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Introduction. Fix real numbers &« = 8 = —1/2 and let P/*#(x) denote
the corresponding Jacobi polynomial of degree n in z, defined by the
relation

(1 — &)1 + 2 Pd(z) = & '1) (L)@ —arra + o).

We then form the normalized polynomials R!*#(x) = P!*#(x)/P\*"(1), so
that sup_,<.<; |R™P(x)] =1, Vv = 0. We let AJ(a, B, 0) denote the space
of series f(x) = X2, a,R™P(x) subject to the condition >3, |a,| < .

The main result of Chapter 2 of this paper states that if fe
AJ(a, B, 0) and if 0 < & < /2 then on [¢, 7 — ¢] we can write

(1) f(cos 0) = %bn cos (nf)
with
(2) S ibaln+ 17 < oo

Conversely, if a cosine series (1) satisfies condition (2) then it represents
an element of AJ(a, B,0). The earlier paper [8] treats the case a = g =
m + 1/2 for an integer m = 0.

That such a result should be possible is suggested by the work of
Gatesoupe [14] on the local properties of radial Fourier transforms in
R" and that of Ricci [25] on absolutely convergent series of characters
on compact semisimple Lie groups.

The space AJ(a, 3, 0) can be given the structure of a Banach algebra
of continuous functions on [—1, 1], with the usual multiplication of
functions, and this has been studied by Askey and Wainger [4], Bavinck
[6], Gasper [12], and Igari and Uno [19]. It can also be viewed as the
Fourier algebra of the hypergroup formed by [—1, 1] when convolution
of functions on [—1, 1] is defined as in [5]. In Chapter 3 we show that
if @« =1/2and —1 < & < 1 then the singleton {x} is not a set of synthesis
for AJ(a, B,0). The case AJ(+1/2, +1/2,0) is an example in the work
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of Chilana and Ross [9], namely the algebra of absolutely convergent
series of characters on SU(2).

We also show that when a > —1/2 and a = 8= —1/2 nonanalytic
functions operate on AJ(a, B3, 0)|._.,—a. This corresponds to [25, Thm.
2].

In the final chapter we use the preceeding results to study spectral
synthesis in the Fourier algebra K(G) of the compact Lie groups G =
SO(n) (n = 4); SUn) (n = 38); Sp(n) (n =2); and F,_ . For example,
we show that if n =4 and 0 < 6 < w then the double coset

1 0---0 cosd sind 1 0---0
0 010
: SO(n —1)|| —sind cos@ : SO(n — 1)
0 0 I/\0

is not a set of synthesis for K(SO(n)). This could be considered as a
“compact group version” of L. Schwartz’s theorem [26] which states
that if m = 8, S™' is not a set of synthesis for the algebra of Fourier
transforms on R™.

NorATION. We let R, C, and H denote the real numbers, complex
numbers, and quaternions, respectively. We set T = R/(2rZ) and view
functions on T as 2z-periodic functions on R.

If {a,}, and {b,}, are two sequences we write a, ~ b, ¥n = 0 to mean
that there are positive constants ¢, and ¢, so that ¢ |a,| < |b.| < c.|a.|,
vn = 0.

1. Review of Jacobi polynomials. Our references for the properties
of Jacobi polynomials are the book of Szego [27] and the works of Askey,
Gasper, and Wainger [1], [3], [[4], [12] and [18]. We begin by setting
up some notation. For @, 8> —1 and -1 <z <1 let

(1.1) Wes(x) = 1 — 2)*(1 + )
and
(1°2) d#a,ﬁ(x) = Wa,ﬁ(x)dx .

DEFINITION 1.3. For @, 8> —1 and an integer n =0, R*?(x) is
the unique polynomial of degree » in z such that:
(i) for every polynomial p(x) of degree less than =,

| @R @t ) = 0 ;

and
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(ii) R&P(1) = 1.

In terms of the notation of Szego [27], R!*"(x) = P (x)/P*"(1).
If a=ZpB8= —1/2 and n = 0 then
(1.4) sup |RP(x)| = RP(1) = 1.

