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1. Introduction. Clearly, one would like to classify diffeomorphisms
of manifolds, and several people have tried to do so up to cobordism.
Recently Kreck [4] settled this in the oriented case. Since the cobordism
problem seems so hard, it is then reasonable to simplify further by
reducing to the corresponding algebraic cobordism problem. This algebraic
cobordism problem can be completely solved.

Briefly, let 9fcw(Iso) denote the cobordism group of n dimensional
Poincare algebras M together with an isomorphism /: Λf —• M, and let
5Bn denote the unoriented cobordism group. Then:

a) For n = 0, 3iw(Iso) is the Z% vector space with base given by
the mod 2 cohomology of sets with 2j + 1 points permuted cyclically (for
all j ^ 0).

b) For n odd, 9ϊn(Iso) is isomorphic to 3ln9 and
c) For n even, 9tH(Iso) ^ $ft% 0 A where A is a Z% vector space with

a basis in 1-1 correspondence with the irreducible polynomials

p(x) = x2j + arff-1 + + a2j^x + 1

over Z2 which are symmetric, i.e., satisfy a2ά_% — at.
Relating this back to diffeomorphisms, it will be shown that every

class in 9l#(Iso) comes from a diffeomorphism, using a proof by Charles
Giffen. Finally it is noted that algebraically trivial diffeomorphisms
need not be boundaries, as diffeomorphisms. For n ^ 3 there is a non-
trivial kernel.

The author is indebted to Professors Charles Giffen and Gordon
Keller for their assistance, and to the National Science Foundation for
financial support during this work.

2. Dimension zero. The preliminaries and precise definitions for
Poincare algebras and Lefschetz algebras were first given by Brown and
Peterson [1]. We will not insult the reader by repeating all of the
formalism. The reader may also find it convenient to look at [6] Section
5 and at [7].

All Poincare algebras considered here will be over the field Z2. An
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isomorphism of a Poincare or Lefschetz algebra will be a homomorphism
/ of algebras, commuting with the Steenrod algebra action and such that
if μ: Mn —> Z2 is the fundamental class homomorphism, then μof = μ.

Two Poincare algebras of dimension n with isomorphisms (AT, /) and
(Λf'f /') will be cobordant if there are Lefschetz algebras with isomorphism
(V,g) and {V',g') so that

(M, f) 0 3(7, g) = (M'9 /') 0 d(V, g') .

The resulting set of equivalence classes forms an abelian group under
direct sum, and will be denoted 3in(Iso).

It is not at all difficult to characterize when a Poincare algebra with
isomorphism is a boundary. One has

LEMMA 2.1. // (Λf, /) is a Poincare algebra with isomorphism, then
(M, f) is a boundary if and only if there is a homogeneous subalgebra
RaM closed under the action of the Steenrod algebra, containing the
characteristic classes of M, which is its own annihilator and is in-
variant under f.

PROOF. If R exists, let V = Rf g the restriction of /, V/dV = MjR
with the isomorphism induced by /. Then

1 I
V^M-> V/dV

may by given the structure of a Lefschetz algebra with isomorphism.
Conversely if (M, f) is the boundary of (V, g), the image of V in M has
the properties given for R. q.e.d.

NOTE. Here characteristic class refers to the Stiefel-Whitney classes
defined via the Steenrod algebra action: i.e., wt — Σ Sqi~jvό where μ(VjX) =
μ(Sqjx) for all x.

The zero dimensional case behaves much differently from the positive
dimensional cases, and is relatively simpler. Geometrically, it is easy
to compute the 0-dimensional bordism group of diffeomorphisms. Any
diffeomorphism of a zero dimensional manifold is a union of orbits
{x, fx, , fn~ιx] with fnx — x with a cyclic permutation. If n is even,
n = 2&, this bounds the union of fc-intervals joining f*x to fί+kx with the
diffeomorphism g mapping the interval joining f*x to fί+kx linearly to
that joining fi+1x and fi+k+1x. Clearly two copies of any orbit bounds.
Thus any diffeomorphism of a zero dimensional manifold is bordant to a
union of cycles with distinct odd lengths. If such an action (Af, /) is
a boundary of some (V, g), then 7 is a union of intervals. If / joins
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x and y and fnx = x, then fny = y, and thus each orbit separately must
bound, which is impossible since they have odd numbers of points. This
proves

PROPOSITION 2.1. The zero dimensional cobordism group of diffeo-
morphisms is the Z2 vector space with base the actions {x, fx, , fn~ιx),
fnx — x, with n odd.

