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0. Introduction. The purpose of this paper is to study bifurcation
of periodic orbits from the equilibrium for differential equation with
time delays. One of the most important results for such problems is
the Hopf bifurcation theorem. (See, for example, Chaffee [2], Hale [6],
Chow and Mallet-Paret [4].) We are interested in similar problems in
the case that there are time periodic perturbations. Such problems have
been discussed in Perello [9], Hale [8, Chapter 9], Ashkenazi [1]. Similar
problems have been encountered in the study of epidemic models [11].
Numerical studies indicate that instability may occur even if time
periodic perturbation is small. On the other hand, if there are only
autonomous perturbations, then a stable periodic solution will occur.
We will give a partial answer to these phenomena by showing how the
small parameter in Hopf's bifurcation theorem interacts with the periodic
perturbation. Our main result (Theorem 4.1) shows how one can
determine the regions in which one of the parameters is more dominant.
We do not give a stability analysis for the periodic orbits bifurcating
from the equilibrium.

Our approach to the above is in the spirit of [3]. In fact, Hale [6]
called this the restricted unfolding approach. Here, we begin with a
specific parametrized family of bifurcation equations, (a two parameter
family of equations in this paper). Even though it may be possible to
use theorems such as Malgrange-Weierstrass Transs preparation theorem
to reduce the equations to a normal form, this may not be the best way
for the problem. In our case, we have a two-parameter family of
equations on Rd (Euclidean ώ-dimensional space). The normal form may
envolve a large number of parameters which may be difficult to be
identified with the original parameters. Thus, we use techniques such
as scaling and the implicit function theorem to obtain quite precise
information about the problem. The disadvantage in this approach
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(restricted unfolding) is that there is no general approach.
In order to use such techniques, we will assume that the bifurcation

equation satisfies certain generic or typical conditions. It will be clear
that these conditions will be satisfied generically in the sense of Sard's
theorem. In fact, one could make such statements by using theorems
such as the Transversality theorem.

1. Preliminaries. Let Rn be the Euclidean w-space and τ > 0 be
finite. Let C = C([—τ, 0], Rn) denote the Banach space of all continuous
functions φ:[ — τ, 0]~>Rn with the usual sup norm

\<P\ = avp{\φ(θ)\: -τ^θ^O} .

Let b > α. If x: [a — τ, 6) —> Rn is continuous, then we let xu a <£ ί < 6,
denote the element of C defined by

xt(β) = x(t + θ) , -τ ^ θ ^ 0 .

The following may be found in Hale [7].
Consider the linear autonomous functional differential equation

(1.1) x'(t) = L ( x t ) , teR

where L: C —> Rn is linear and continuous and " ' " denotes d/dt. For each
φeC, it is known that there exists a unique solution x(φ) of (1.1) which
satisfies the initial condition xQ(φ) = φ and x(φ)(t) is defined for t e [ — τ, ©o).
This allows us to define for any te[O, <*>) a bounded linear operator
T(t): C-+ C by T(t)φ = xt(φ), φeC. Moreover, {T(t): t ^ 0} is a strongly
continuous semigroup of operators and for t ^ r, T(t) is completely con-
tinuous.

By the Riesz Representation Theorem there exists a matrix valued
function η(β): [ — τ, 0] —> JB(W>W), (the nxn matrices), whose elements are
of bounded variation, such that

L(φ) = ^ [dη{θ)]η{θ) , φeC.

Then the characteristic equation of (1.1) is given by

(1.2) det (\In - Γ [dη(θ)]eλ°) = 0

where In denotes the nxn identity matrix. The solutions λ of (1.2)
are called the characteristic roots or eigenvalues of (1.1). Each right
half space of the complex plane contains at most a finite number of
roots of Equation (1.2) and each of them has a finite multiplicity.

Let Λ be a finite set of eigenvalues of (1.1) and d be the sum of



PERIODIC SOLUTIONS AT RESONANCE 237

their multiplicities. Then it is possible to associate with A a unique d
dimensional subspace P = PΛ of C, called the generalized eigenspace of
(1.1) associated with Λ, a matrix valued function Φ = ΦΛ: [ —r, 0]-*Rι**d)

whose columns form a basis of P, and a, d x d matrix B = BΛ the eigen-
values of which are exactly A, such that T{t)Φ = Φem, t }> 0.

For any column vector α e Rd, the solution of (1.1) with initial condi-
tion φ = Φα is #*(<£>) = T(t)Φα = Φβδία. Furthermore, there exists a closed
subspace Q = Qyi of C such that

(1.3) C = P@Q

and both P and Q are invariant under T(ί), t ^ 0.
We shall need an explicit characterization of the projection onto Q

defined by the decomposition (1.3), which can be obtained by using the
formal adjoint equation to (1.1)

(1.4) y'(t)= ~\\y(t - θ)dη(θ)

def
where y(t) is row ^-vector. For any ψeC* = C([0, τ], Rn*), where Rn*
are the row w-vectors, there exists a unique solution y(ψ) of Equation
(1.4) with initial condition ψ at t = 0 and which is defined on the interval
(-oo, r]. If we let A as before, there is a d-dimensional subspace
P* — P* of C*, which is invariant with respect to the flow defined by
(1.4), called the generalized eigenspace of (1.4) associated with A. Let
Ψ = ΨΛ: [0, τ] —> jB(d'%) be a function the rows of which form a basis of
P*. We introduce the bilinear form (,): C* x C —>R defined by

J-r JO
ψeC* , ΨeC .

