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Introduction. In this paper we are concerned with stationary solu-
tions of a system of semilinear parabolic partial differential equations
arising in the biological pattern formation theory. A most fundamental
problem in morphogenesis is to explain how the initially almost homo-
geneous state of cells (or tissues) gains spatial inhomogeneity or spatial
patterns. In his pioneering paper [10], Turing considered this problem
by introducing the model governed by a system of (linear) ordinary dif-
ferential equations. Developing Turing's idea, Gierer and Meinhardt [4]
proposed a reaction-diffusion system of the following type:

(G-M)

= DΛ%Lβa +
ds dy2

d h ph

ds dy2

f o r s > 0 , 0<y<L

Here, Da, Dhf μ, v, c, c', p and p' are all positive constants and p0 is a non-
negative constant. The positive functions α(s, y) and h(s, y) represent
the concentrations of an activator and an inhibitor, respectively.

From a biological point of view, a natural boundary condition is the
zero flux condition, i.e.,

da/dy = dh/dy = 0 at both end points of the interval .

Note that the system (G-M) has a unique constant stationary solution
subject to this boundary condition.

Under suitably chosen values of the constants Da, Dh, , ρ0, numeri-
cal analyses show that the solutions of (G-M) corresponding to almost
constant initial values tend to the stationary solutions exhibiting spatial
wavy patterns. (This suggests that the constant solution is unstable.)
The place where the activator highly concentrates is regarded as the
position at which cell differentiation or division begins.

It is also predicted numerically that the wave length of the station-
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ary solutions remains almost constant when the spatial length L is
large; while the amplitude of the solutions becomes large when the ratio
DJDh is small enough (so-called "striking-patterns").

Recently, there have appeared some mathematical works related to
the Gierer and Meinhardt models. Granero, Porati and Zanacca [3] ap-
plied the bifurcation theory to (G-M) (taking the spatial length L as
the bifurcation parameter) and showed the explicit forms of small non-
homogeneous stationary solutions around the constant solution. On the
other hand, as for the striking-patterns, Mimura [8] considered a system
slightly different from (G-M), which is also proposed by Gierer and
Meinhardt [4]. He studied stationary solutions with large amplitude
with the aid of a singular perturbation technique. See also Mimura,
Nishiura, and Yamaguti [9].

The purpose of this paper is to prove the existence of wave-like
stationary solutions (G-M) in the vicinity of the constant solution and
to investigate their stability. The main tools are the bifurcation theorem
and the perturbation results on simple eigenvalues due to Crandall and
Rabinowitz [1 and 2]. We shall adopt the ratio DJDh as the bifurcation
parameter.

The outline of this paper is as follows: In Section 1 we give an
abstract formulation of (G-M). For convenience, in Section 2 we list
the notations which will be used frequently in the following sections.
The existence of wave-like stationary solutions is proved in Section 3
(Theorem 3.8); we also discuss there the relations between the number
of waves and the length of the spatial interval (Proposition 3.12). The
stability of the nontrivial solutions will be studied in Sections 4, 5 and
6. In Section 4 we reduce the stability problem to the investigation of
the signs of a polynomial PP(s) at some special points (Proposition 4.2);
and then in Section 5 we study PP{s) in detail. Lastly, in Section 6 we
give the stability criterion for the bifurcating solutions around the con-
stant solution (Theorems 6.1 and 6.2).

The author wishes to express his cordial gratitude to Professors T.
Kotake and N. Shimakura for their constant encouragement, valuable
suggestions and comments.

1. Formulation in L2 framework. In this section we give an ab-
stract formulation of the Gierer-Meinhardt system (G-M) under the zero
flux boundary condition and state some related fundamental facts without
proof (see, e.g., [6]).

To simplify the notations, we normalize the system (G-M) by the
change of independent variables and unknowns:



(ut = Duxx u/m + u/v + p ,
(1.2) for ί > 0 , 0 < x < L ,

b v v + u2
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8 = t\v , y = VTφx , a(s, y) = [cp/(c'(/)]u(t, x) ,

h(s, y) = [(cp)2/(c'p'v)]v(t, x) .

Then we obtain the equations for new variables:

[ut = Duxx — u/m + u2/v + p ,

}h — vχχ ~ v + ^ 2 t

where

(1.3) D = Da/Dk, m = v/μ, p = (c'p'po)/(cv) ,

The boundary condition is

(1.4) ux = vx = 0 at α> - 0 , L .

First, we rewrite (1.2), regarding the unknowns *(u, v) as a column
vector. Let

H= L2(0, L)xL2(0, L)

be the Hubert space with the inner product

(U19 U2)H = (u19 u2)L2{QfL) + (vlf v2)L2{0)L)

for C/i = \ul9 Vj), U2 = \u2, v2) e H. Furthermore, let

r<%? z=z [U = *(^, v); u, v e iϊ2(0, L) , du/dx = dv/dx = 0 at # = 0 , L} .

Here, i/2(0, L) denotes the usual Sobolev space of order 2 on the interval
(0, L). By the well-known imbedding theorem, if uγ and u2 belong to
ϋΓ2(0, L), the product ^x^2 also belongs to H2(0, L), and if moreover ut

and ^2 satisfy the zero flux boundary condition, uγu2 does likewise (see
(1.8) below).

Now let U = \u, v) 6 £ίf be a stationary solution of the system (1.2)
subject to (1.4). Next we divide the operations in (1.2) into the linear
part L(D, U) and the nonlinear part N[U;-] around U. Define a closed
linear operator L{D, U) by

(Dd2/dx2 - 1/m + 2u/v -(u/v)2\
(1.5)

with domain 3$f and set

(1.6a) N[U; U] = ^N^[O; U] ,
p=2

where

u2) for v —(1.6b) N n ϋ , U ] \
H(u2lv)(u/u - v/v)X-v/v)*-2, 0) for p > 2 .
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Then (1.2) becomes an evolution equation as in (1.9) below.
Now we remark two simple facts (1.7) and (1.8):

(1.7) The closed linear operator L(D, ZJ) has compact resolvents

(λ — L(D, ί/))"1 and generates the holomorphic semigroup etMDiU) on H.

Therefore, the spectrum of L(D, U) consists only of the eigenvalues.

Furnishing έ%f with the graph topology

(U, V)*r = (U, V)H + (L(D, U)U, L(D, U)V)H ,

we have

(1.8) The operator N[U: ] is an analytic mapping from a neighbor-
hood of the origin of 3$f into §ίf (i.e., the series ^PN

{p)[U; U] con-
verges in 3ff if \\V\\^ is sufficiently small).

Consider the evolution problem

(1.9) ^L = L(D, U)U + N[U; U] , £7(0) = Uoe
at

which is an interpretation of (1.2) in L2 framework. This problem can
be solved uniquely in C°([0, T]; Sίf) Π C\[0, T]; H) (the vector space of
all continuous functions of t e [0, T] with values in 3ff which have con-
tinuous derivative in H) for sufficiently small ||ίΛII^ by formulating it
as an integral equation.