Now turning to the algebraic case, let M be a zero dimensional
Poincare algebra with isomorphism /. Since x = Sq°x = x2 (Sq° = 1 and
Sq*x = x2 if dim x = i), every element is idempotent. One says e ^ / if
e = ef, and then M has a base elf , en consisting of the minimal
idempotents, with 1 = ex + + en. Since μ{et β, ) = μ(0) = 0 for j" =£ i,
MO = μ(e* et) must be 1, and μ is determined.

The isomorphism / then acts by permutation of the minimal idem-
potents, which will form cycles, as in the geometric case. In fact, (M, f)
is the cohomology of a diffeomorphism on a 0-dimensional manifold.

If R c M is a subalgebra satisfying the conditions of the lemma, so
that {M, f) bounds, then every reR has the form eH + + eHp i.e., is
a sum of an even number of minimal idempotents. R also has a base
consisting of minimal idempotents, which are then disjoint sums of an
even number of e's. Since R is its own annihilator, dim R = (1/2) dim M,
and the base of R consists of terms et + es. Clearly et and eά must belong
to cycles of the same length in the action of / on R, which gives

PROPOSITION 2.2. 9?.0(Iso) is isomorphic to the zero dimensional
cobordism group of diffeomorphisms.

3. Positive dimensions.

LEMMA 3.1. If f is an isomorphism of the Poincare algebra M,
then f is the identity on the characteristic classes of M.

PROOF. For any xeM, x = f(y) for some y, and μ(f(vι)x) =
μ(fMf(y)) = μf(vty) = μ(vιV) = μiStfy) = μflβq'y) = μ{Sqif{y)) = μiSq'x) -
μ(vτx), so f(vt) = v%. Since / commutes with Steenrod operations and
algebra operations, the result follows. q.e.d.

PROPOSITION 3.1. For n odd, (M, /) bounds if and only if all the
Stiefel-Whitney numbers of M are zero] i.e., 9^(Iso) ^ 3ln.

PROOF. If (Λf, /) bounds, clearly M does, and the Stiefel-Whitney
numbers are zero. If the Stiefel-Whitney numbers of M are zero, let
Ri c M* be the set of characteristic classes of M for i < dim Af/2 and let
R* c M* be the annihilator of R71'* if i > dim Jlf/2, dim M = n. This R
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satisfies the conditions of Lemma 2.1. q.e.d.

PROPOSITION 3.2. For n = 2fc > 0, (M, /) bounds if and only if all
the Stiefel- Whitney numbers of M are zero and there is an f invariant
subspace B c Mk containing the characteristic classes which is its own
annihilator.

PROOF. If (M, /) bounds, then M bounds and B = Rk suffices. Con-
versely, let Rι be the characteristic classes for i < k, B for i — k, and
the annihilator of the characteristic classes if i > k. q.e.d.

In order to determine when such a subspace exists, one may apply
the theory of canonical forms. Let M be an -^-dimensional Poincare
algebra with isomorphism / where n = 2k > 0. Then /: Mk —> Mk is an
isomorphism preserving the non-singular bilinear form (x, y) = μ(xy) i.e.,
(Mfy) = (x, i/>.

For each prime polynomial p e Z2[x], the subspace Fp of Mk consisting
of all x such that p(f)r(x) = 0 for some r is an / invariant subspace.

If p(x) — xm + α^ 1 " 1 + + αm-i# + 1 is a prime, so is p\x) = xm +
αm_1ίc

m~1 + + a^x + 1. If q is another prime not equal to p\ with
xe Vp and y e Vq and p(f)r(x) = 0 then

o = <*>(/)"(*), »> = <«, p(ΓΎ(y)> = <χ, /-V(/) r(»)>
and since g ^ p', f~mrp\f)r is an isomorphism of Fg onto itself. Thus,
for q Φ p', Vq annihilates Vp, and in particular, if p Φ p', the spaces
Vp and Vp' are dually paired under the form, each being self-annihilating.

If a subspace B exists, then B similarly decomposes and is the
direct sum of its subspaces B Π Vp; in particular B exists if and only
if for each prime p which is symmetric (i.e., p = p') Vp contains an
invariant subspace which is its own annihilator, with the additional
proviso that if p(x) = x + 1, the subspace must also contain the characte-
ristic classes.