Then (F, Φ) is a nonsingular d x d matrix and hence by changing basis
if necessary we can assume that (Ψ, Φ) — Id, the d x d identity matrix.
The desired characterization of the decomposition (1.3) is given by the
following:

THEOREM 1.1. Let A be α finite set of eigenvalues of (1.1), Φ and
Ψ bases of P = PΛ and Q = QΛ respectively such that (Ψ, Φ) — Id. Then
every φeC has a unique decomposition

(1.5) φ = φp + φQ , <pP = Φ(Ψ, <p) 6 P , <pQ = <p-φpeQ .

When this decomposition is used we say that C is decomposed by

A.
Consider now the non homogeneous functional differential equation

(1.6) x\t) = L(xt) + f{t)
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where L is the same as before and /: [0, oo)-+Rn is continuous. We
denote by x(φf f) the solution of (1.6) with initial condition xo(φ, f) = φ,
and by X(ί) the n x n matrix valued function defined on [—τ, <*>) which
is the solution of (1.1) for t ^ 0 and satisfies the initial condition Xo

where

ίθ — τ < θ < 0
Xo(θ)= \ ; Λ -

With this notation the variation of parameters formula for (1.6) is

(1.7) xt(φ, f) = T(t)φ + Γ T(t - s)XJ(s)ds ί ^ 0 .
Jo

Let EF and EQ denote the continuous projections of C onto P and
Q respectively, defined by the decomposition (1.5). Then

XP{φ, f) = EpXt(φ, f) = T{t)φP + Γ T(t - s)XPf(s)ds
Jo

Xf(φ, S) = E*Xt(φ, f) = T^φQ + [ T(t - s)X$f(s)ds
Jo

where Xζ = Φ{Ψ, Xo) = ΦΨ(0), X? = X0 - Xf.

2. The bifurcation equation. Consider the functional differential
equation

(2.1) x\t) = (1 + αOLfo) + e/(ί, xt) + flf(ί, a?t)

where a and ε are assumed to be small parameters and the functions
I/, / and g satisfy the following conditions:

(HI) L:C->Rn is linear and continuous.
(H2) The set Λ of eigenvalues of the linear problem

(2.2) χ\t) = L(xt)

of the form 2π in/ω, n integer, ω > 0 fixed, is nonempty and are all
simple.

(H3) / and g are continuously differentiate map from R x C —> Rn.
(H4) / and g map bounded sets of R x C into bounded sets of Rn.
(H5) /(*, <p) and g(t, ψ) are ω-periodic in t.
(H6) g(t, ψ) = O(\φ\2) uniformly in t.
Let d be the number of elements of Λ. It is then known that

Equation (2.2) has a d dimensional subspace of ω-periodic solutions of
the form

x(t) = Φ(0)eBta aeRd

where Φ and B are as ΦΛ and BΛ introduced in §1. Our purpose is to
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determine the ω-periodic solutions of (2.1) for non zero values of the
parameters, which are 'close' to the zero solution when a = ε = 0.

Our assumptions insure the existence and uniqueness of a solution
x = x(φ, α, ε) of (2.1) which satisfies the initial condition xQ = φ, φeC
and that such a solution is continuously differentiate in (φ, a, ε). See
Hale [8]. We can state therefore

LEMMA 2.1. Assume that conditions (HI), (H3), (H4), (H6) are
satisfied. Then there exist r > 0, a > 0 and έ > 0 such that if \φ\ < r,
\a\ < ά and \ε\ < έ, then the solution xt(φ, a, ε) of (2.1) is defined at
least for t in the interval [0, ω].

Since the Equation (2.1) is ω-periodic in t, the existence of an ca-
per iodic solution of (2.1) is equivalent to the periodicity condition

(2.3) xjφ, a,έ) = φ.

The variation of parameters formula (1.7) for Equation (2.1) is

(2.4) xt = T(t)φ + Γ T(t - s)X0{aL(xs) + ε/(s, xs) + g(s, xs)}ds
Jo

where xt == xt(φ, α, ε) and T(t) is the solution operator for the linear
equation (2.2). Combining (2.3) and (2.4) the periodicity condition
becomes:

(2.5) {T(ω) - I)φ + aV T(ω - s)XQL(%s)ds + ε Γ T(ω - s)XJ(s, xs)ds
Jo Jo

T(ω - s)Xog(s, xs)ds = 0

where I\C-*G is the identity operator.
We view Equation (2.5) as a nonlinear equation in the Banach space

C and we will carry out a Lyapunov-Schmidt reduction to derive a
finite dimensional bifurcation equation.

We assume that C is decomposed by Λ, i.e.: C = P 0 Q where P = PA

and Q = QΛ are as in §1. From assumptions (HI), (H2) it follows that

P = N(T(ω) - I) , dim P = d

where N(T(ω) — /) denotes the null space of Γ(ω) — /. For a proof of
this fact see Hale [7, Lemma 22.1, p. 112]. Therefore any φeC can
uniquely be represented as:

<P = Φa + <pQ a e R d , <pQ e Q .

Taking the projection of Equation (2.5) onto P and Q respectively we

now obtain:
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a [" T(ω - s)XζL(xs)ds + e• (" T(ω - s)Xξf(s, xs)ds
Jo Jo

+ Γ T(ω - β)Zfflr(β, xa)ds = 0
JO

{Γ(ft)) - I}φQ + a[° T(ω - s)X?L(xs)ds + ε \" T(ω - s)X?f(s, xs)ds
JO Jθ

+ Γ T(ω - 8)JSΓo

ρflr(8, x s)ds = 0
Jo

where

xs = xs(Φα + 9Q, α, e) .