We call a stationary solution fj stable if the following condition is
satisfied: For all ε > 0 there exists a δ > 0 such that if \\UQ\\^<3 then
the solution U(t) of (1.9) exists in the whole interval (0, oo) and satisfies
\\U(t)\\^<ε for all t > 0. If moreover U(t)-^0 in ^f as t-> oo, then
U is called asymptotically stable.

A stationary solution is said to be unstable if it is not stable.
We here recall a criterion for the stability (see [6, 7]).

(1.10) // all the eigenvalues of the operator L(D, U) have negative real
parts, then the stationary solution U is asymptotically stable.

(1.11) If L(D, U) has an eigenvalue with positive real part, then U is
unstable.

2. List of notations. For convenience' sake, we list here the nota-
tions which will be defined and used repeatedly in the following sections.

(3.1), (3.2) ΰ = m(l + p) = 2m/(l + μ) , v = ΰ2 , U = \ύ, v)

(3.5) <p3{x) =
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(3.7) μ = (1 — ,o)/(l + p) , p = (1 — μ)/(l + μ)

(3.12) g(/) = {μ/ - l)/[m/(/ + 1)]

(3.4) 4 - (TΓJ/L)2

(3.13)

(3.15)

(3.16)

(5.16) K(/) = |1 - V7/*/?!-1 with /* = (/+ ΐ)/(μ/- 1)

(3.19) L/i) = π[{(2/ + I)2 + 4μj'*}ι/2 - 2i' - l]1/2/vΊΓ

where i ' = i ( i + 1)

(3 2 ( » 4, - π\Vl

(3.29) fc(«) = [1 + K2 + {(1 + κ2)2

i Λ \ 1 7 / *\ I(3.28) hU) Λ[ί/(i + D] - UJ) f ../! 1VI f
W/O - 1)] for j >

(4.4) Pf{/) = 4(5 - 6ρ)/4 - (-47 + 93^ + 96μ)/3 - 9(7 - p)/2

+ 3(39 + 31(0)/+ 15(1 + p)

(5.1) \(p), X2(ρ): positive zeros of Pp(/) (\(p) ^ \(p))

(5.12) Q(/) = - 2 / 4 + 23/3 + 16/2 - 153/- 36 ,

ίi> ίŝ  positive zeros of Q(/) (ζ1 < | 2)

(numerically, | x = 2.6488 •••,& = 11.6100- •)

(5.13) r, = (fί - 2f, - l)/(f, + I)2 (i = 1, 2)

(numerically, r t = 0.0539- , r2 = 0.6953- )

(5.15) 0 < rx < 5/27 < 16/65 < r2 < 5/6 < 1

3. Existence of nonconstant stationary solutions. It is clear that
the system (1.2) under the boundary condition (1.4) has a unique constant
stationary solution

(3.1) U = ((M, V)

for all D > 0, where

(3.2) it = m(l + |θ) and v = ΰ2.

Our main concern here is the existence of nonconstant stationary
solutions around U (their stability will be discussed in the following
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sections). For this purpose, we shall apply the theory of "bifurcation
from simple eigenvalues" (see Theorem 3.6). We adopt D as the bifur-
cation parameter and keep the other constants m, p and L fixed.

Let U = U + U be a stationary solution, U being sufficiently small.
Then U satisfies the equation

(3.3) L(D)U + N[U] = 0,

where

L(D) = L(D, U) and N[ ] = N[U; ] .

If the operator L(D0) is invertible for some DQ, then the implicit
function theorem yields that (3.3) has no nontrivial solution near D = Do.
Hence we assume that L(D) satisfies the following condition:
(C) The operator L(D) has 0 as a simple eigenvalue, i.e., dim Ker(L(Z))) = 1,
and moreover all the other eigenvalues remain in the left half plane
Re λ < 0.

Note that the second part of (C) is necessary for nontrivial solutions
around Ό to be stable, since the spectrum of L(D, ϋ) is close to that
of L(D, U) when ϋ is in the vicinity of ϋ (see also (1.10) and (1.11)).
We must carefully define the multiplicity of the eigenvalues λ of L(D)
because L{D) is not symmetric. We call dim Ker(L(D) — λ) the multi-
plicity of λ; while dim|Jw=i Ker((L(JD) — X)n) is called the algebraic mul-
tiplicity of λ.

First, we translate (C) into some conditions on D, m, p and L. This
will be achieved in Lemma 3.5. Secondly, we prove the existence of
wave-like stationary solutions around Ό in Theorem 3.8, and then we
discuss the relations between the number of the waves of such solutions
and L in Proposition 3.12.

Let us begin with some preliminaries necessary for studying the
eigenvalues of L(D). Put

(3.4) /, - (πj/LY for j - 0, 1, 2, - . . ,

and

,9 „ , , Wh for j = 0 ,
(3.5) ΨΛX) = ,

i/2/L cos (πjx/L) for j = 1, 2, 3, . .

Then s3 and φ5 satisfy

Φ'l^-S&i, 9>i(0) - φ){L) = 0 ,

where ' stands for d/dx. Furthermore, the family {φs} forms a complete
orthonormal system of L2(0, L).
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The spectrum of L(D) is characterized by the next lemma.

LEMMA 3.1 (Eigenvalues of L(D)). (a) The spectrum of L(D) con-
sists of all the numbers X satisfying the equation

(3.6) λ2 + [(D + l)/ό + 1 - μjm\X + D/f + (D - μ/m)/s + 1/m = 0

for some j ^ 0, where

(3.7) μ = (1 - 0/(1 + 0 .

(b) Lei λ δe an eigenvalue of L(D). Then X satisfies (3.6) /or αί
most two j's, say n, n'\ moreover, the corresponding eigenspace Ker
(L(D) — X) is spanned by

(3.8) \φh [2β/(λ + 1 + //)]?>/) wife i = n, n'

( i ) dim Ker(L(Z>) - λ) = 1 , ΐ/ w = w' ,

(ii) dim Ker(L(Z?) - λ) = 2 , i/ n Φ n' .

PROOF. Consider the eigenvalue problem L(D)U = XU, i.e.,

(3.9a) (Dd2/dx2 + μ/m)^ - W^2 = ^ ,
(3.9b) 2ΰu + (d2/da;2 - ί)v = λv ,
under the zero flux boundary condition. Eliminating v, we get a single
equation for u:

(3.10) Dd'u/dx4 - [(l + λ)Z> + λ - μ/m]d2u/dx2 + [X2 + (l - μ/m)X+l/m]u = 0 .