—1szs1

If ac R and ne N we use the notation

(1.5) (=1 and (a),=al@a+1)---(a+n—1).
In the case when a is not a negative integer then we can write
(1.6) (@), = I'(a + n)/I'(a), vneN .

Recall the following properties of the Gamma function.
LemmA 1.7. If a € R\(—N) then
I'n + a)/'(n) ~ (n + 1)*, Vn=0.
If 0 <2 < oo then
251 () (x + 1/2) = 7' (2x) .

This latter equation is called the duplication formula. From Szego
[27, (4.8.8) and (4.1.1)] we know that for &« = 8 = —1/2 the sequence

New g m):= |, R

satisfies
(1.8) N(a, B, m) ~ Cap(n + 1)77%, vVrneN .

Note the following important special cases. When (a, 8) = (0, 0) we
have R{"%(x) = P,(x), the Legendre polynomial of degree n. If we set
= cosf then for n =0, RV>"¥?(cos §) = cos (nf) and R}*Y?(cosf) =
sin ((n + 1)8)/{(n + 1) sin 8}.

In the work below we will need some formulae connecting systems
of Jacobi polynomials for different indices (a, 8). For a summary of
these results see the survey article of Gasper [13].

PrOPOSITION 1.9. For a,3,a > —1 and n = 0, R{»“(x) is equal to

“‘Z”‘l nl(a+1),_o(n+2a—1), u(1/2)(a—a) B8 (x)
=0 (n—2k)! (2k)! (@ +1),_u(n—2k+2a+1), (n—2k+a+1),(n—2k+a+3/2),

and RP(x) equal to

$__ ml@tDinta++Da—ayb+ B+ REP@
Bl — )@ + Dyll + @+ f+ Duk +a + 1), 4@+ a + 8 + 2,
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The first of these identities is [27, (4.10.27)], due to Gegenbauer,
and the second is [3, (2.8)]. We abbreviate these identities by setting

(1.10) Be@) = 3 g(n, ki 0, b, @, ARE@).

The coefficients g(n, k; ---) always exist and we have just written ex-
plicit descriptions of g(n, k; a, a, a, @) and g(n, k; a, B, a, B).

For arbitrary a, 3> —1 and =», m = 0 it is clear that there exist
coefficients H(n, m, k; a, B) such that

(L.11) R (@) Re?(@) = ', Hon, m, I @, AR @) .
=0

An elementary argument shows that H(n, m, k; a, 8) = 0 for k <|n —m|.
Furthermore, Gasper [12] has shown the following to be true.

ProOPOSITION 1.12. For a=g8> —1 and a+ 8= —1, and all
n, m = 0 the coefficients H(n, m, k; o, B) are monmegative for |n — m| =
kE<n+m. In particular,
n+m n+m
S| Hn, m, s , 8)] = S Hoym, ke, 8)=1.
=0 = m|

In—

For further results in this direction see [1], [4], and [12].

This result enables us to equip spaces of absolutely convergent series
S a,R*P(x) with Banach algebra structure, as in [4] and [19].

The spaces which we consider are modelled on certain spaces of
absolutely convergent Fourier series, the so called weighted algebras
[20, p. 153]. We review their properties here, prior to setting up the
more general algebras of absolutely convergent Jacobi polynomial series.

DEFINITION 1.13. For v = 0, A(T) denotes the space of absolutely
convergent Fourier series

Sflx) = 2 0,6
such that || f|, = 3= [a,|(|n] + 1) < .

Note that A(T) is a Banach algebra of continuous functions on 7
and if 0 <v, <, then A, (T)C A, (T). In particular, C*(T)c A(T),
Yy = 0. We use the notation A:(T) to denote the subspace of even
elements of A,(T), that is, cosine series.