Using the identity

T(t)Xζ = ΦemΨφ) t ^ 0

and the fact that the restriction of T(ω) — I to Q is invertible
({T(ω) — I}\Q is 1-1 and an iterate of T(ω) is compact), the above two
equations yield:

(2.6) a [° e-BΨ(0)L(xs)ds + e Γ e-
Jo Jo

+ Γ e-B'f(0)ff(s, a;8)ds = 0
Jo

(2.7) cp« + K Γ 2χα) - s)X0«{«L(a;s) + e/(β, a?.) + flr(β, xs))ds = 0
Jo

where

Let rα > 0, ? ff > 0 be so that rα + r g ^ r and define

Bra = {aeRd:\Φa\<ro}, BTq = {<peQ: \φ\<rq) , /r = (-7, 7) for 7 > 0 .

Then by Lemma 2.1 we can view the left hand side of Equation (2.7)
as a map:

(2.8) F(a, φ\ a, e): BTa x Brq x h x I7 ~> Q

so that (2.7) reads,

(2.9) F(α, < α, ε) = 0 .

The mapping F satisfies:

F(0, 0, 0, 0) = 0 , (dF/dφQ)(0, 0, 0, 0) - identity on Q .

Therefore the Implicit Function Theorem applies and we obtain the
following
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LEMMA 2.2. There exist fa > 0, fq > 0, a > 0, ε > 0 and a unique
continuously differentiable function

(a, a, ε): B7a x IΈ x /, -> j?r-

such that

(2.10) φ ρ = ^ ( c , α, ε)

is α solution of (2.9) /o? αϊi (α, α, ε) 6 2?fβ X h x /τ

It is easily seen that Jg^(0, α, 0) = 0 for all αe/« .
By Lemma 2.2 we may substitute (2.10) in Equation (2.6), i.e., we set

xs = x8(Φa + ^ ( α , α, ε), α, ε). Then (2.6) becomes:

(2.11) aF^a, a, ε) + εF2(a, a, ε) + F3(a, a, ε) = 0

where

(2.12) ί\(α, α, ε) = ( e-BΨ(0)L(xs(Φa + ^T(α, α, ε), α, e))dβ
Jo

(2.13) Ft(a, a, ε) = ('" e-βsf(0)/(s, «8(Φα + J3T(α, α, ε), α, e))dβ
Jo

(2.14) Fs(a, a, e) = Γ e-δ8?P'(0)flί(8) a;s(Φα + JT(α, α, ε), α,
JO

and Ft(af a, ε): B7a x /« x J 7 -> jRd i - 1, 2, 3.
(2.11) is a finite dimensional equation and is known in the literature

as the determining equation or the bifurcation equation.
The above discussion can be summarized in the following

THEOREM 2.1. Suppose that conditions (H1)-(H6) are satisfied. Then
there exist ra > 0, rq > 0, ά > 0, ε > 0 such that if \Φa\ < rα, \a\ <a,
|ε | < έ and (α, α, ε) satisfies (2.11), then x(Φa + Jg^α, α, ε), α, ε) is αw α>-
periodic solution of (2.1). Conversely, any ω-periodic solution x(Φa+φQ,a,ε)
of (2.1) wiίft | 0 α | < r α , |<p ς |<r g , | α | < α α̂ cZ | ε | < ε is o/ίfee αδove /orm, i.e.,

{a, α, ε) ατicί (α, α, ε) satisfies (2.11).

We show below that in the case g(t, φ) = 0, the bifurcation equation
(2.11) is defined for a in an arbitrarily large ball, provided that the
parameters a and ε are sufficiently small. Thus we consider the equation

(2.1a) x\t) = (1 + a)L(xt) + e/(ί, xt) .

For this case r of Lemma 2.1 can be chosen to be arbitrarily large and
hence for any ra > 0, rq > 0, there exist a > 0 and ε > 0 such that the
mapping (2.8) is defined and it satisfies
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F(a, 0, 0, 0) = 0 , J ^ ( α , 0, 0, 0) = I\Q for any aeBra.

An easy argument involving the Implicit Function Theorem shows that
Lemma 2.2 can be modified to obtain

LEMMA 2.3. For all ra > 0, there exist a > 0, έ > 0, a neighborhood
Vq of 0 in Q and a unique continuously differentiate function

£έf(a, α, ε): Bra x h x IΊ -> Vq

such that φQ = J%?(a, a, ε) is a solution of Equation (2.9) for all (α, a, ε) e
Bra x I, x Ii

Clearly JT(α, 0, 0) = 0 for all a e Bra.
As previously, Lemma 2.3 is used to obtain the bifurcation equation

(2.15) aFjia, a, ε) + eF2(a, a, ε) = 0

where Fx and F2 are given by (2.12) and (2.13). The analog of Theorem
2.1 for this case is:

THEOREM 2.2. Assume that conditions (H1)-(H5) are satisfied. Then
for all ra > 0 there exist a > 0, έ > 0, a neighborhood Vq of 0 in Q and
a unique continuously differentiate function 3(?(a, a, ε): Braxla xlj—>Vq

such that if (a, α, ε) is a solution of the bifurcation equation (2.15) with
l φ α|<r α , Ψq^ Vq> \oc\<a and | ε |<ε then x(Φa + £έf(a, α, ε), α, ε) is an ω-
periodic solution of (2.1a). Moreover any cύ-periodic solution x(Φa+<pQ, a, e)
o/(2.1a) with \Φa\ < rβ, | α | < a and \ε\<εisofthe above form, i.e., φq' =
3ίf{a, a, ε) and (α, α, ε) satisfies (2.15).