The Fourier expansion of u with respect to φ/s yields that (3.10) pos-
sesses a nontrivial solution if and only if

(3.11) D/f + [(1 + λ)Z> + X - μjmVi + λ2 + (1 - μ/m)X + 1/m = 0

is satisfied for some j . Thus (3.6) holds.
Conversely, let X satisfy (3.6) for some j . Noting that (3.6) implies

X + 1 + /ά Φ 0, we set u — φ, and v = [2ΰ/(X + 1 + 4)]9>i Then it is
easy to see that \ut v) satisfies (3.10) and (3.9b), that is, (3.9a) and
(3.9b). Therefore X is an eigenvalues of L(D). Thus assertion (a) is
verified.

Regarding (3.11) as an equation for si9 we see that there are at
most two of //s satisfying (3.11). This is sufficient to prove assertion
(b). q.e.d.

Now we can translate (C) into a condition on D, m, p and L by a
study of equation (3.6) with X = 0. First put

(3.12) g(/) = (μ/ - l)/[m/(/ + 1)] .
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Then equation (3.6) with λ = 0 may be written simply as D = Djt

where we define

(3.13) Dj

For the existence of positive Dh we require 0 <̂  p < 1, that is,
0 < μ ^ 1. Let j ^ 1. Then the equation

(3.14) g(s)=D3

has two roots /— /ά and / = 4*, where

(3.15) 4 * = (1 + /,0/G^ - 1) .

Observe moreover that g(/) is negative if 0 < / < 1/μ, strictly in-

creasing in the interval (0, /) and strictly decreasing in (/, +oo), where

(3.16) /= (1 + VΓVμ)/μ.

(If we consider the mapping s\-* s* = (1 + s)/(μs — 1), we see easily
(/*)* = ^ #(/) = l/(m//*) = μ/{m(/+ /* + 1)} = #(/*) and that / i s the
unique positive fixed point of this mapping.)

We are now ready to state the first translation of (C).

LEMMA 3.2. The operator L(D) satisfies condition (C), if and only
if D, m, p and L satisfy the following (i) and (ii):

( i ) p e [0,1) and m > μ

(ii) There is only one natural number k attaining max {D5} and
D = Dk.

PROOF. Let us first note that, by Lemma 3.1, 0 is an eigenvalue
of L(D) if and only if D — D3 for some j. Let Dk be one of the values
of D at which L(D) satisfies (C). Note that both roots λ of the equa-
tion λ2 + pλ + q = 0, with p and q real, have negative real parts, if
and only if p > 0 and q > 0. This being applied to (3.6), condition (C)
implies the following two inequalities (with D = Dk):

(3.17) (Dh + 1)4 + 1 - μ/m > 0 for all j ,

(3.18) 2V/ + (Dk - μlmVi + 1/m > 0 , if j =£ fc .

Conversely, if (3.17) and (3.18) hold, then L{Dk) certainly satisfies (C).
Thus for the proof of this lemma, it is sufficient to show that (3.17)

and (3.18) are equivalent to (i) and (ii), respectively. Clearly, (3.17)
implies (i) (putting j = 0), and vice versa. Since the inequality in (3.18)
holds automatically for j = 0, (3.18) is equivalent to the following con-
dition:
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Dk > Dj , if j Φ 0 and j Φ k .

This is obviously equivalent to (ii). q.e.d.

The stability of the constant solution Ό can be investigated by the
use of (3.6) as in Lemma 3.2. Here we only state some results:

REMARK 3.3. In the case of p ^ 1, Ό is stable for all m > 0 and
D>0.

In the case of 0 <̂  p < 1, we have
(1) If m > μ and D > Dk, then Ό is stable;
(2) If m> μ and D < Dkf then ί? is unstable;
(3) If m < μ, then £7 is unstable for all D > 0.

Next, we wish to study condition (ii) of Lemma 3.2 from a slightly
different point of view. Let Dk = max {ZλJ. Then L(Z?fc) has λ = 0 as
an eigenvalue, the multiplicity of which is either one or two by Lemma
3.1. In applying the well-known theorem of Crandall and Rabinowitz,
the simplicity of the eigenvalue 0 is indispensable (see Theorem 3.6
below). Hence we exclude the case dim Ker (L(Dk)) = 2 from our consid-
eration. Thus we examine in what situation this case will take place.
For this purpose, we introduce an important function (see Proposition
3.12 below):

(3.19) Lp(j) = π[{(2? + I)2

where j' = j(j + 1). Moreover, put

(3.20) Λp = 7Γ/V7

(see (3.16)). Then we have the following lemma:

LEMMA 3.4. Assume that p e [0, 1). Let Dk = max {Dj} and n be
the integral part of the positive number L/Λp. Then dim Keτ(L(Dk)) = 2
holds if and only if L — Lp(ri).

PROOF. From Lemma 3.1 we see that dim Ker(L(Dfc)) = 2 holds if
and only if max {Dd} is attained by two j's.

Note that, by the definition of n, /„ is the largest among the //s

satisfying ss ^ Z Thus g(/s) < g{/n) for j < n, since g{/) is increasing in

the interval (0, /) . Similarly, we see that g(sn+1) > g(ss) for j > n + 1.

Therefore max {Dj} is attained by two j% if and only if #(/J = ff(/»+1).

However, if g(s) = g(/n) and /Φ/n, then s=sn*m Consequently, dim

Ker(L(Dk)) = 2 holds if and only if 4 + ι = <Λ It remains to show that

/n+1 = /n* is equivalent to L = Lp(n). This is verified by a simple com-

putation because /%+1 = [(w + l)/n]Vn. q.e.d.
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Now we can state the translation of (C) in the final style.

LEMMA 3.5. The operator L(D) satisfies condition (C), if and only
if D, m, p and L satisfy the following (i), (ii) and (iii):

( i ) p e [0, 1) and m > μ

(ϋ) LφLp(n) ,

where n denotes the integral part of the number L/Ap;

(iii) D = Dk = max {D5} .

PROOF. This lemma is obvious by Lemmas 3.2 and 3.3. q.e.d.

To obtain nontrivial solutions of (3.3), we shall employ the follow-
ing bifurcation theorem.

THEOREM 3.6 (Crandall-Rabinowitz [1, Theorem 2.4]). Let Lo and Lγ

be closed linear operators on H with DomCLO ID Dom(L0) = 3ff. Let M
be an analytic mapping from a neighborhood of the origin of Sίf into
Sίf with Λf(O) = Λf'(O) = 0, where j|f'(θ) denotes the Frechet derivative
of M at U = 0.

Suppose that the following (1) and (2) are satisfied:
(1) dim Ker(L0) = codim Range(L0) = 1 and Ker(L0) is spanned by

( 2 ) ^ I T o

Then the equation

(3.21) LQU + τLJJ + M(U) = 0, (τ,

has a one-parameter family of nontrivial solutions (τ(ε), Ϊ7(ε)) such that

r(0) = 0 , U(ε) = εU0+ V(ε) and V(ε) = O(ε2) .

