
Tόhoku Math. Journ.
32(1980), 363-373.

SPECTRAL LITTLEWOOD-PALEY DECOMPOSITIONS
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1. Introduction. Let G be a compact abelian group with dual G,
and suppose that E is a subset of G. Suppose that (Δ3)™ is a decomposi-
tion of E, i.e., that each Δ3 is a subset of E, the 4> are pairwise disjoint,
and that \J Δ3- — E. We say that (Δ3) is a Littlewood-Paley (or LP) de-
composition of J? if, for every p in (1, °o) there is a pair of positive
constants Ap and 1?̂  such that

(1) ^ll/II^IKΣIS./irΊl^^ii/n,
for all trigonometric polynomials / with spectrum in E. Here SΔύf,
which we shall frequently denote S3f, is the partial sum of the Fourier
series of / over Δ, . The function (Σ | £,-(/) |2)1/2 is denoted S(/).

When G = T, and E = Z, classical theorems of Littlewood and Paley
furnish examples of nontrivial LP decompositions: e.g., the collection of
"dyadic intervals" constitutes such a decomposition; from this basic ex-
ample, many others can be built up. See [2].

Now if (A3) is a decomposition of E, p > 2, and each (Δ3) is a single-
ton set, then the inequality (1) amounts to the statement that E is a
Λ(p) set. In the opposite vein, if (Δ3) is an LP decomposition of E and
F is a set formed by selecting at most one element from each Δ3, then
F is a Λ(p) set for every p. Given the extent of the literature on Λ(p)
sets, it seems natural to attempt to give examples of groups G, proper
subsets E of G and associated LP decompositions (Δ3 ) of E.

As just indicated, this can be done trivially when E is a Λ(p) set
for all p. Another way is to take an LP decomposition of a group G
and then let E be the union of all but one of the sets of that decomposi-
tion. Our aims should therefore be stated more precisely: we wish to
produce sets E, and associated decompositions (Δό), such that (i) (Δ3) is
an LP decomposition of E; and (ii) ξE, the characteristic function of E,
is a (Fourier) multiplier of Lp for no p other than 2. Note that if (δ3-)
is an LP decomposition of G, then the characteristic function of each
δ3 is a Fourier multiplier of Lp (1 < p < oo).

In her paper [1], Bonami showed how to construct various classes
of sets which are A(p) for all p, and gave precise asymptotic estimates
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for the Λ{p) constants of these sets as p->+oo, In some instances
even exact values of the constants were computed. Bonami's arguments
are substantially combinatorial. By contrast, our proofs combine certain
simple functional analytic ideas with ideas from Littlewood-Paley theory
to produce the desired "spectral" forms of the Littlewood-Paley theorem.
As pointed out in the preceding paragraph, the corresponding results of
Bonami about Λ(p) sets follow as corollaries.

2. Notation and terminology. For the most part, we follow [2] in
our notation and terminology. We shall work principally with the groups
G = T, Ds = ΠΓ=i {0, 1, , s — l}j9 the product of countably many copies
of the additive cyclic group of s ^ 2 elements, and T°°, the countably-
infinite-dimensional torus.

In Ds we denote by e3- the element which has 1 in the j-th position
and 0 for all other coordinates. The corresponding object in f°° = Σ Z
is denoted εy. The set Ds is canonically identifiable with a subset of
Σ Z y i a the mapping Σ aJej ~^ Σ aάeά- Subsets of Ds will frequently be
thought of as being transferred across into Σ % under this same
mapping.

If xeG, and τe(?, we denote by (x9 7) the value of 7 at x. In
particular, if ω = (ωu ω2, •) e Ds, and Σ a*€n G A» then (α>, Σ «*O ίs

equal to exp((2πi/s)Σβ>»«») We shall customarily shorten this notation
by writing a for the sequence {au a2, ) and (α>, a) for the correspond-
ing character value. Note that if α e Σ { 0 , l , , s — 1}, then a can be
thought of either as a character on Ds or as a character on ΓM. So if
a is such a sequence, we shall denote by (x, a) the value of the cor-
responding character of Γ°° at the point x e Γ°°, and by (α>, a) the value
of the character of Ds at coeDs.

If / is a function on (?, the spectrum of /, denoted sp/, is the set
of characters 7 at which f(y) Φ 0. When E S G , TE denotes the set of
trigonometric polynomials having spectrum in E, and LP

E denotes the
set of functions in Lp with spectrum in Έ.