ΐ*or the following section we need to consider also the case a = 0
and g(t, φ) = 0, i.e., to look at the equation:

(2.1b) x\t) = L(xt) + e/(ί, xt)

For this case the bifurcation equation (2.15) after a division by ε be-
comes

(2.16) Ft(a, 0, ε) = 0 .

where F2 is given by Equation (2.13).
Similarly, we have for this case the following

THEOREM 2.3. Assume that conditions (H1)-(H5) are satisfied. Then
for all ra > 0 there exist ε > 0, a neighborhood Vq of 0 in Q and a
unique continuously differentiable function £ίf(a, ε): Bra x /j—> Vq, with
έ%f{a, 0) = 0 such that if (a, ε) is a solution of the bifurcation equation
(2.16) with \Φa\ < ra and |ε | < ε then χ{Φa + <^(α, ε), ε) is an co-periodic
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solution of (2.1b). Moreover, any (ό-periodic solution x(Φa + φQ, ε) of
(2.1b) with \Φa\ <ra, φQsVq, and |ε | < έ is of the above form, i.e.,
φQ = Sίf{a, ε) and {a, ε) satisfies (2.16).

3. The one parameter problem. We consider in this section the
equation

(3.1) x\t) = L(xt) + εf(t, xt) .

From the previous section we know that the bifurcation equation for this
case is Equation (2.16) which reads:

(3.2) M.(a) = \ e-BΨ(O)f(s, x.(Φa + JT(α, ε), ε))ds = 0 .
Jo

For ε = 0, Equation (3.2) becomes

M(a) = Γ e-BΨ(0)f(s, x£Φa, 0))ds = 0
Jo

and since xs{Φa, 0) = ΦeB8a, we get

(3.3) M(a) = Γ e-BsΨ(0)f(s, ΦeBsa)ds = 0 .
Jo

THEOREM 3.1. Assume that conditions (H1)-(H5) are satisfied. Assume
also that M(a) = 0 and det (dM/da)(ά) Φ 0 for some aeRd. Then for all
ε with \ε\ sufficiently small, Equation (3.1) has an ω-periodic solution
x(ε), such that x(0)(t) = Φ(0)eBta.

PROOF. Let ra > 0 be such that \Φa\<ra. Let έ > 0, Vq and
3ίf(a, ε) be given as in Theorem 2.3. Then the mapping Mε(a) is con-
tinuously differentiate for (a, ε) 6 Bra x Ij. From the Implicit Function
Theorem and our assumptions it follows that Equation (3.2) has a unique
solution a — α(ε) defined and continuously differentiable for all ε with | ε |
suflBciently small and such that α(0) = a. From Theorem 2.3 it follows
then, that x{ε) = x(Φa(ε) + £%f{a, ε), ε) is an ω-periodic solution of (3.1)
and x(0)(t) = x(Φa + <&?(a, 0), 0)(t) = x{Φa, 0)(t) = Φ(0)eBta.

We may also use topological degree to give existence theorems. Let
Ωc:Rn be open and bounded. Suppose that f:Ω-+Rn is continuous and
0&f(dΩ) (where dΩ denotes the boundary of Ω). Then the topological
degree of / with respect to Ω and 0 e Rn, deg (/, Ω, 0), is defined and
integer valued. The reader is referred to Cronin [5] or Schwartz [10]
for the details.

THEOREM 3.2. Assume that conditions (H1)-(H5) are satisfied, ra > 0
and deg(M, Bra, 0) is defined and different from 0. Then Equation (3.1)
has at least one ω-perίodic solution for all ε with \ε\ sufficiently small.
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PROOF. Similarly to the previous proof, 3έ > 0 such that Mε(a) is a
continuously differentiable map for (α, ε)eBra x Tτ. The homotopy prop-
erty of topological degree and our assumptions imply

deg (Mε, Bra, 0) = deg (AT, £ r α, 0) Φ 0 .

Therefore Equation (3.2) has at least one solution in Bra for all ε with
|ε | sufficiently small. The conclusion of the theorem follows now from
Theorem 2.3.

REMARK. Theorem 3.2 remains true if in our assumptions we replace
f(t, φ) by fit, φ) + /i(ί, φ, ε) where fx{t, φ, ε) is ω-periodic in t, continu-
ously differentiable and O(|ε|).

4. The two parameter problem. In this section we consider the
equation

(4.1) x\t) = (1 + a)L(xt) + e/(t, at) + g(t, xt)

and we proceed by analyzing the corresponding bifurcation equation (2.11).
Expressions (2.12), (2.13), (2.14) have t h e following form:

F^a, a, ε) = l{a) + O ( | | α | | 2 + | ε | + \ae\ + \\aa\\ + | | ε α | | )

F 2(α f a,e) = p + O(\\a\\ + | ε | + | α e | + \\aa\\ + | | eα | | )

Ft(a, a, ε) = Q(α) + O ( | | α | | 3 + | α [ | | α | | 2 + | | α ε α | | + | | ε α | | + |ε | 2 )

where

(4.2a) l{a) = Γ e-BΨ(0)L(ΦeBsa)ds
Jo

(4.2b) p = (" e'BΨ(0)f(s, 0)ds
JO

(4.2c) Q(o) = Γ" e"Bi?"(O)Sf(e, ΦeBsa)ds
Jo

and ^(ί, ^) contains the terms of order O(\φ\2) as |<p|-*0 in the expansion
of #. So Z(α) is linear in a, p is a constant d-vector and Q(a) is quadratic
in a. Therefore the bifurcation equation (2.11) can be written as

(4.3) h(a, a, ε) = Q(a) + al{a) + εp + h.o.t. = 0

where h.o.t. designates higher order terms and refers to terms of order
O(||α||3 + | α | | | α | | 2 + | |εα|| + \ae\ + | |α 2α| | + |ε2 |).