Moreover, the functions ε H^ τ(ε) 6 Rι and ε i—> U(ε) 6 3ίf are analytic.
The solution set near τ = 0, U = 0 consists of the trivial solution (r, 0)
and bifurcating solution (r(e), Z7(e)).

REMARK 3.7. Although the analyticity result is not explicitly men-
tioned in [1], this follows at once from the regularity of the implicit
function theorem (see, for example, [6]).

Now we wish to apply Theorem 3.6 to our case with LQ = L(Dk),
M — N and



GIERER-MEINHARDT SYSTEM 231

Then our equation (3.3) takes the form of (3.21) with D = Dk + τ.
Moreover, let

(3.23) Uo = \φk9 [2ίe/(l + sh)\ph) .

By Lemma 3.5, Keτ(L(Dk)) is of dimension one and spanned by Z70,
if and only if m, p and L satisfy the following two conditions:

(H-l) p 6 [0, 1) and m > μ

(H-2) L Φ Lp(n), where n is the integral part of L/Λp .

Our first result is stated as follows:

THEOREM 3.8 (Existence). Let Dk = max {Dά}. Suppose that (H-l)
and (H-2) hold. Then there is a one-parameter family of nontrivial
stationary solutions (D(e), U(ε)) of (1.2) subject to the boundary condition
(1.4) for I ε| < ε0 such that

(D(e) = Dk + τ(ε) with τ(0) = 0,

(3.24) ]#(s) = δ + ε i/2/L cos (πkx/L) + O(ε2) ,]
[v(e) = v + e-[2ui/2/L/(l + 4)]cos(ττA;x/L) + O(ε2) .

Moreover, the functions ε h^ τ(ε) e f i ^ e π ί7(ε) = C/(ε) — £7e i ^ are
Ẑ /ίίc /or |ε| < ε0. The solution set of (3.3) consists of two curves (D, 0)
and (JD(S), Ϊ7(e)) m a neighborhood of the bifurcation point (Dk, 0).

PROOF. Set Lo = !#(/)*), M = N and define Lx by (3.22). As stated
above, by (H-l) and (H-2), Ker(L(Dk)) is of dimension one and spanned
by Uo.

To characterize Range(L(Z>A.)), we consider the adjoint operator
L(Dk)* of L(Dk), which is formally given by transposing the matrix
L(Dk). The eigenfunction U* of L(Dk)* corresponding to the eigenvalue
0 can be found by the same method as in Lemma 3.1 and is given by

(3.25) Uί = \φkt -[ύ\l + /k)Yφk) .

Then the Fredholm alternative implies that Range(L(jDfc)) is of codimen-

sion one and

(3.26) Range(L(£fc)) = {UeH;(U, US)H = 0} .

Hence the condition (1) of Theorem 3.6 is satisfied.
The condition (2) can be verified as follows: Using (3.22), (3.23)

and (3.25), we have

(3.27) ( A C / o , U*)H = (φ'k'f φ k ) L * = - 4 ^ 0 ,

whence, by (3.26), LJJ^ Range(L(Z)fc)). q.e.d.
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The number k is related to the shape of the bifurcating solutions.
In view of the leading terms of the nontrivial solutions (3.24), we see
that fc expresses the number of the waves of such solutions. Hence we
give the following definition.

DEFINITION 3.9. The natural number k uniquely determined by

(H-l), (H-2) and (iii) of Lemma 3.5 is called the mode of the bifurcating

solutions.

Now we discuss the relations between the mode k of U(ε) given in
Theorem 3.8 and the length L of the interval.

Let us start with a study of the location of 4. First we introduce
the following functions:

(3.28) U i ) = hlJKJ + 1 ) ] a n d h2(j) = j + ° ° * ° Γ 3 = l f

[h[3l(3 ~ 1)] for 3 > 1 ,
where

(3.29) h(tc) = [1 + κ2 + {(1 + fc2)2 + Aμ/c2}1/2]/(2μ) .

Then it is easily seen that h^j) is an increasing function of j and h2(j)

is a decreasing function of j. As i —> °°, ^(i) and hz(j) tend to the

common limit

Hence we have

(3.30) hάj) < s<hlj) for all j ^ 1 .

We also see that

(3.31) h1(j) = [πj/Lp(j)γ and h%(j) - [πj/Lp(j - I)]2 .

Now we can determine the location of 4 as follows:

LEMMA 3.10. Assume that (H-l) and (H-2) hold. Then maxίD,} is
attained by 4 satisfying

(3.32) KM < 4 < K(k) .

PROOF. Let us first observe that •/•* = κ2 holds if and only if
/ — h(κ). Hence we have for K Φ 1

(a) /<> /and s* < κ2/ hold if and only if /> h{κ~γ)\

(b) /> / and / * > κ2/ hold if and only if /< h{κ~x).

Now suppose that max {Dό} is attained by j = k. Then 4 satisfies

either (i) 4 ^ / ^ 4* < /k+1 or (ii) 4_x < 4* < / < 4. From (i) we have

4 > feiOfc), since 4+ 1 = [(fc + l)/fc]24. Thus, noting that fe2(fc) > £ we see
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that (i) implies (3.32). Similarly, we find that (ii) yields (3.32).
Conversely, if /k satisfies (3.32), then (i) or (ii) holds. Thus 4 at-

tains maxflλ,}. q.e.d.

The next lemma gives us an important information on Lp(j).

LEMMA 3.11. Let Lp(j) and Λp be defined by (3.19) and (3.20), re-
spectively. Then Lp(j) is strictly increasing in j, more precisely, Lp(j)
satisfies

(3.33) L p ( j - l ) < Λ p . j < L p ( j ) f o r a l l j ^ l .

PROOF. We have only to combine (3.30) with (3.31). q.e.d.

Using the following proposition, the mode k of bifurcating solutions
can be obtained as a function of p and L; conversely, we can also find
the bifurcating solutions with the preassigned mode k.

PROPOSITION 3.12 (Relations between k and L). (a) Let (H-l) and
(H-2) hold. Then the mode k of the bifurcating solutions U(e) given in
Theorem 3.8 can be specified as

ί n , if L< Lp{n) ,
( 3 ' 3 4 ) In + 1 , if L> Lp{n) ,

where n is the integral part of the number L/Λp.
(b) Assume that k is given beforehand. Let (H-l) hold. Then

there exist bifurcating solutions of mode k, if and only if L satisfies

(3.35) Lp(k - 1)< L < Lp{k) .

PROOF, (a) First, suppose that L < Lp{n). Then from (3.31) we
see that /n < h2(n). Then by Lemma 3.10 we have k — n. Next, sup-
pose that L > Lp(n). Then by the definition of n we see that L<(n + 1)ΛP.
Hence it follows from (3.33) that L < Lp(n + 1). Then the above argu-
ment yields that k = n + 1.