If E C Γ, and p > 2, the Λ(p) constant of E is the number
sup H/llp/ll/llg, the supremum being taken over all trigonometric poly-
nomials with spectrum in E.

The space LP(G; I2) is the space of sequences (/,-) of measurable func-
tions on G for which

\\(fj)\\P =

Notice that to say that (Jd) is an LP decomposition of the set E is a
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statement that, for each p (1 < p < oo), the space LP

E is identifiable with
the subspace of LP(G; I2) consisting of sequences (/,-) with sp/,- £ Δ3 .

3. The transfer principles. The following two lemmas will permit
us to transfer classical Littlewood-Paley theorems from the group Ds to
the group Γ°°. The first lemma is due to Bonami [1, Theoreme 1, Ch. 1];
we include a proof for completeness sake.

LEMMA 1. Let ω be a point in the group Ds. Then there is a
measure μω on T°°, of total mass at most 1, such that

Σ
for all points Σ « A of Σ {0, 1, , s - 1} £ Σ Z = f °°.

PROOF (Bonami). This is because the sequence {(ω, βj}ϊ=i is a point
of T°°; therefore, if g is a trigonometric polynomial on Γ°° with spectrum
in Σ{0, 1, , 8 — ί\f then Σδ(Σ«»e»)(β>, Σ « n O ί s t l i e value of g at a point
of Γ°°. So the mapping g -> Σ #(Σ anen)(a), Σ «»βn) is a continuous linear
functional, for the sup-norm, of norm at most 1. The result follows
from the Hahn-Banach and Riesz representation theorems.

LEMMA 2. Let (Δά) be a decomposition of Ds, and (δj) the decomposi-
tion of I = Σ {0, 1, , s — 1} Q Σ Z obtained by transferring each Δ5

canonically into Σ Z. Suppose that l ^ p ^ ° ° , ωeDs, and {hά)e
LP(T°°; I2) with sp h5 £ δd for every j . Define, for j = 0, 1, 2, ,

h?(x) = Σ hj(pt)(ω, a)(x, a) .
I

Then (h?)eL*(T~;l2), and \\(ht)\\ ^

PROOF. This is simply the statement that the measure μω convolves
Z2-valued Lp functions into objects of the same kind, without increase
of norm. The proof is much the same as the proof of the corresponding
statement about convolution with scalar-valued Lp functions.

4. Spectral LP theorems for Σ Z.

THEOREM 1. Let s be an integer, s ^ 2, (Δd) an LP decomposition
of Ds, and (δj) the canonical image decomposition of I = Σ {0, 1, , s — 1}
in Σ Z. Then (δj) is an LP decomposition of I.

PROOF. Thanks to Lemma 1, if ge TIf and 1 < p < oo, then

)DS )Ί
Xx, a)(ω, a)\pdxdω £

o a

which is to say that
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(1)

Since (Δ3) is an LP decomposition of Ds, it follows from (1) that there

is a number Bp > 0 such that

S f / 2\j»/2

( Σ Σ S(a)ίω, a)(x, a) dωdx ^ Bζ\\g\\> .
T°°JDk \ j azΔt /

So, for at least one ω,
2\2>/2

g(a)(,x, a)(ω, a) dx <, B;\\g\\;.
\
J

But, by applying Lemma 2 to the measure μ_ω9 we then deduce that

S / |2\p/2

( Σ Σ 9(a)(xfa)\ ) dx£B>\\g\\>;

that is, the mapping g -+ (Sδjg) is continuous from L? into LP(T°°; I2). This
is one half of the statement to be proved.

To prove that the mapping is onto, and so complete the proof,
assume that (φό)zLp(T°°\l2) and that s p ^ S δ . for each j . Then for
every ωeDs, ( ^ e L ^ Γ 0 0 ; ! 2 ) , with no increase in norm (Lemma 2). So

( 2 ) \D * Φ7\Ύ*dxdω £

But, since (Δ, ) is an LP decomposition of Ds9 there is a constant Ap such
that

dωdx .( Σ \Φ1 \Ύ/2dωdx ^ A>, \ \ Σ Σ Φi(a)(ω, a){x, a)
D8 jT^jDg j aeδj

Reversing the order of the integrations on the right of (3), and combining
with (2), we conclude that, for at least one ω,

( 4 ) Σ Σ $, , a)(x, a)

Apply Lemma 2 to (4) (using μ_ω), and the inequality

Σ fa(μ)(x, a)

emerges.