In order to determine the ω-periodic solutions of (4.1) which are close
to the origin, we have to analyze according to Theorem 2.1, the solutions
of the bifurcation equation (4.3). This problem consists of studying the
simultaneous solutions of
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h,{a, α, ε) = 0 , i = 1, 2, -•-, d

for (α, α, ε) near the origin, where h = (hl9 h2, , hd)eRd. Let

Λft(α, ε) = {a e Rd: h^a, a, ε) = 0} , i = 1, 2, , d .

Then the problem is to study the intersection of the surfaces Mt(a, ε),
i = 1, •••, d in iί*. If for some value of the parameters, say (α*, ε*)
these surfaces intersect transversally at a point α* 6 Rd, i.e., fc(α*,α*,ε*) = 0
and det [(dh/da)(a*, α*, ε*)] Φ 0 then we expect the same situation to hold
for (α, α, ε) near (α*, α*, e*), and hence the same number of solutions for
(α, α, ε) near (α*, α*, ε*). Thus, the condition

(4.4) Λ(α, α*f ε*) = 0 = - det [(dh/da)(a, a*, ε*)] Φ 0

implies that there is no bifurcation for values of the parameters near
(α*, 6*). Therefore at a bifurcation point the following condition must
hold:

(4.5) fe(α, α, e) = 0 , det [(dh/da)(af α, ε)] = 0 .

We shall later see that under certain conditions Equation (4.5) determines
a finite number of curves in the parameter space, emanating from the
origin, such that if the parameters cross one of these curves, then the
number of solutions changes by two.

In order to obtain the bifurcation diagram, the variables (α, a, ε)
must be scaled correctly. The scaling to be used is suggested by the
following lemma:

LEMMA 4.1. Assume that
(EJ // Q(a) = 0 then a = 0.

Then there exists a neighborhood V of (α, α, ε) = (0, 0, 0) and a constant
M > 0 such that any solution (α, α, ε) e V of Equation (4.3) satisfies the
estimate*.

PROOF. Assume by contradiction that there exists a sequence of
solutions (o« α w e,) -• (0, 0, 0) with |α . | / | | o . | | + |εB|1/2/lk»ll -* 0. From
Equation (4.3) we obtain: h(an, am eB)/||αJ|2 = Q(oJ||α.| |) + 0( |α. |/ | |α, | | +
s«i/ll«»IΓ + \an\ + Hα.lD By taking a convergent subsequence we can

assume that aj\\an\\ -* a0 Φ 0. We get 0 = Q(a0), contradiction to (EJ.
Next we divide the (ε, a) plane into three regions. Let

R; = {(ε, a): -e, ^ ε ^ 0, |α | 2 ^ |ε|/c2}
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where Cj S; 0 and c2 S: 1 are constants to be determined later. (See Figure

1.)

FIGURE 1

By considering separate scalings for the regions i?ί, Rϊ and R2 we
obtain a complete description of the solutions of (4.3) in a neighborhood
of the origin of the parameter space (ε, a).

We consider first the region Rf. By Lemma 4.1 we have the follow-
ing estimate: | |α | | ^ M(\a\ + |ε|1/2) ^ M(c2"

1/2 + l)|ε|1 / 2 ^ 2M\ε\1/2. Thus
we may scale: a = Xb, ε = λ2, a = Xy. With this scaling the bifurcation
equation (4.3), after a division by λ2, becomes

(4.6) H(b, λ, 7) = Q(jb) + Ύl(b) + p + O(|λ|) = 0 .

Here, λ has to be bounded near 0, and 7 must satisfy the estimate
M ^ cim (follows from the definition of Rt and 7). We assume now

(E2) If Q(b*) ±p = 0 then det [0Q/3δ)(δ*)] Φ 0.
Obviously, the equation

H(b, 0, 0) - Q(b) + p = 0

has a finite number of solutions. By condition (E2), the Implicit Function
Theorem is applicable at each such solution and therefore there exists
a neighborhood of (7, λ) = (0, 0) in which the number of solutions of (4.6)
is constant. This fixes the size of |λ| and of | τ | to be sufficiently small,
which in turn fixes the constants cλ and c2, cx ^ 0 and small, c2 ^ 1 and
sufficiently large. Then, with this choice of cx and c2 there is no bifurca-
tion in the region Rf.

A similar analysis holds for the region RΪ with the following changes:
the scaling for ε should be now ε = — λ2 and p should be replaced by
— p in the scaled Equation (4.6).
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The above discussion can be summarized in the following:

LEMMA 4.2. Assume that conditions (Ex), (E2) are satisfied. Then
there exist constants cλ > 0 small, c2 > 1 for which there is no bifurcation
in the regions Rt and Rϊ.

To complete our picture, we have to carry out a bifurcation analysis
for the region R2. For this region Lemma 4.1 provides us with the
following estimate: | |α | | ^ Af(|α| + | ε | 1 / 2 )^M( |α | +d/2\a\) = M(l + c¥*)\a\.
This estimate suggests the following scaling for the region R2: a = vb,
s — y2<5, a = ι>.

Then the bifurcation (4.3), after a division by v2, becomes:

(4.7) G(δ, v, δ) = Q(b) + l(b) + δp + O(\v\) = 0 .