(b) From (3.31) we see that (3.35) is equivalent to (3.32). Thus by
Lemma 3.10 we obtain assertion (b). q.e.d.

REMARK 3.13. Note that the quantity L/k corresponds to the wave
length of the bifurcating solutions. From (3.33), Lp(j)/j tends to the
constant Λp as j —> + °°. This means that the wave length of the bifur-
cating solutions tends to Λp as L —> + oo.

4. Preliminaries for stability analysis (Calculations). In order to
study the stability of the bifurcating solutions, we apply the results
on perturbation of simple eigenvalues due to Crandall and Rabinowitz
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[2] to our case. In fact, using their results, we can show the following
stability criterion (for the proof, see Appendix).

PROPOSITION 4.1 (Stability criterion). Assume that (H-l) and (H-2)
are satisfied. Let (D(έ)9 U(ε)) be the bifurcating solutions given in
Theorem 3.8. Then if D(e) < Dk {i.e., τ(ε) < 0), then the corresponding
solution U(έ) is stable; and if D(ε) > Dk (i.e., τ(ε) > 0), then the corre-
sponding solution is unstable.

Now let us expand r(ε) and t/(ε) as the power series in ε (so-called
Poincare-Lindstedt series):

(4.1) U(e) = sU0 + ε2C7(2) + ε3[/(3) + . . ,

(4.2) r(e) = ετ(1) + εV2) + ε3τ(3) + . . . .

Then we can show the following expressions of τ(1) and τ(2), which are
the object of this section and will be crucial to our stability analysis.

PROPOSITION 4.2. Assume that (H-l) and (H-2) hold. Let r(e) =
εr{1) + ε2r(2M be the function given by Theorem 3.8. Then we have

τ ( 1 ) = 0 ,

τ ( 2 ) =(4.3) τ ( 2 ) = _ ^

AL(Dk - D2k)u\l + 4)4(1 + 44)4 '

where PP{/) is a polynomial in / with parameter p defined by

pp{/) = 4(5 - 6|O)/4 - (-47 + 93<o + 96μ)/* - 9(7 - p)s%

+ 3(39 + 31/oy + 15(1 + p) .

Since Dk — D2k and the other factors in the right hand side of (4.3)
are positive, we see that

sign τ(2) = -sign P/4)

Combining this observation with Proposition 4.1, we are led to the fol-
lowing assertion.

COROLLARY 4.3. The bifurcating solutions of mode k, U(e), are
stable if P/4) > 0; O(ε) are unstable if PP{/k) < 0.

Under the assumption

(H-3) P,(4) Φ 0 ,

the stability analysis of bifurcating solutions has been completely re-
duced to the investigation of the signs of Pj0(4). In the next section we
shall study the polynomial Pp(y) in greater detail and in Section 6 we
shall state the stability criterion in terms of p, L and k. (If P/4) = 0,
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then we need to compute τ(3), which is fairly tedious. We exclude this
case from our considerations.)

The remainder part of this section is devoted to the proof of Pro-
position 4.2. The next lemma is essential for computing the coefficients
U{n), τ{n).

LEMMA 4.4. Let F = '(Σi/jfi; Σ* QsΦs) eH be given. Then the
equation

(4.5) UPh)U = F and (U, U*)H = 0

has a unique solution U=KFer<%ff if and only if (F,U*)H = 0.

Furthermore, if we expand U = *(Σi ^ίPh Σ* VJΦJ)* then

_ ί[/i ~ ffil{ΰ?(l + 4)}]/d; for j Φk ,
U' ~ 1 Λ M { 2 - ΰ(X + 4)}] for j = k ,

Vj = (2δwy - βr, )/(l + 4) /or i > 0 ,

4- ^/m -

PROOF. By the Riesz-Schauder theory, (4.5) is solvable if and only
if FeΈLxnge(L(Dk))f i.e., (F, Uf)H = 0. The Fourier coefficients are ob-
tained by direct computations. q.e.d.

In what follows, the solution U of (4.5) is denoted by KF.

REMARK 4.5. For j Φ 0, it follows from the definition of Dk that

d, = s-siPi - Dk) < 0 if j Φ k .

Now we show the algorithm to determine the coefficients τ{n\ U{n).
Substituting (4.1) and (4.2) into the equation

L{Dk)U + τLtU + N[U] = 0 ,

we have the following system of equations:

(4.6)

L(Dk)U{2) + r^^l/o + iV(2)[C70] - 0 ,

L(Dk)Ui3) + r ^ l / o + r(1)J

DN{2)[UoW{2) + Ni3)[U0] = 0

where DN{2)[U0] denotes the Frechet derivative of iV(2)[ ] at Uo.
The first equation of (4.3) holds automatically. To obtain U{2), we

must impose the following condition in view of Lemma 4.4:
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whence we can determine τ(1) by (3.27) as follows:

(4.7) r<» = (tf

With this τ(1) we obtain

(4.8) tf(1)= -iTir

From the third equation of (4.6), we have

(4.9) r<2) = {τ^LJJ, + DNw[UoWw + Nw[U0]t

and

In the same way, we can determine τ{n) and U(n) successively and
uniquely.

PROOF OF PROPOSITION 4.2. We divide the computations into three
steps;
Step 1: Substitute

(4.10) N{2)[U0] = *([S(1 + 4)]- 2 ( l - Sk)*<pl, φ\)

together with (3.25) into (4.7). Then we have

(4.11) r(1) = —_2

 k ~~ — I φk(xfdx = 0 .

Step 2: Note that 2 cos
2
0 = 1 + cos 20, so that

(4.12) ψ\ = (l/V2L)-(V~2φ
0
 + φ

2k
) .

Substituting (4.10), (4.11) and (4.12) into (4.8) and then applying Lemma
4.4, we obtain

where

~~ o(l + 4)2} ,

i Γ i _ Γ i - 4 '
(4.14) •{ "" V 2Lu2d2k L 1 + Δk L l + 4-

= 2^ 2 ) + I/T/Ί; ,

= (2ΰu$ί + l/l/2L)/(l + 4fc)
Setp 3: Set

Uo = \uw, v{0)) and U{2) = \u{2),
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Then

DNm[UoWw = t((2/ΰt)'(ΰui<n - vw)(ΰum - vw), 2uwvm) ,

Nw[Uβ] = *(-(l/&)'(ΰum - vwYυw, 0) .