If vy =1 then elements of A/(T) are continuously differentiable
functions on T. In fact, if n = [v] = 1and fe A(T) then f™e A, (T) <
A(T). One consequence of this property is that singletons {x} are not
sets of synthesis for A,(T), when v = 1. This means that the closure
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of the ideal J(x) = {f € A(T): f = 0 on a neighbourhood of «} is not all
of the closed ideal I(x) = {f € A(T): f(x) = 0}. To see this, observe that

J@) S {f e A(T): f'(@) = f(2) = 0} = I(a) .

For further discussion of this behaviour see [24, Chpt. 2], [9], and [14].
Another property of A, (T) (v > 0) which distinguishes these spaces
from A(T) = A(T) is the fact that nonanalytic functions operate on
A/(T). More precisely, it is known [20, p. 82] that if F' is a function
on [—1, 1] with the property that Fo f e A(T) for every fec A(T) with
values in [—1, 1] then F' is analytic on [—1,1]. However, if v =1 and
¢ = v + 1/2 then for every F'e A(T) and every real-valued fe A/(T),

(1.14) FofeA(T).

See [20, p. 153]. Leblanc has shown [22] that if 0 <y <1 and £ >1+
(1/2v) then A.(T) operates on A/(T).

2. Absolutely convergent Jacobi polynomial series. In this section
we investigate local properties of some algebras of absolutely convergent
Jacobi series. A special case involving certain ultraspherical polynomials
appears in [8]. Our approach is suggested by the work of Gatesoupe
[14] and Ricei [25].

DEFINITION 2.1. Fora = 8= —1/2 and A = 0 let AJ(a, B, \) denote
the space of those continuous functions f on [—1, 1] whose Jacobi poly-
nomial series

(2.2) f@) = 3 a,BN ()
satisfies
(2.3) 1 Nl 2= 35 1@l (0 + DA < oo .

REMARKS 2.4. From (1.4) we know that if (2.8) is true then the
series (2.2) is uniformly absolutely convergent on [—1, 1]. The coefficients
in (2.2) are determined by

2.5) a, N, 8, n) = S fRePdy,,, VneN.

-1
Clearly, if N, > \, then AJ(a, B, \,) C AJ(a, B, \,). The spaces AJ(a, B, 0)
have been studied by Bavinck [6] who has shown that fora = 8= —1/2
and a = b= —1/2, AJ(a, B, 0) < AJ(a, b, 0) provided either:

(2.6) a=a and b—B8>0 or a—a=L8—-b>0.
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Note that the spaces AJ(—1/2, —1/2, \) are isomorphic with AYT).
That is, fe AJ(—1/2, —1/2,\) if and only if 6 — f(cosd) is an even
element of A,(T). Leblanc has studied weighted ['-spaces of absolutely
convergent trigonometric series, in [21] and [22].

In [4] and [12] it is shown that AJ(a, 8, 0) is a Banach algebra.
This is a consequence of Proposition 1.12. Similarly, one can show the
following holds.

PROPOSITION 2.7. For a=R8= —1/2 and »=0, AJ(a, B, \) is a
Banach algebra of continuous functions on [—1, 1], equipped with usual
multiplication of functions.

As mentioned in the introduction, AJ(a, B8, 0) is the Fourier algebra
of the hypergroup formed by equipping [—1, 1] with the convolution
described in [5]. This convolution generalizes that due to Bochner and
Gel’fand for series of ultraspherical polynomials. The Fourier algebra
of a compact abelian hypergroup is studied in [9].

We next verify the fact that smooth functions on [—1, 1] provide
a space of test functions contained in AJ(a, B, ) for all relevant (a, B8, \).

Suppose f is an even element of C*(T). Then

f(0) = g‘g a, RV (eos ), O0=b=m,
and the sequence {a,} is rapidly decreasing. For a, 3 = —1/2,

R = 3 g(n, ks —1/2, —1/2, @, HR™
and

3 lo(n, k; —1/2, —1/2, a, B N(e, 6, k) < CN(—1/2, ~1/2,n) ,
since
| 1B gt = | Wespian R gty e
From this we conclude that for « = 8= —1/2 and A = 0,
| B2 [l = 3 |9, s —1/2, —=1/2, @, B)|(k + 1)
= (3 190, ks —1/2, =172, @, @ + D7) (n + e

and so

“f”(u,ﬁ,x) <C %[anl(n + 1)2+a+1 < oo,
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Let S denote the collection of functions on [—1, 1] defined by F(cos ) =
f(0) for some even feC=(T).