COROLLARY 1. If s ̂  2, then the following is an LP decomposition
of the set / = Σ i°, 1, , s - 1} m Σ Z:

So = {0} ,
δj = {nel: ns Φ 0, nt = 0 /or α̂Z ί > j} (j ̂  1) .
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PROOF. This is the canonical image of the standard "corona" LP
decomposition of Ds ([2, Theorem 5.4.2]).

COROLLARY 2. If s ^ 2, then the following is an LP decomposition
of I=Σi{0,l, -,8-l} in Σ ^ :

do = {0} ,

δj = {n e /: nt = 0 if i > k, nk = r)

when j is of the form j — (k — l)(s — 1) + r, (ft = 1, 2, r = 1, ,
8-1) .

PROOF. This is the canonical image of the "coset" LP decomposi-
tion of D8 given in [5].

At the cost of notational complication, the proof of Theorem 1 can
be mimicked to establish the following more general results.

THEOREM 2. Let s be an integer, s ^ 2, (mό) a sequence of integers,
and J = Σitmi> % + s ~ l ] £ Σ ^ For each element (nd) in J, write its
entries ns in the form ns = kάs + rό, where kά e Z, rό e Z, and 0 ^ rά ^
s — 1. The mapping τ: (nj) —> (r, ) identifies J with Ds. If {Δ5) is an LP
decomposition of Ds, then (δ$) — {τ~ι{Aό)) is an LP decomposition of J.

THEOREM 3. Let s = (Sj) be a sequence of integers, each greater than
1. Denote by D8 the group ΠΓ Z{s3), direct product of the cyclic groups
Z(sj), and by Is the subset Σ , {0, 1, ••-,«,•-1} of ΣZ. Then Is is
canonically identiable with D8. If (Δj) is an LP decomposition of D8,
and (Aό) is canonically identified with (δj), then (δj) is an LP decomposi-
tion of I8.

COROLLARY 3. The following family of sets is an LP decomposition
of Is:

So = {0} ,

δj = {n e Is: nό Φ 0, nt = 0 for all i > j} (j ^ 1) .

PROOF. Again, this is the canonical image of a corona LP decompo-
sition ([2, Theorem 5.4.2]).

The interest in Theorems 1-3 is due to the fact that the character-
istic function of the set / (resp. J, I8) is a Fourier multiplier of LP(T°°)
only when p = 2. We shall establish ftiis for the set / only; the other
proofs are similar.

PROPOSITION 1. Let s be an integer, s^2, and 1= Σ {0, 1, , s —1}£
Σ Z. Then & e MP(Σ Z) only if p = 2.
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PROOF. By [1, Theoreme 2, Ch. Ill], it suffices to prove that the
norm of the function 1 + eίx + + eί{s~1)x as a convolution operator on
LP(T) exceeds 1 if p Φ 2. To establish this, fix p > 2, and a positive
integer k. Consider the projection of the trigonometric polynomial

/ = ue~ίx + 1 - kueix

onto

g = 1 — kueix .

Here u is a positive parameter which goes to 0 eventually. We claim
that, by a suitable choice of k, determined by p, we can ensure that,
for all sufficiently small u,

i.e.,

cos 2x - 2(A; - 1)% cos x]rdx ,

r denoting p/2 > 1.

Now as u —> 0, the left side of (5) is, by Taylor's theorem, the fact

that I cos xdx = 0, and I cos2 xdx = 1/2, equal to

( 6 ) (1 + k2u2Y + r ( r " ^ ( l + ifcV)r-24A?V — +

The right side is, by the same token ίuse also the fact that

\ cos2#dx = Oj

- kueix\pdx > [\ue~ίx + 1 - kueix\pdx ,

( 5 ) ([1 + λ V - 2fc% cos x]rdx

( 7 ) ({1 + (fc2 + l)u2 - 2ku2 cos 2x - 2(fc - l)w cos x)r

= \ {1 + (k2 + l)^2}^ + X ί ϋ ^ i l {i + (jfc« + I)u2}r-2{2ku2 cos

+ 2(k - l)u cos a;}2 + o(%2)

= 1 + r(A;2 + 1)«2 + r ( r - l)(fc - 1)V + o(%2)

= 1 + (rW - 2r2k + r 2 + 2rfc)u2 + o(w2) .

Comparing (6) and (7), we see that we have to arrange that r > 2k/(2k — 1)
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in order to have the projection mapping of norm greater than 1. The
integer k can be so chosen at the outset.

COROLLARY 4. If E Q Z, and, for some integer n9 nίE, but n + 1,
n + 2eE, then \\ζE\\Mp > 1 for all p Φ 2.