Substituting these representations together with (3.23), (3.25) and (4.13)
into (4.9), we get

τ<2) = _ - L _ [ ( { ( 4 - 2)tMt,«' - (4 - 1 W K
uVh(l + 4)

+ ({(4 - 2)ϋ<> - (4 - 1MI'}<P

-[(1 -

Use (4.12), (4.14) and /Λ = 44, then

(2) = , _ W W Q , (44 — 9)ύu$ , 5 + 264 — 2342 — 843Γ
ΓL%s(l + 4) L i/ L i/2L(44 + 1) 2L(1 + 4/0(1 + 4)2

_ J Γ 44 , 242(2 - 4)(44 - 9)
1 + 4)L Lΰdo(l + 4)2 Lΰd2h(l + 44)2(1 + 4) 2

5 + 264-234 2 -84 3 1
h44)(l + 4)2 -1'+ 2L(1

Observing that

ΰd^—— (1 + /θ) ,

j n - 3(1 + p) + 15(1 + p)4 - 12(1 - p)42

Λ Dk) (1 + 4) (1 + 44) '

we finally find (4.3). q.e.d.

5. Preliminaries for stability analysis (Studies of PP{s)). We have
assumed (H-l) and (H-2) in Section 3 for the existence of nontrivial solu-
tions ϋ(e) of mode k. Moreover, in Section 4 we have added (H-3) to
simplify our situation. Under these assumptions, the question of the
stability of U(ε) has been reduced to the positivity of P/0(4) (see Corol-
lary 4.3).

Now our task in this section is to examine whether this will really
take place or not. First, recall that 4 satisfies (3.32) of Lemma 3.10.
Next, as will be shown in Lemma 5.1 below, PP{/) has one or two posi-
tive zeros \(p) and λ2(p). Therefore, it is important to classify the
values of p and k to arrange the four quantities h^k), h2(k), \(p) and
\(p) in order of magnitude. This will be done in Lemma 5.3. Then we
can sort the values of p, k and 4 according to the signs of P ,̂(4) as in
Lemmas 5.4 and 5.5 below. (The conditions on p, k and 4 appearing in
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these lemmas are easily converted into those on p, k and L, which will
be given in the next section. Since k is determined by p and L, this
will suffice to establish our stability criterion for the bifurcating solu-
tions.)

In Lemma 5.6, we shall see in what situation (H-3) is violated.
First of all, we shall point out that the following five special values

of p between 0 and 1:

p = rlf 5/27 , 16/65 , r2 and 5/6

will be critical, where r1 and r2 will be defined in (5.13) below.
We begin with a study of positive zeros of PP(/). We first note

that

4 > Λi(l) ,

since hx(j) is increasing in j . The next lemma is a clue to our analysis.

LEMMA 5.1 (Positive zeros of Pp{/)). Let PP(s) be the polynomial
in / defined by (4.4). Then we have

(a) If pe [0, 5/6), then PP{/) has exactly two positive simple zeros

(5.1a) •= \(p) , \(p) (\(p) < \(p)) .

Moreover,

(a-i) If p 6 [0, 5/27] U [16/65, 5/6), then \{ρ) ̂  ^(1) < \(p), where the
equality holds if and only if p = 5/27 or 16/65.

(a-ii) If pe(5/27,16/65), then hJD < \(p) < \(p);
(b) // pe[5/6, 1), then PP(s) has exactly one positive simple zero

(5.1b) s=\(p),

which satisfies \(p) <

PROOF. Let us first estimate the number of positive zeros of Pp(s)
by the sign law of Descartes. Since the coefficient of /3 in PP{/) is
negative for p e [0,1), the signs of the coefficients are as follows:

+ - - + + for p e [0,5/6) ,

0 or - - - + + for p e [5/6,1) .

Hence, if p e [5/6, 1), then PP{/) has exactly one positive simple zero;
while, if p e [0, 5/6), there are three possibilities: two positive simple
zeros, one positive double zero or no positive zero.

Next, we examine the sign of the value PP{a), where

(5.2) a = ̂ (1) = (5 + i/25 + 16/0/(8/0 .
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Inverting this relation, we have

(5.3) p = {4a2 - 5α - l)/(4α2 + 5α + 1) .

Using this expression, we obtain

(5.4) P,(α)= -4(1 + α)α2(α - 2)(4α - 9)/(4α + 1) .

It is also seen from (5.2) that a is an increasing function of p; and
that

if p = 0, then α = (5 + l/iϊ)/8 ,

if |0 = 5/27, then α = 2, and

if p = 16/65, then a = 9/4 .

Thus, by (5.4), P,(α) < 0 if /O 6 [0, 5/27) U (16/65, 1). Consequently, the
corresponding assertions ((b) and part of (a-i)) are verified, because
P,(0) > 0.

We now pass to the case p e (5/27, 16/65). We have seen above that
PP(a) > 0. Let us evaluate Pp(y) at / = 9/4:

P,(9/4) = -3(65/0 - 16)(4611o - 115)/[64(1 + p)] .

This is negative, because 16/65 < 115/461. Hence, we see that

(5.5) a < \(p) < 9/4 < X2(p) for p e (5/27, 16/65) .

If p = 5/27, then X,(ρ) = 2 < X2(ρ) by (5.5) and the continuity of
\(p) in p. In the case of p = 16/65, λ ^ ) = 9/4 can not be a double
zero, since a direct computation shows that dPp(9/4)/dS< 0 at p = 16/65.

q.e.d.

From this lemma, we can immediately see that (i) P,(4) is positive
if and only if one of the following two conditions holds:

(5.6) p 6 [0, 5/6) and /k > X2(p) ,

(5.7) p e (5/27, 16/65) and 4 < \(p)

and (ii) P/4) is negative if and only if one of the following three con-
ditions holds:

(5.8) p 6 [0, 5/27] U [16/65, 5/6) and 4 < \(P) ,

(5.9) p G (5/27, 16/65) and \(p) < 4 < X2(p) ,

(5.10) p 6 [5/6,1).

Noting that hx(k) and h2{k) tend to /as k —> 00, we see that 4 tends
to /as &—> c>o. Therefore, if s<X2(p), then condition (5.6) is violated
for large k. This means that in this case there exist no stable bifur-
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eating solutions for large L. Contrarily, if s>X2(p), then condition
(5.6) always holds for sufficiently large k; hence, the bifurcating solu-
tions are always stable whenever L is large enough.

Motivated by these observations, we arrange / and X2(p) in order
of magnitude. This is achieved by investigating the value Pp(s): First,
inverting the relation

• = (1 +

we have

Using this expression, we find that

(5.11) PP(?) = ?

where

(5.12) Q(') = - 2 / 4 + 23/3 + 16/2 - 153/- 36 .

It is easily seen that Q{/) has exactly two positive simple zeros & and
& (£1 < £2)- Further, we set

(5.13) rt = (ξl ~ 2ξt - l)/(£, + I)2 for i = 1, 2 .

These quantities are approximately given by

£x = 2.6488-•• , ζ2 = 11.6100-•• ,
(5.14)v rx = 0.0539- , r2 = 0.6953- .