LEmMMA 2.8. For all a= = —1/2 and » =0, Sc AJ(a, B, \).

The principal result of this section is the following description of
the restriction of AJ(a, B, 0) to subintervals of [—1, 1].

THEOREM 2.9. If a=pg= —1/2 and 0 <e <1 then
AJ(a’ B; 0)|[£—-1,1—s] = AJ('“]-/z’ —1/29 a + 1/2)I[e—1,1—a] .

When a = g =1/2 then AJ(1/2,1/2,0) can be identified with the
algebra of absolutely convergent central Fourier series on SU(2) and
Theorem 2.9 corresponds to [25, Thm. 1], [23], and [9, p. 327].

We prove this in several stages. Firstly, for « = 8 = —1/2 we show
that

(2-10) Wa—ﬂ,o ‘ AJ(a, By O) c AJ(B: B’ a — ﬁ)
and
(2-11) AJ(B’ B, a — B) c AJ(ar B’ 0) .

This reduces the problem to the case of ultraspherical polynomials. Next
we fix an integer N = 8 + 1/2 and show that for A = 0

(2.12) Wyn AJ(B, B, M) C AJ(—1/2, —1/2, N + B + 1/2)
and

(2.13) AJ(—1/2, —1/2,n + B + 1/2) C AJ(B, B, N) .
Then

(2.14) Wi Ad(a, B, 0) C AJ(—1/2, —1/2, a + 1/2) C AJ(at, 3, 0) .
Finally fix 0<e<1 and let ¢ be an element of S such that
()L — )" F1l+ )" =1, e —1 =2 =1—c¢e. Foreach fecAJ(a, g, 0),
(2.14) implies that ¢.- W, y_sx-f€AJ(—1/2, —1/2, « + 1/2) and ¢.-
Wa+N—ﬁ,N * f‘[e—l,l—el = f|[s—1,1—e]- Hence
AJ(a, B, 0)|re—si-a € AJ(—1/2, —1/2, @ + 1/2) |ty -

The reverse inclusion follows from the second part of (2.14).

It remains to prove (2.10)-(2.13).

ProOF OF (2.10). We need to prove that for © = 0,
(2.16) | Weepo Bi® |55 = O(1) .

Fix k for the moment and consider the (B, B)-series W, , Ri“F =
“_,c,R¥%P where
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@17 NG, 8, m) = | W poREPREPdptys = S RSPREPdp, 5
-1 -1

= g(n; k; B B, a, B)N((X, B, k) .
In particular, ¢, =0 for n < k. Furthermore, if @ — 8€ N then
W s o(x)RP(x) is a polynomial of degree k& + @ — 3, in which case ¢, =0
for n >k + a— p.
Case &« — B€N. Here we can write W,_;Ri*P = S kie? ¢, R¥? and
observe that

S eNe, g = | (W iy

= Sl 1Wa—ﬂ,o * (Rfca'm)zd/"a,ﬁ = Ca,ﬁ - N(a, B, k) .

For any » = 0,

k+a—

S e, 0+ 177 < (S e, NGB, 8, m) (3 (n+ DRHN(g, g, my™)

k+a—8 1/2
é Ca,ﬁN(a, By k)l/Z( Z (n + 1)21+2a—25+1+2ﬂ)
n=k
é Ca ﬁ(k + 1)—1/2—a+i+a+1/2 ,
since n is limited to range over k < n <k + o« — 8. This shows that
for =0
(2.18) | Wesos BiP |l a.p.20a-p0 = Ok + 1)) .
In particular, when a — B€ N,
(2.19) W s, AJ(a, B, N) C AJ(a, B, N + ¢ — B) , Vw=0.