CLAIM. If all Stiefel-Whitney numbers of M are zero, then for
p(x) = x + 1, Vp contains an invariant subspace which is its own
annihilator and which contains the characteristic classes.

PROOF. Choose a maximal subspace of Vp, W, which is invariant,
is self-annihilating, and contains the characteristic classes (such spaces
exist for the characteristic classes have this list of properties). Let WL

be the annihilator of W. Then W1 is / invariant, so that Wλ/W has
an isomorphism / induced by /, and an invariant non-singular form
induced by <,>, denoted [,]. Maximality of W implies that Wλ/W has
no invariant self-annihilating subspace. If W1/ W Φ 0, there is a w e W
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for which [w] Φ 0, where [w] denotes the class in W1/W, and for which
f([w]) = [w], for / belongs to p(x) = α + 1 type. Then [[w]f [w]] =
(w, w) = μ(w2) = μ(Sqkw) = μ(vkw) = (vk, w) = 0 for vke W and w e W1.
The span of [w] is then an invariant self-annihilating subspace. Thus
Wλ/W' = 0, and W is its own annihilator. q.e.d.

Now consider a symmetric prime p(x) Φ x + 1. Then p(x) must have
even degree, so

p{x) = x2j + aγx
25~ι + + α 2 i _^ + 1

with α2i_i — di and a, = 1. Using the rational canonical form /: Vp —> Vp
f may be expressed by a matrix with 2j x 2j blocks down the diagonal.
Thus the degree of p divides the dimension of Vp.

CLAIM. For p(x) Φ x + 1 symmetric, Vp contains an invariant
subspace which is its own annihilator if and only if (dim Vp)/(άeg p)
is even.

The proof of this requires a number of steps. If Vp has an invariant
subspace P which is its own annihilator, then (dim Vp)/(deg p) is twice
(dimP)/(degp), so the condition is necessary.

Before looking at the other implication, note that for x e Vp,
(x, x) = μ(χ2) = μ(Sqkx) = μ{vkx) = (vk, x) = 0 for vk is in the subspace
for x + 1 and so annihilates Vp.

Now suppose (dim Fp)/(deg p) is even, and let If be a maximal
invariant self-annihilating subspace of Vp. If W1 is the annihilator of
W, then W1 is / invariant, so Wλ/W inherits an isomorphism and a
non-singular invariant bilinear form which is even ((x, x) — 0). Further,
(dim Wλ/W)/(άegp) is even, for dim W1/W = dim Vp - 2 dim W, and
Wλ/W has no invariant self-annihilating subspace other than {0}.

Since Wλ/W is associated to p, assuming it is non-zero, there is an
x Φ 0 with p(f)(x) — 0, and the span T of {x, fx, , f2j~ιx] is an invariant
subspace of WLjW, having no proper invariant subspaces. Now
{ye T\(y, z) = 0 for any zeT) = S is an invariant subspace of T and
cannot be all of T since Wλ/W has no non-trivial self-annihilating
invariant subspaces. Thus, S - {0}, and the restriction of the form to
T is non-singular. Thus WL\W decomposes into the direct sum of T
and its annihilator, each invariant under / with the form non-singular.

Proceeding inductively, Wλ/W decomposes as the orthogonal direct
sum of an even number of subspaces of dimension (deg p) invariant under
/ and with invariant non-singular even form. Thus, one wishes to
analyze such a space T.
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To begin, T is an irreducible Z2 representation space for Z, so a
module over the commutative ring Z2[Z] and has the property that if
x Φ 0 is an element of T, then (Z2[Z])x = T. For any x Φ 0, Ix =
{XeZ2[Z]\Xx = 0} is a two sided ideal in Z2[Z] and Z2[Z]/Ix is a field.
(Note. If μ <£ Ix, μx Φ 0 so (Z2[Z])μx = T and there is a λ 6 Z2[Z] with
λμ# = x.) Further Ix is independent of x. One may then identify T
with the field K = (Z2[Z])/I. This is a finite extension of the field ^ 2 of
dimension 2j over Z2, and is the Galois field with 22y elements. In parti-
cular, K has a non-singular symmetric bilinear form given by φ(u, v) =
trace (uv), the trace over Z2 of the linear map given by multiplication
by uv. Writing Z as the cyclic group generated by /, the action of /
on T is identifiable with multiplication by Xf on K, where Xf is the
class of / in Z2[Z] mod I.