5. Spectral LP theorems for Z. We present here an instance of an
LP decomposition of a set F in Z.

THEOREM 4. Let (tk)? be a sequence of positive integers such that
(i) tk+1^Ztk for all k; and (ii) Σ (4/%H-I) < °° Denote by F the set
{£k=iocktk: ak = 0 or 1, Σ ak < °°); let Fo = {0} and, for each j ^ 1,
write

( 3-1 )

F, = \n e Z: n = t5 + Σ M*; «* = 0 or l[ .
k=l

LP decomposition of F, but ζF & Mp except when p — 2.

PROOF. Denote by E, E' and F' the following sets.

E - fα = (αfc) e Σ Z: αfc - 0 or 1} ,

Thanks to the hypothesis (i), the sets £" and Ff are canonically identifi-
able, as are E and F. According to a result of Meyer [4, p. 563], if
feLp

F>, say,

and

is the canonical image function on T°° with spectrum in E', then ^
Hflrllp, (Kp < oo). But, by an argument like that in [2, 1.2.8], (j^ ) is
an LP decomposition for F if and only if every 0, 1-valued function on
F which is constant on each F3- multiplies (in the Fourier multiplier
sense) LP

F into itself. A similar statement holds for E and its decompo-
sition (Ej) given in Corollary 1. Since (Ej) is an LP decomposition for
E, it follows from Meyer's theorem that (F/) is an LP decomposition
for F.

To see that ζF$Mp if p Φ 2, recall that the proof of Proposition 1
shows that ξE does not mutiply LE» into itself if p Φ 2. So the proof
is completed by a further appeal to Meyer's theorem.
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6. Construction of A(q) sets. By using the results of the previous
sections on spectral LP decompositions, we now show how to construct
certain sets which are A(p) for all p > 2. Most of the results are due
originally to Bonami.

THEOREM 5. Let k be an integer, k ^ 1. Denote by Uk the subset
°f Σ ^ comprising those n = (nlf n2, •) for which n^ 0 and Σ ^ = k.
Then Uk is a A(p) set for all p > 2.

PROOF. We proceed by induction. When k = 1, Ux is even a Sidon
set hence a A(p) set.

Suppose that 1 <; k and that Uk is known to be a Λ{p) set. Then
Uk+ι can be written as a finite union 2^ U U Ek+1, where E3 comprises
those elements of Uk+1 whose last nonzero entry is j. It will be enough
to prove that each E3 is a A{p) set.

Let (βX be the LP decomposition of / = Σ {0, 1, , k + 1} described
in Corollary 1. If feLp

Ej(T°°), then / e L ? and so, by Corollary 1,

\\f\\P£A?\\S(f)\\p = A?

Ap being the left-hand constant in the LP inequalities for /. It follows
from Minkowski's inequality for p/2 > 1 that

( 8 )

On the other hand, δt Π E3 is the translate, by an amount Xi3 , say, of
a subset of Uk+1-j9 so that

(9) SunEs.f = Xtjft ,

say, fi being supported in Uk+l_5. By the inductive hypothesis, Uk+1-3

is a Λ(p) set, with constant Mό(p) say. So, from (9),

(10) | | S l < n * y / H , = IIΛII, ^ Λfy(P)ll/*ll.
Combining (8) and (10), we deduce that

(11) 11/II, ^ AϊMfrXΣ WSs/Wir2 =
i

because the sets (8t) form a decomposition of /, and / e L J .

The proofs of the next two results, which follow the lines of the
proof of Theorem 5, will be omitted.

THEOREM 6. (a) Let k be a positive integer. Then Γk = {(α,) e
Σ Z(2): Σ ^ i = k} is a A(p) set for all p > 2.

(b) Let Γk = {n = {nτ) e Σ ^ : ^ e { - l , 0, 1}, and
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Γk is a Λ(p) set for all p > 2.

The last theorem emphasizes the point that in the results of the
kind we are discussing it is not any arithmetic relationship among the
coordinates that makes the set of points a Λ(p) set. It is rather the
number of nonzero entries that are permitted to appear. Theorem 7
supersedes Theorem 5.

THEOREM 7. Let (Fά) be a sequence of finite sets of nonnegative
integers, each containing 0, and each having r elements. Let t be a
positive integer, and write

Vt = {n 6 Σ Ft: precisely t coordinates of n are nonzero} .

Then Vt is a Λ{p) set for all p > 2.

