some T, we arrive at the contradic-
tion by the same reasoning as above. Thus we complete the proof of our
theorem.
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