Now define an automorphism σ: Z2[Z]->Z2[Z] by σ(Σarf
r) = Σ«r/~ r ,

so that the Z2[Z] module structure on the dual of T is given by (Xφ)(x) =
φ(σ(X)x) for φeΐlom(T, Z2). If ψ: T-^ T* is an isomorphism of Z2[Z]
modules, then for v, vr e T, Xe Z2[Z]9 one has

ψ(Xv)(v') = {Xf(v)}(v') - ψ(v)(σ(X)v') ,

so if λ e I, ψ(v)(σ(X)v') = 0 for all v so σ(λ)v' = 0 and hence σ(X) e /, while
if σ(X) G/, ^(λv)(vθ = 0 for all v' so λv = 0 and λ e L Thus if T ^ Γ*,
<j(j) =r /, and σ induces an automorphism σ: K-> K. (Note. Because p is
a symmetric prime, the dual of T has minimal polynomial p' = p and
hence is isomorphic to T as ^2[^] modules; thus σ(I) = I.)

CLAIM. The form θ(u, v) = trace (u (τ(v)) is a non-singular sym-
metric bilinear form on K and is invariant under multiplication by
Xf. Further, the form is even.

PROOF. Θ(V, U) = trace (vσ(u)) — trace (σ(uσ(v))) = trace (uσ(v)) = θ(u, v)
and

θ(Xfu, Xfv) — trace (Xfu σ(v) Xj1) = trace ( M ( I )) = β(w, v) ,

while {u | θ(u, v) = 0 for all v} is a 2 invariant subspace of Γ and is
proper since trace (uv) is non-singular, hence is the zero subspace. Finally,
1, Xf, ...iX2/-1 is a base for K over ^ 2 and Θ(X},X}) = trace (λ^λj*) =
trace (1) = 2i = 0, so the form is even. q.e.d.

Now let <,> be any non-singular / invariant even form on T. This
may be considered as a Z2[Z] isomorphism T—> T*, while θ also gives
such an isomorphism. The composite of one isomorphism with the inverse
of the other is a Z2[Z] isomorphism from K to itself, hence given by
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multiplication by an element of K. Thus, on K the form <,> is given
by (u, v) — trace (ζuσ(v)) for some ζ e K, ξ Φ 0. This form is clearly
non-singular and / invariant. Now (v, u)= trace (ζvσ(u)) = trace (σ(ξ)uσ(y)),
so that (v, u) = (u, v) implies trace ((£ + 0 (f))w(ΐ;)) = 0 for all u, v, and
by non-singularity of the trace form, ξ = <τ(f).

Now σ is an automorphism of K fixing Z2, σ(/°) = /°, and σ is an
involution. Further σ(Xf) = Xj1 and K — {0} consists of 22j — Γst roots
of unity so λ71^λ/, and thus σ is non-trivial. The Galois group of K over
Z2 is cyclic of order 2j and is generated by the automorphism a —> a2.
Thus σ is the unique element of order 2 in the Galois group, and is given
by σ(u) = u23. Now K — 0 is a cyclic group of order 22j — 1 and
φ: K — 0 —> K — 0: u —> %cr(w) = ^2 J + 1 is a homomorphism with kernel the
2j + Γst roots of unity. Thus the image of φ contains at least 2j — 1
elements, each invariant under σ; i.e., σ(uσ(u)) = uσ(u). The fixed field
of σ is the Galois field on 2j elements, and each element in this field
has the form uσ{u) for some u. Since σ(ξ) = ξ, one then has (u, v) =
trace (Xσ(X)uσ(v)) = trace (ku σ(Xv)).

Thus, replacing xe T by the point λ"1^ for some λ 6 K makes the
form <,> equivalent to the trace form θ. In particular WL/W consists
of an even number of summands of the same form. Since Wλ/W can
have no invariant self-annihilating subspaces, one must have zero copies
and Wλ/W = 0, completing the proof of our claim.

PROPOSITION 3.3. For n = 2k > 0, 9fc»(Iso) ^ 9ΐw © A where A is a
Z2 vector space with a basis in 1-1 correspondence with the irreducible
symmetric polynomials of even degree.