Here |v| must be bounded near 0 and δ has to satisfy the estimate
δ I <L c2 (follows from the definition of iϋ2 and δ) where c2 > 1 is given

by Lemma 4.2.
If for some 6* and δ* we have G(δ*,O,S*) = O and det [(3G/3δ)(δ*,0,S*)]^0,

then there is a unique zero 6 of (4.7) for every (v9 δ) near (0, δ*).
It is now important to note that G(δ, 0, δ) takes Rd+1 into iί d. Thus

even if the inverse image of 0 for G(b, 0, δ) is a smooth curve, the above
condition may not be verified. Hence we consider the case G(6*, 0, δ*) = 0
and det[(3G/36)(6*, 0, δ*)] = 0, i.e., 6* is a nonsimple zero of Equation (4.7)
for (v, δ) = (0, δ*). We impose now the following condition on nonsimple
zeros of Equation (4.7):

(E8) If 0(δ*) + W) + δ*p = 0 and det [(dQ/dbW) + I] = 0 then the
d x d matrix (dQ/db)(b*) + I has rank cZ — 1.
Assumption (E3) implies that the matrix (βG/db)(b*9 0, δ*) has a nonzero
minor of order d — 1 and hence we can assume without loss of generality
that det [(d(Glf G2, , Gd_1)/3(δ1, & „ . . . , δ^OXδ*, 0, δ*)] ^ 0. Let

G = (%, v) where u = (Gx, G2, , Gd_!) , v = Gd

b - (17, ζ) where η = (&lf 62, , 6^) , ζ = 6d

6* - (37*f ζ*)

Λ = det [d(u, v)ld(η, ζ)] and 4 = det [3^/3^] .

With this notation we have

U{7]\ ζ*, 0, δ*) = 0 , V(7}*, ζ*, 0, δ*) = 0,

Δlη\ ζ*, 0, δ*) Φ 0 , zί^*, C*, 0, δ*) = 0 .

Thus an application of the Implicit Function Theorem to the equation
u(Vt ζ> v, δ) = 0 shows that there exists a continuously differentiate
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function ΎJ = e(ζ, v, δ) such that

(4.8) e(ζ\ 0, δ*) = 57* , u(e(ζ, v, δ\ ζ, v, δ) = 0

for (ζ, v, δ) in a neighborhood of (ζ*, 0, <5*).
Thus, the bifurcation equation becomes:

(4.9) w{ζ, v, δ) = v(e(ζ, v, δ), ζ, v,δ) = 0

which is a one dimensional equation and has to be solved in a neighbor-
hood of the solution (ζ, v, δ) = (ζ*, 0, <?*). Let

Δ = det [d(u, v, 4)/3θ7, ζ, δ)\

and assume also that the following condition is satisfied:
(E4) If (δ*, 0, δ*) is a solution of the equations G{b*, 0, δ*) = 0 and

Aib*, 0, δ*) = 0, then Δtfi*, 0, δ*) Φ 0. Assumption (E4) means that
G(b*, 0, δ*) = 0 and 4(6*, 0, δ*) = 0 imply J(b*, 0, δ*) Φ 0.

LEMMA 4.3. Assume that condition (E4) is satisfied. Then at the
point (ζ, v, δ) = (ζ*, 0, δ*) the function w satisfies:

(4.10) w = dw/dζ = 0

(4.11) 32w/3ζ2 = 4"2 det [d(u, A)/d(V, 0 ] ^ 0

(4.12) 3W/33 = 4"1 det [d(u, v)/d(rj, δ)]Φθ .

PROOF. We need the following identities:

(4.13) 4 = [dvjdζ - (dv/dyχduldrj)-\du/dζ)]J2

(4.14) det [d(u, 4)/3(57, ζ)] = [34/3C -

(4.15) det [d(u, v)β(η, δ)] = [dv/dδ -

Also

Jv/dδ]

To prove (4.13) observe that by using row operations we have:

4 = det
'du/drj du/dζ

βvβη 3v/dζ_
= det

~du/dη dujdζ

0 dvβζ - (dvldη){duldη)-\duldζ)

= [dv/dζ - {dvβη)(duldηT\duldζ)~\A2 .

This proves (4.13). (4.14) and (4.15) are obtained similarly. By implicit
differentiation of Equation (4.9) we get: de/dζ = ~(duβη)~\duldζ). Thus
dw/dζ = (dv/dτ?)(de/dζ) + (dv/dζ) = dv/dζ - (dv/dη)(duldη)-\du/dζ) = 4 / 4 by
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Equation (4.13). But, when {η, ζ, v, δ) = {η*, ζ*, 0, δ*) Λ = 0 and Δt Φ 0.
This proves (4.10). Now d*w/dζ* = 3(Λ/4)/dζ = Δι\{dΔι/dζ)Δί - Λ(3J2/3ζ)] =
Δ^(dΔJdζ) at , 0, δ*), , v, δ), ζ, v, δ))/dζ=(dΔ1/dηXde/dζ)+dΔ1/dζ=
dΔJdζ - (dΔJdηXdu/dηyXdudζ) = Δ;1 det [d(u, Δ^/d(j], ζ)] by (4.14).

This proves the equality in (4.11). dw/dδ = (dv/dη)(de/dδ) + dvjdδ =
dv/dδ - {dv/d7]){du/dηY\duβδ) = Δ? det [d(u, v)β(η, δ)] by (4.15), and this
proves the equality in (4.12). The inequalities in (4.11) and (4.12) follow
from condition (E4) and the identity:

(4.16) Δ = -Δϋdw/dδ^w/dζ*)

which we prove now:

Idη du/dζ du/dδ"

dv/dη dv/dζ dv/dδ

at ζ*, 0, δ*)

Δ = det

dΔJdζ 0

= det

du/dr]

0

. 0

du/dζ dujdδ

dv/dζ-(dvldη){duldη)-\duldQ dv/dδ-{dvldη)(duldηY\du/dδ)

dΔJdζ-

du/dδ

4 ' 1 det [d(u, v)/d{7], δ)]

- (dΔJdηXdu/dηTXdu/dδ^

det [d(u, Δϊ)/d{7), ζ)]

'du/dη du/dζ

= det 0 0

0 Δ^άet[d(u, 4)β(V, Q]

= — ΔΪ1 det [d(u, v)/d(η, δ)] x Δ2 x //2"

= -4"" 1 X Δldw/dδ) x Δl(d2w/dζ2) = -ΔKdw/dδ^d'w/dζ2) .