Case a« — B3¢ N. Now we must use the explicit description of
g(n, k; B, B, a, B) given in Proposition 1.9 combined with the asymptotic
properties of the Gamma function in estimating ¢,. We know that

9(n, k; B, B, @, B)
:F(n+1)F(lc+1+a)F(n+lc+2,8+l)F(n—k-l—ﬁ—a)X
IF'a+1I'n +28+1)I'k+1)I'n —Fk+ 1)I(B — a)

I'k+a+pB+10)2k+a+ 8+ 2B+ 1)
'k +a+pa+OVn+k+a+p+2l'k+p8+1)

From Lemma 1.7 we conclude that for n = k= 0,
(2.20) g(n, k; B, B, @, B)

~ Cps(n + 1)k + 1) (n — k + 1)F (v + k& + 1)F*".
Combining this with (2.17) and (1.8) we see that
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Cn~ Cop(n + 1)(n — k + 1\ (n + k + 1)F=.
Hence,

(2.21) | Wars,oREP || is,80aepy = C i‘, (n+1)+(n+k+1)Ff*(n—k+1)F

s ( 2";:1 ) Ppp-at = (1) .

In particular, W,_;.AJ(e, B8, 0)C AJ(B, B, @ — B), which completes the
proof of (2.10).

PrOOF OF (2.11). We have defined the coefficients g(n, k; ---) by
setting

II/\

R$# = 3y g(n, & B, B, @, ORI .

Alternatively, the orthogonality of the R{*”’s implies that
gn, k; B, B, @, BN(a, B, k) = Sl R&PREP A, ,
-1

and if @ — B is an integer we saw that this is zero when k< n — a + g.
Case « — B€N. When

Ry = 3% gln, ks - )R

k=0
kzn—a+8

we see that
| REA || w00 = Zk. lg(n, k; -+ -)|(k + 1)*
= S 1g(n, k; ---)| N@, 8, b)*"( + 1’

< a8, By 3 N, 807k + 1)

an a+[3
and so
(2.22) | BEP [ a5, = 0((m + 1)**7F) .
This says that for « — BN and A = 0,
(2.23) AJB, By N +a— R cAJ(a, B, N) .

Case « — B3¢ N. Recalling the asymptotic relation (2.20) we see that
for n = 0,

(2.24) ||RP? || (5,0 < Cayp é (n+1)"(k+ 1)y (n—k+ 1) (n+k+ 1)

g Ca,p(n + 1)—2ﬁ+2a+1+1+ﬂ—a—1 N
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n k + 1 2a+1+2 n + 1 1+a—g o
X JELL A N — k + 1)f~
l§f><n+1) (n—}-k—{-l) ( +D
= 0((n + 1)
Combining (2.23) and (2.24) we prove (2.11).

LEMMA 2.25. If a= 8= —1/2 and A=0, AJ(B, BN+ a—B)C
AJ(a, B, ).

ProoF oF (2.12). We now examine the norm ||Wy x-R&? || _ie, 1225
where £ =0, 3= —1/2, and N is the smallest integer such that N >
B + 1/2. Observe that W, y(x)R{?(x) is a polynomial of degree (& + 2N)
in «, which means that

(2-26) “ WN,N * Rl(cﬁ’ﬂ) “(—1/2,—1/2,1) é Cﬂ : (k + 1)1 “ WN,N * Rl(cﬁ'ﬁ) ”(—1/2,—1/2,0) ’

for all £ = 0.
In [6] it is shown that

Wioe AJ(—1/2, —1/2,0), =0 and W,,eAJ(—1/2, —1/2,0) p£=0.
In particular,
(2-27) H WN,N ° Rl(‘ﬂ,ﬁ) ”(_1/2,_1/2,0) § Cp “ Wp+1/z,5+1/z ° Rl(f'p) “(_1/2,-1/2,0)

Since WN,N = Wﬁ+1/2,p+1/2WN_5_1/2'0W0,N_‘9_1/2. We now haVe a Situation
similar to the proof of (2.10).