PROOF. We sketch the main modifications needed in the proof already
given for Theorem 5.

Let S = (sy) be a sequence of positive integers chosen so that Fd £
[0, Sj - 1] for each j . Denote by I, the set Σ [0, sd - 1]. Let (β/) be
the LP decomposition of Is given by Corollary 3.

If t = 1, the result is clear, since Vx is the union of r independent,
hence Sidon, sets. Assume that 1 <; k < t, and that the result has been
established for Vk. Suppose that / e Lp

V]c+1. By Corollary 3, there is a

constant Ap such that
l/2

So, by Minkowski's inequality (p > 2),

(12)

Now the spectrum of Sδ.f consists of elements n whose last nonzero
coordinate occurs in the i-th position; since there are only (r — 1)
possible candidates for the ΐ-th position, Sδ.f is the sum of (r — 1)
trigonometric polynomials, each of the form JCtfif lLi being a character
of T°°, and f being a trigonometric polynomial with spectrum in Vk;
the (r — 1) functions of the form %</, have disjoint spectra. But, by
assumption, Vk is a Λ(p) set, with constant Mk{p), say. Hence

(13) HXj il, = \\f\\p £ Mk(p)\\f\\2 = MtWWXM .

We combine (12) and (13), as in Theorem 5, to show that

^ A'Λr - l)ί/2Mk(p)(Σ, \\Sδif\\tr2

= A-\r-lY/2Mk(p)\{f\\2.
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REMARKS ON THE Λ(P)-CONSTANTS. There is interest in the behavior,
as p —> oo, of the Λ(p) constants of sets of the type constructed above.
See [1] for a discussion of the matter. Looking back to Theorem 5, for
instance, and the set Uk9 it is easily seen that the A{p) constant obtained
in the proof, and there denoted Mk(p), behaves, as p—>oo, like Apk+1.
By tracing through the arguments in [2, Chapter 5], it can be shown
that Ap1 = Bpf (pf the conjugate exponent), the right hand constant in
the LP inequalities for the "corona" decomposition of ϊ)k, behaves at
worst like p as p -+ + oo. So Mk{p) behaves at worst like ph. The reason
that the constant we obtain does not exhibit the correct growth be-
havior as p -» oo is presumably because, when we utilize the Little-
wood-Paley theorem for Dk and hence for I Q^ΣAZ, we are making a
statement about functions whose spectra may lie well outside Uk itself.
By contrast, Bonami's arguments exploit directly the combinatorial
structure of the sets Uk.

7. Further remarks on LP decompositions associated with "sum"
sets. In another [3], we proved the following result.

THEOREM. Let (%) be a Hadamard sequence of positive integers,
and k a positive integer. Denote by E the set (ΣΓ=i«Λv^ = 0 or 1,
Σ at = k), and let E be enumerated in increasing order as {mλ, m2, •}.
Then the family of intervals [0, mj, \_mu m2), associated with E is an
LP decomposition of [0, oo).

This result effectively extends [1, Corollary 4, Ch. II]. It raises the
following question: suppose Ex and E2 are sets of positive integers each
of which determines an LP decomposition of [0, oo) £ z (via its associated
family of consecutive intervals). Is it the case that E± + E2 also
determines an LP decomposition of [0, oo)? This is not so, as the follow-
ing argument shows. We may even take E2 to be Hadamard.

CONSTRUCTION. Let (rfe)Γ be a sequence of positive integers chosen
so that

for all k. Define

k=l

Let Ex = (2s)Γ=i, a Hadamard set.

Then J5Ί + E2 contains arbitrarily long arithmetic progressions:

{2r* - j : 0 ^ j ^ k) (of length k + 1)
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and so it is not a Λ(p) set for any p. A fortiori, the intervals deter-
mined by E1 + E2 do not constitute an LP decomposition of [0, oo).

However, Ex does determine an LP decomposition. The proof of
this is essentially the same as the proof that if H1 and H2 are Hadamard
sets, then H^ + H2 determines an LP decomposition [3]. The only remark
that need be made is that Eι can be thought of as being built up from
the Hadamard set (2rk)ΐ=1 by stepping backwards in each interval
(2'*-i, 2r*] in steps of 1, (1 + 2) - 1, (2 + 22) - (1 + 2), , (j + 1) + 2j+1 -
(j + 2j), and stopping before passing 2rfc+1. Note that the sequence (j + 2jX
is Hadamard. (Meyer [4, pp. 559-561], has previously used a construction
like the one above in a different, but related context.)
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