REMARK. Lemma 4.3 shows essentially that the curve u{η, ζ, 0, δ*)=0
and the surface v{η, ζ, 0, δ*) — 0 intersect transversally with respect to
the parameter δ at the point (η*, ζ*). (See Figure 2.)

s < s* a = s*

FIGURE 2

We are ready now for our main theorem:

§>δ*
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THEOREM 4.1. Assume that the two parameter bifurcation equation
(4.3) satisfies conditions (EJ-CEJ. Then there exist a finite number of
curves of the form e ~ a2δ* as a —> 0 on which bifurcation takes place
and the bifurcating solution is given approximately by a = vδ* where
(b*, <?*) are simultaneous solutions of

(4.17a) Q(δ*) + l(b*) + δ*p = 0

(4.17b) det [(dQ/dbW) + I] = 0 .

Each such curve corresponds to a different value of δ* and as one crosses
the curve from left to right two solutions appear if A(b*, 0, δ*) > 0 or
they disappear if Δ(b*, 0, 3*) < 0.

PROOF. We have seen that in order to have bifurcation at a point
(6, v, δ) near (6*, 0, δ*) it is necessary that equations (4.17a) and (4.17b) be
satisfied simultaneously. Since p Φ 0 we can use one of the equations
in (4.17a), to eliminate δ* from the remaining d — 1 ones. Together
with (4.17b) we obtain then a system of d quadratic equations in 6* =
(6*, &?, ••-,&*). By a theorem of Bezout such a system can have at
most 2d solutions, hence only a finite number of <?* have to be considered.
The scaling of region R2 implies that bifurcation can occur only on the
curves ε ~ α2δ*.

Let (6*, 0, δ*) = (7]*, ζ*, 0, δ*) be a solution of (4.17a) and (4.17b). By
Lemma 4.3 we can solve the system (dw/dζ)(ζ, v, δ) = 0 as ζ = β(v, δ),
β(0f δ*) = ζ*, (dw/dζ)(β(v, δ), v, δ) = 0. It follows that for all (v, δ) close
to (0, δ*)f ζ = β{v, δ) is a critical point of w near ζ*. This critical point
is maximum if det [9(w,Λ)/9(^,ζ)]<0 and a minimum if det [9(^,Λ)M^,ζ)]>0.
Let Z(vf δ) = w(β(v, δ), v, δ) be the value of w at this critical point.
If the critical point is a minimum and Z(v, <5)<0 then the bifurcation
equation has exactly two solutions near ζ*, and if Z{v, δ) > 0 there are
no solution near ζ*. Hence, in the parameter space (v, δ), bifurcation
occurs when

(4.18) Z(v, δ) = 0.

Since Z(0, δ*) = 0, (dZ/dδ)(0, δ*) = (dw/dδ)(0, 5*) Φ 0 we can solve Equation
(4.18) as δ - τ(v), 7(0) = δ*, Z(v, τ(^)) = 0, and for δ = τ(v) bifurcation
occurs at the critical point b = e(β(v, δ), v, δ), β(v, δ), v,δ) = ψ(δ), ψ(O) = 6*.
The direction of bifurcation is determined as follows: If z/(δ*, 0, δ*) > 0
then d2w/dζ2 and dw/dδ have opposite signs at (ζ*, 0, δ*). Suppose that
d2w/dζ,2 > 0 and dw/dδ < 0. Then the critical point is a minimum and
Z < 0 when δ — γ(v) > 0. This means that bifurcation of two solutions
from (6*, 0, δ*) occurs when v > 0 and this in turn means by our scaling,
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crossing the bifurcation curve ε = α2δ* from left to right. The re-
maining possibilities are dealt with similarly.

5. Examples.

EXAMPLE 1. Consider the f.d.e.

(5.1) x\t) = -(π/2)x(t - 1) + e(x\t - 1) - 1) sin (πt/2) .

The various quantities associated with the linear equation

(5.2) x\t) = -{π/2)x(t - 1)

were computed in Hale [7, p. 116] and they are: A — {πi/2, —πi/2}; thus
ω = 4 and d = 2; Φ = {̂ , £>J = {sin (πθ/2), cos (πθ/2)}, — 1 ^ 0 ^ 0, is a
basis of the periodic solutions of period 4 of (5.2);

"0 -7Γ/2Ί

π/2 Oj ;

2/i(sin (ττs/2) + (π/2) cos (ττs/2)) Ί

2μ( - (π/2) sin (ττs/2) + cos (ττs/2)) J

where μ = 1/(1 + π2/4).
Equation (5.1) is of the form (3.1) with /(t, 9) - (<P2(-1) - 1) sin (ττt/2).
A series of easy but tedious computations, show that the bifurcation
equation (3.3) for our example is:

Ψ - 0

M
- 2 + al/2 - πaλaj2

π — παi/4 — α^g ~

3α|/2Ί

J

The solutions of this equation are the intersection of the two ellipses
= 0 i = l, 2 and they are: αα) = (2/i/ΊΓ, 0); α(2) = (0, 2); α(3) = (-2/i/"3", 0);