Thus we see that

(5.15) 0 < 7\ < 5/27 < 16/65 < r2 < 5/6 < 1 .

With the aid of these preliminaries, we can state as follows:

LEMMA 5.2. (a) If pe [0, rx) U (r2, 5/6), then /< \(ρ).
(b) If pe [rlf r2], then X2(p) ̂  /, where the equality is valid if and

only if p — rλ or r2.

PROOF. If Q{/) < 0 (i.e., 1 + τ/~2~ < / < & or / > £ 2 ) , then from
(5.11) we have Pp(s) < 0. This implies \(p) < /"< λa(/θ), which lead us
to assertion (a).

Next, consider the case Q{S) JΞ> 0, i.e., ζ1-£/<Lζι. First suppose
that \{ρ) ^ /ιx(l) < X2(ρ) holds. Then we have Pp(/) ^ 0 and /ιx(l) < /?
Therefore, / ^ X2(p) holds. Secondly, suppose fe^l) < \(p). In this case,
we see that p e (5/27,16/65) by Lemma 5.1; and that X,(p) < 9/4 by (5.5).
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On the other hand, we find that 2 > 3.34 for p e (5/27,16/65). Thus,

we have / > X2(p). q.e.d.

Now we wish to consider the four quantities \(p), \(p), ht(k) and
K{k).

Observe that h(ιt) = X if and only if K = τ/λ/λ*, where h(/c) is de-

fined by (3.29) and λ* = (λ + l)/(μX - 1). Thus we introduce the fol-

lowing function K{s) for /Φ /\

(5.16) K{s) = |1 - V7η/\-1 with •* = (•+ l)/(μs- 1) .

Note that K(s) > 1.
Then we can classify the possible cases as follows:

LEMMA 5.3. (a) If pe [0, r,) U (r2, 5/6),

\(|O) < K(k) < \(p) < hjjc) for k < K(X2(p))

\(P) < λi(Λ) < K(k) ̂  X2(p) for k ^ K(X2(p)) ,

where the equality holds if and only if k — K(X2(p)).
(b) If pe (r l f 5/27] U [16/65, r2), ifeen

\(p)^h1(k)<\(p)<h2(k) for k<K(X2(p)),

where the equality holds if and only if p — 5/27 or 16/65;

for k^

where the equality holds if and only if k — K(X2(p)).
(c) If p — rx or r 2 , then

\(P) < h(k) < \(fi) = 7 < hjjc) for k ^ l .

(d) If p e (5/27,16/65), then

K(k) < \(p) < X2(ρ) < h2(k) for k = l;

\(P) < \(P) < hM < h2(k) for k > 1 .

PROOF. Let us commence by proving (a). From Lemma 5.2, we
see that s\\(ρ) for pe[0, rx) U (r2, 5/6). Thus, h^k) < X2(ρ) for all k,
since h^k) < P. Moreover, by Lemma 5.1 (a-i), we have \(p) < h^ΐ).
Therefore, we find \(p) < h^k) for all k, because hjjk) is increasing in
k. A simple computation shows that X2(p) < h2(k) if and only if
k < K(X2(p)). Thus we obtain assertion (a).

Assertions (b) and (c) can be verified similarly.
Now let us pass to (d). By Lemma 5.1 (a-ii), we see that Λt(l) <

\(p) < X2(ρ). Since ht(2) ̂  h,(k) for k ^ 2, it is sufficient for the proof
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to show \(ρ) < Λi(2). For this purpose, we put β = hx(2), that is,

£ = (13 + τ/169 + lUμ)/(18μ) .

Then we have

p = (9/32 - 13/9 - 4)/(9/39 + 13/3 + 4)

and

PP(β) = 2βR(β)/[3(9β + 4)] ,

where

R(y)= - 5 4 / 4 + 291/3 + 102/2 - 1 1 1 1 / - 112 .

Using these expressions, the argument analogous to that in the proof
of Lemma 5.2 gives us that if p e (0.1847-••, 0.5228- ••), then Pp(β) > 0.
In view of 0.1847- < 5/27 and 16/65 < 0.5228- , we have \(p) < 9/4<
\(ρ) and 9/4 < β for p e (5/27,16/65). Therefore we see that X2(ρ) < β =
^(2). q.e.d.

We are now ready to classify the values of p, k and 4 according to
the signs of PP(4). We note that the following conditions stated in
Lemmas 5.4 and 5.5 are compatible with (3.32). Thus, by a suitable
choice of p and L, we can find the values of k and 4 satisfying (3.32)
and one of these conditions (recall that k and 4 are determined by p
and L).

LEMMA 5.4 (Positive case). The value Pj0(4) is positive, if and only
if p, k and 4 satisfy one of the following conditions'.

(5.17) p 6 [0, 5/6) , k < K(\(p)) and 4 > \(p)

(5.18) p e (n, r2) and k ^ K(X2(ρ))

(5.19) p 6 (5/27, 16/65) , k - 1 αwd 4 < \(p) .

LEMMA 5.5 (Negative case). The value P/4) is negative, if and
only if p, k and 4 satisfy one of the following conditions:

(5.20) p e [0, 5/27] U [16/65, 5/6) , k < K(X2(p)) and 4 < \(p)

(5.21) p e [0, rx) U (r2, 5/6) and k ^ K(\(p))

(5.22) ^ e (5/27, 16/65) , k - 1 αm£ λ ^ ) < 4 < λ2(p)

(5.23) p 6 [5/6, 1) .

LEMMA 5.6 (The case P/4) = 0). The value PP(sk) vanishes, if and
only if one of the following conditions is satisfied:

(5.24) p e [0, 5/6) and 4 = \(p)
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(5.25) p e (5/27, 16/65) , k = 1 and sk = \(p) .

REMARK 5.7. In conditions (5.17) and (5.20), if p = rx or r2 then
K(\(p)) is understood as + ^ . Thus in this case there are no restric-
tions on k.

PROOFS OF LEMMAS 5.4, 5.5 AND 5.6. These lemmas can be obtained
easily by combining (5.6), (5.7), (5.8), (5.9) and (5.10) with Lemma 5.3.

q.e.d.

6. Stability criterion for nonconstant bifurcating solutions. As-
sume that (H-l), (H-2) and (H-3) are satisfied. Then there exist the
bifurcating solutions O(ε) of mode k by Theorem 3.8.

Let Lp(j) be the sequence defined by (3.19) and K(s) be the func-
tion defined by (5.16). Moreover, let \(p) and X2(p) be the positive
zeros of the polynomial PP(/) defined by (4.4), rγ and r2 be the numbers
given by (5.13).