PROOF. Send (M, f) to the bordism class of M and the numbers
(dim Vp)/(άeg p) for p irreducible symmetric of even degree. This is
clearly a homomorphism, and by the above discussion is monic. To see
that it is epic, (AT, identity) clearly goes to the class of M in Sft*. To
get a class with all invariants other than (dim Vp)/άeg p zero, one may
form a Poincare algebra of dimension n with

M°~Mn= Z2

Mk = Z2 vector space of dimension (deg p)

M% = 0 otherwise

with / the identity on M° and Mn and having minimal polynomial p on
Mk. The multiplicative structure is given by making the unit a base
for M° and by x y Φ 0 for x,yeMk if and only if (x, y) Φ 0 where
(x, y) is an /-invariant, symmetric, even non-singular form on Mk. That
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such forms exist was discussed above using the symmetry of p. q.e.d.

4. Remarks. The first obvious question is whether there are any
symmetric irreducible polynomials, and in fact there are such polynomials
of degree 2j for each j . One has

PROPOSITION 4.1. The number of irreducible symmetric polynomials
of degree 2j is

the sum being over all a dividing 2j + 1 and not dividing 2b — 1 for
any b properly dividing 2j, where φ(a) is Euler's φ function.

PROOF. In the Galois field of order 22% every non-zero element is a
22j — Γst root of unity and a primitive α'th root for some a dividing
22j — 1. If a does not divide 2b — 1 for any b properly dividing 2i, then
primitive α'th roots do not lie in a proper subfield. For any such primi-
tive α'th root α, the Golois group acts freely and the smallest degree
polynomial satisfied by a is

(x - a)(x - a2) - (x - a225'1) = p{x)

which is prime of degree 2j. In order that p be symmetric, it is
necessary and sufficient that a'1 also be a root of p, and as noted in Section
3, or1 = σ{a) — a23. Thus it is precisely when a divides 2j + 1 that p(x)
is symmetric. The number of symmetric primes is then the number of
orbits of the Galois group action on the set of primitive α'th roots of
unity with a as given. q.e.d.

ACKNOWLEDGMENT. This result was obtained during a discussion
with G. Keller, and considerable thanks are due him. C. Giffen independ-
ently obtained the result.

For convenience, the examples of least degree are

deg 2: x2 + x + 1

deg 4: xA + x* + x2 + x + 1

deg 6: x* + a?8 + 1

deg 8: x8 + x7 + xβ + x4 + x2 + x + 1 and x* + xδ + x4 + x* + 1 .

Next, one might ask about the multiplicative structure in ΪΪ^Iso)
induced by the tensor product of Poincare algebras, corresponding to the
product of manifolds.

The product in ϋRo(Iso) is relatively simple, for a product of a cycle
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of length 2n + 1 with one of length 2m + 1 consists of orbits with length
the least common multiple of 2n + 1 and 2m + 1 (with gcd (2n + 1, 2m + 1)
orbits).

The product of dimension zero classes with odd dimensional classes
shows that there are many divisors of zero, since 9ϊ2i+1(Iso) is finite
dimensional.

The product of a zero dimensional class with anything of positive
dimension can be zero. For example Z7 U pt (a 7 cycle and a point)
annihilates all positive dimensional classes for H*{ZΊ U pt; Z2) contains an
invariant subspace which is its own annihilator. (Note. The subspace
is not a subalgebra and hence Z7 U pt does not bound.) This is very
intimately related to some bad number theoretic questions and is the
fact that x7 - 1/x - 1 is the product (x* + x2 + l)(x* + x + 1).

It is clear then that the multiplicative structure of 5l*(Iso) is very
ugly.

One might then consider the relationship between the cobordism of
diffeomorphisms and Sft* (Iso).

PROPOSITION 4.2 (C. Giffen). Every class in Sβ^Iso) can be realized
as the cohomology of a manifold with diffeomorphism.