α(4) - (0, -2). (See Figure 3.)
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"αx—πaJ2 — (πaJ2) + 3α;
άet[dM(a)/da] = 2μdet\" " " " " v--«-, • - - = 2μ(l + π

L — \KdiJ2) — CL2 — OL1—3τrα2/2 J
Thus det [dM(a)/da] Φ 0 at the intersection points and so Theorem 3.1

applies. We obtain 4 periodic solutions of period 4, α;(i)(ε)(ί)Ll ^ i ^ 4,

for every ε with | ε | sufficiently small such that x{1)(0)(t) = (2/ί/Y) sin(πί/2),

i = 2 cos (τrt/2), α(3)(0)(0 = (--2/vΊΓ) sin (πί/2), ^(4)(0)(ί)= - 2 cos (πί/2).

EXAMPLE 2. Consider the f.d.e.

(5.3) α'(ί) = -(π/2)aj(t - 1) + s^Ct)^* - 1) cos (πί/2) + O(|ε|)} .

The corresponding bifurcation equation is given by

iϊ - a\\2~Γ aλ~] __ Γ — (αj + πa\a2 + 7rαiα2 — αg/

L α2j L ^«ί/4 — a\a2 — α^a — ττα2/

Consider the polynomials:

a(x) = α;4 + 7rα?3 + 7ra? — 1 , /3(#) = π#4/4 — cc3 — α — ττ/4 .

The roots of a are: αx en —3.43, a2 ^ 0.29, α3 = i, α4 = — i. The roots of
^ are: ft ^ -0.55, ft ^ 1.82, ft = i, ft = - i . Thus αx < ft < α2 < ft.
Therefore it follows from Cronin [5, p. 40] that deg(M, B, 0) = -2φO
where B is a ball in R2 with center 0. It follows from Theorem 3.2
that Equation (5.3) has at least one periodic solution of period 4 for all
ε with | ε | sufficiently small.

EXAMPLE 3. Consider the equation

(5.4) x\t) = (α - π/2)x(t - 1) + ε sin (τtf/2) + z2(£ - 1) sin (πί/2) + h.o.t = 0 .

The corresponding bifurcation equation is:

al/2 - aλa2/2 + 3α2/2 Ί Γ 2 Ί Γ-π
+ ε + r

— TΓdi/4 — CC-iĈ  — 07ΓCI2/4 J |_ —7Γ J

which is of the form (4.3) with

αϊ/2 - τταiαa/2 + 3αJ/2 Ί Γ 2

+ h.o.t. = 0
π JL α2

2\

—7Γ j L~2 -

To apply Theorem 4.1 we have to check first that conditions (EJ-ίEJ are
satisfied. (Ex) is easy. To verify (E2) we have to solve first the system
Q(b) ± p = 0. That is

δϊ/2 - 716,62/2 + 362

2/2 ± 2 = 0

-7Γ&Ϊ/4 - δx62 - 37r62

2/4 ± (-TΓ) = 0 .

From Example 1 we know that this system with the + sign has no
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real solutions and with the — sign it has exactly 4 solutions and
det [dQ/db] Φ 0 at each solution. This shows that (E2) is satisfied and
furthermore it shows by the analysis done in §4 that in the region i?r
there are 4 solutions, while in the region Rt there are none. (See
Figure 4.)

To verify conditions (E3), (E4) we have first to solve simultaneously
the system Q(b) + Ib + δp = 0, det [dQ/db(b) + I] = 0, that is

b\\2 - πbA/2 + 36̂ /2 - πbx + 262 + 2δ = 0

-πbl/4 - bj)2 - Zπbl/A - 2b, - πb2 - πδ = 0

Δx = -6J/4 + 36|/4 + 262 + 1 = 0 .

The solutions are

h
δ_

=
- o
—2

^
and

"6Γ

.8.

=

Γ 0 "
-2/3

. 1/3.

Thus, at first order the bifurcation curves are:

(5.5) ε a2 as a -> 0

(5.6) ε ~ α2/3 as a -+ 0 .

It is an easy matter to check that [((dQ/db) + I)] has rank 1 when evaluated
at the solutions above. Thus (E3) is satisfied. The direction of bifurca-
tion is determined by Δ:

~&! - τr62/2 - π -πbx/2 + 3δ2 + 2 2"

Δ = det -π/2 - b2 - 2 -b, - 3ττ/2 - π -π

_-bJ2 362/2 + 2 0_

- - ( 1 + π2/4)(36| + δϊ) - (10 + 5π2/2)62 - 8 - 2π2 .

On the curve (5.5) Δ = 0 and on the curve (5.6) Δ < 0. Thus by Theorem
4.1, one pair of solutions disappear as we cross the bifurcation curve (5.6)
from left to right. (See Figure 4.) Theorem 4.1 does not give us in-
formation on the direction of bifurcation along the curve e = — α2.
However this can be obtained as follows: The number of solutions in
each of the regions ^ , •• , ^ J

4 is constant. Therefore in the region
^?3 there are 4 solutions, in the region ^ no solutions. Since there is
a loss of two solutions when crossing the curve ε = α2/3 from left to
right it follows that there are two solutions in the regions ^?2, ^ 4 .
Since there are 4 solutions in ^ it follows that there is a loss of two
solutions when crossing the curve ε = — a2 from left to right.



254 M. ASHKENAZI AND S.-N. CHOW

ε = -a"

Bifurcation diagram
^ Ί = Region of no solutions
&2i '^4 = Region of 2 solutions
^ 3 = Region of 4 solutions

FIGURE 4
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