Note that p, k and L satisfy (3.34) and (3.35).
Then our stability criterion is as follows:

THEOREM 6.1 (Stable case). The k-mode bifurcating solutions U(ε)
are stable, if p, k and L satisfy one of the following conditions:

(5.1) p e [0, 5/6) , k < K(X2(p)) and Lp(k - 1)< L < πk/VxJβ)

(5.2) p e (r l f r2) and k ^ K(X2(p))

(5.3) p e (5/27, 16/65) , k = l and π/V\(ρ) <L< Lp(l) .

THEOREM 6.2 (Unstable case). The k-mode bifurcating solutions U(ε)
are unstable, if one of the following conditions is satisfied:

(US.l) p6 [0, 5/27]U[16/65, 5/6), k<K(X2(ρ)) and πkjV\{ρ) <L<Lp(k)

(US.2) p 6 [0, rx) U (r2, 5/6) and k ^ K(\(p))

(US.3) p G (5/27,16/65) , k = 1 and π/i/\(p) <L< π/V\(p)

(US.4) pe [5/6,1).

REMARK 6.3. In (S.I) and (US.l), if p = o\ or r2, then we have
K(X2(P)) = + °°. Thus in this case there are no restrictions on k.

PROOFS OF THEOREMS 6.1 AND 6.2. These theorems follow at once
from Lemmas 5.4 and 5.5, observing that

hSk) = [πk/Lp(k)f , h2(k) = [πk/Lp(k - I)]2 and 4 = (πk/L)2 . q.e.d.

REMARK 6.4. Note that Theorems 6.1 and 6.2 are always applicable
unless p and L satisfy one of the following conditions:
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(E.I)

(E.2)

(E.3)

and Le {Lp(j); j = 1, 2, 3, • •}

0 ^ p < 5/6 and L e {πj/i/\(ρ); j = 1, 2, 3, •}

5/27 < p < 16/65 and L = πjVxJp) .

Here, if (E.I) holds, then (H-2) is violated; while (H-3) is violated if
(E.2) or (E.3) holds. (See Lemma 5.6.)

REMARK 6.5. Recall that k is determined by p and L (see (3.34)).
Conversely, assume that the mode k is prescribed. Then we can find
stable bifurcating solutions of this mode fc, by a suitable choice of p
and L satisfying one of (S.I), (S.2) and (S.3).

Let us take up the case p = 0 as an example. Then we have

\(fi) = 2.7935- , πjλ/xjp) = 1.8796- ., K(\(p)) = 7.70-.. .

Therefore the situation is as illustrated in Figure. If L is located in
the shaded intervals, then U(ε) is stable; if L is located in the unshaded
intervals, then U(e) is unstable. It is also seen that ϋ(ε) are always
unstable if L > Lp(7), i.e., if ϋ(έ) are of mode greater than 7. (See
Figure).

L,(0) LP(1) LP(2) LP(3) LP(i) Lo(5) LP(6) 1,(7) LP{8) LP(9)

mode 1 mode 2 mode 3 mode 4

2π

vτ2

3rτ 4-

mode 5 mode 6 mode 7 mode 8 mode 9

6π 7-

CONCLUDING REMARKS. All of conditions (H-l), (H-2), (S.I), , (US.l),
• , (E.2) and (E.3) are restated in terms of the original constants Da, Dh,
•••, pQ and L which appear in (G-M) by the change of scales (1.1).

We note that, in spite of Theorem 6.2, there may exist stable
nonconstant stationary solutions for such values of p and L. For, our
results are local in the sense that we have considered only in a neigh-
borhood of the constant solution. It may happen that the unstable
branches gain their stability if we continue the bifurcating solution
curves with respect to the parameter ε. (Cf. Sections 3 and 4 of [2].)

Therefore, it would be of interest to study the global behavior of
the branches of nontrivial solutions.
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Appendix. Here we give the proof of Proposition 4.1.
Let c: Sίf —> ϋ be the natural imbedding. Then the bounded linear

map L(Dk): £ίf ->£Γ has 0 as an ^-simple eigenvalue, i.e.,
( i ) dim Kev(L(Dk)) = codim Range(L(2?A)) = 1;

moreover, if Ker(L(Dk)) = span {Ϊ7O}, then
(ii) cU0$Ra,nge(L(Dk)).

In fact, (i) is obvious and (ii) is verified as follows:

('ϋo, Uϊ)H = (φk, φk)L2 + (2δ(l + 4)^%, ~[ΰ\l + Λ)Y1<PU)L*

= 1 - 2/[β(l + 4)2]

- 1 - /*/[m(l + 4)] + 4A/(1 + 4) ,

which is positive by (H-l). Thus we see that (ii) holds by (3.26). (Note
that ^-simplicity means algebraic simplicity in this case.) Therefore, we
can apply the perturbation theorem due to Crandall and Rabinowitz to
our case.

First, Corollary 1.13 and Theorem 1.16 of [2] lead us to the follow-
ing lemma:

LEMMA A.I. There exist a δ > 0 and analytic functions X(τ)eR\
μ(ε) G R\ V{τ) e Sϊ?, W(e) e £ίf for \ε\ < δ and \τ\ < δ such that

( i ) (L(Dh) + τ L J V i τ ) = Mτ)cV(τ) for \ τ \ < δ 9

(ii) L(D(ε), U(ε))W(ε) = μ{ε)cW{ε) for \ε\<δ.

Moreover,

λ(0) = ^(0) = 0, F(0) =U0 = W(0) and V(τ) - UQ e J2T, W(ε) - Uo e JέΓ ,

where 3Γ is a complement of span {£70} in έ%f.
Furthermore, λ'(0) Φ 0 (see Lemma A.2 below); and near ε = 0, the

functions μ{ε) and — ετ'(ε)λ'(0) have the same zeros, and, whenever μ(ε)Φθ,
the same sign.

Note that μ(ε) is the eigenvalue of L(D(ε), U(ε)) with the largest
real part. Hence the bifurcating solution ϋ(e) is stable if μ(e) < 0 and
unstable if μ(ε) > 0.

LEMMA A.2. λ'(0) < 0 .

PROOF. Observe that λ = λ(τ) satisfies the equation

λ2 + [(Dk + τ + 1)4 + 1 - μ/m]X + (Dk + τ)42

+ (Dk + τ - μ\m)/k + 1/m = 0 ,

whence we have, by the definition of Dk,

λ2 + [(Dk + 1)4 + 1 - μ/m + τ/k]X + 4(4 + l)r = 0 .
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Differentiate the both sides with respect to τ and evaluate at τ = 0.
Then, from λ(0) = 0,

[(Dk + 1)4 + 1 - μ/m]X'(0) + 4(1 + 4) = 0 .

This proves Lemma A.2.

Therefore, μ(e) and εr'(ε) have the same sign. Since eτ'(e) and r(e)
have the same sign for sufficiently small |ε |, the proof of Proposition
4.1 is now completed.
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