PROOF. This has been observed for SB Îso) and identity maps give
the 9Ϊ* terms. Now let p(x) = x2j + + 1 be a symmetric prime.
Then p(x) is the mod 2 reduction of an integral polynomial q(x) = xj +
Σf=i etx

j-\l - x)2τ with e5 = 1 or 0. By Burde [2], q(x) is the Alexander
polynomial of a Neuwirth knot K c S\ The knot complement then fibers
over a circle and is of the form V x R/(v, t) ~ (f(v), t + 1) where V is
a compact 2 manifold with boundary a circle and /: V —> V is a diffeo-
morphism which is the identy on dV. By Milnor [5], the Alexander
polynomial of the knot mod 2, i.e., p(x), is any generator of the ideal
order in H^VxR; Z2) and is the characteristic polynomial of the covering
transformation on H^V x R; Z2). Thus letting M be the closed 2 mani-
fold obtained from V by attaching D2 along the boundary, with the
diffeomorphism given by / on V and by the identity on D2, the induced
transformation on H^M; Z2) has characteristic polynomial p, and since
p is symmetric the characteristic polynomial is the same in cohomology.
This diffeomorphism has (dim Vp)/(deg p) = 1 and all other invariants
vanish.

To form examples of dimension 2n, n > 1, consider the product
RP(2n — 2) x My with the product of the identity and the above diffeo-
morphism. This bounds since M does, and the middle dimensional re-
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presentation involves only x + 1 and p, with (dim Vp)/(άeg p) = 1. q.e.d.

To see that there are diffeomorphisms which are trivial algebraically
but which do not bound as diffeomorphisms, one notes that if (ikf, /) U
(N, g) = 3(F, h) then R x Mj(s, m) ~ (β + l,/(m))UΛxiSΓ/(*, Λ) ~ (β + 1, flr(n))
is the boundary of R x F/(s, v) ~ (s + 1, Λ(v)). In fact, two diίfeomor-
phisms are cobordant if and only if the mapping tori are cobordant as
ίibrings over S1. Now consider CP(2) with the identity and with con-
jugation. These are identical algebraically but the mapping tori are
S1 x CP(2), which bounds, and the Dold manifold P(l, 2), which does not
bound.

There are many such examples, for any involution is algebraically
equivalent to the identity map. Conner and Floyd [3] produced many
examples with non-bounding mapping tori using involutions on manifolds
of dimension 3 or more, and hence for n ^ 3 there are non-bounding
diffeomorphisms representing zero in 9

5. Addendum. There are many obvious questions which arise in
studying diffeomorphisms. The object of this addendum is to describe a
beautiful diffeomorphism, and to draw some observations from it. The
specific results were worked out in discussion with Charles Giffen, to
whom thanks are due.

One begins with a solid torus with three holes H i.e., D3 U 3 copies
of D1 x D2 attached along the copies of S° x D2

FIGURE 1

First one rotates through 120° to obtain
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FIGURE 2

and then moves the handle a to obtain

FIGURE 3

where the dotted lines indicate the path followed by the copy of D2 by
which the handle is attached. One then thickens the area between two
handles a and c to obtain
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FIGURE 4

and continuing to thicken

FIGURE 5

which is H again.
The composite of these maps gives a diffeomorphism from H to itself,

sending boundary to boundary. The effect in mod 2 homology, given by
H0(H) = Z2, H,{H) = Z2@Z2®> Z2, HXH) = 0 if i > 1 sends the cycle
represented by the handle b to that of c, of c to α, and of a to something
wrapping around both a and 6 once. This is the identity of dimension
0 homology, and in dimension 1 is represented by the matrix (mod 2).
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with characteristic polynomial x3 + x2 + 1. In cohomology the polynomial
is x3 + x + 1, given by the dual.

In particular, the boundary is a diffeomorphism of the connected sum
of 3 copies of S^xS1 with a 2 sphere. The mod 2 cohomology is Z2 in
dimensions 0 and 2, 6 copies of Z2 in dimension 1 and zero otherwise, and
the diffeomorphism has characteristic polynomial (x3 + x2 + l)(x3 + x +1) =
(x7 - l)/(x — 1) in dimension 1.

Similar constructions may be made with more handles, and one may
form the product with Dm. This shows many facts, or curiosities.

OBSERVATION 1. Up to cobordism the subspaces of mod 2 cohomology
with minimal polynomial p(x) with p a non-symmetric prime carry no
information.

OBSERVATION 2. One of the most obvious cobordism invariants is
the Euler characteristic, and its diffeomorphism analogue is the Lefschetz
number. The Lefschetz number is non-zero for this bounding diffeomor-
phism, and hence is not a cobordism invariant for diffeomorphisms. The
problem arises from the fact that the trace of a matrix and its inverse
are not the same.
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