Case B+ 1/2eN. If Wiy, iS a polynomial of degree 28 + 1
then for each k& = 0 there are coefficients {c,}, such that
k+28+1
Werropirp BEP = 35 e, RV

n=k
with
k+2B8+1 1
310 EN=12, =12, 1) = | Wissnsess BEPYp o 1nSCrNB, B, 1)

From this we conclude that

k+28+1

3 leu] = CN(B, B, B ~ Cill + 1)+
Hence, for all k=0 and A =0
(2.28) Wy BEP || _yo,mrnn = Ol + 1)767172)

LEMMA 2.29. If 3= —1/2 and B + 1/2€ N then
Wﬂ+1/2,ﬂ+1/2 ¢ AJ(B, ﬁ, )") c AJ(—1/2, —1/2, A+ B + 1/2) ’
for every n = 0.



JACOBI POLYNOMIAL SERIES 399

This corresponds to the result in [8], when )\ = 0.
Case B + 1/2¢ N. Recalling proposition 1.9 and (2.17) we see that

Wrin b1 R{®
= Ej.‘;‘ g(ny k; _1/2: —1/2: ﬁ’ B)N(B’ B’ k)N(_1/2: '—1/2) n)_lR;z_l/2'_l/2) ’
for k=0. If n—k is odd, g(n,k;---)=0. If n—Fk is even,
g(n, k; —1/2, —1/2, B, B) is equal to
(2.30) c(n+1)I(k+B+1)(n+k)(n—k)/2+1/2) [ (n—k)/2—1/2— R)
) re+1r(—12—p)rk+1)rn—k+1)I2Ck+28+1)I'(n+k)/2+1/2)
% rk+28+1)I'(k+B+3/2)
I'((n+k)/2+pB+3/2)
—c 4+ 1) E+28+1)((n+k)2) (n—k)/2—1/2— ) (k+ B+ 3/2)
¢ rE+10)Ir'((n—k)/2+10)Ck+B+1/2)(n+Ek)/2+ B+3/2)
~cy(n + 1)k + 1)*((n + k)/2 + 1)7*((n — k)[2 + 1)7¢732 .
Then, for k = 0 we see that
(2.31) “ Wﬁ+1/2,ﬁ+1/2 - RSP |l(—1/2.—1/2.o)

<o 3 (o D+ B2+ D — B2 4 1)

n=
(n—k) even

< cp(k + 1)~F2 % ((n+ D)(n + & + 2)n — k + 1)

= 0((k + 1)) .
In (2.26) we can write ||Wy,y- R#P || 1,100 = 0((k + 1)¥F71%),

LEmMMA 2.832. If B3 = —1/2 and N is the least integer such that N =

B + 1/2, then
Wy.w AJ(B, B, N) C AJ(—1/2, —1/2,\n + B + 1/2) , YA =0.

3. Consequences. Fixa = 8= —1/2and 0 < e <1. We have shown
that AJ((X, B’ 0)![5—-1,1—5] = AJ(—1/2, —1/2’ o+ 1/2)|[s—1,1—e]' If a 2 1/2 we
know that AJ(—1/2, —1/2, @ + 1/2)|y1-0 & AJ(—1/2, —1/2, 1)|._11-a and
so the elements of AJ(a, B, 0) are differentiable on ]—1,1[. If fe
AJ(a,B3,0) and e —1 <2 <1 —¢, then
(31) lf'(x)l é Ca.ﬂ;!”f”(a,ﬂm) .

THEOREM 3.2. Ifa=pRB= —1/2, a =1/2, and —1 < x, <1 then {x,}
18 not a set of spectral synthesis for AJ(a, B, 0).

PrROOF. As in the work of Chilana and Ross [9] observe that
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J(x,) = {f € AJ(a, B, 0): f = 0 on a neighbourhood of 2} is contained in
{feAJ(a, B, 0): f(x,) = f'(x,) = 0} and this is a proper closed subspace
of I(x,) = {f € AJ(a, B, 0): f(x,) = 0}.

Hence I(x,) is larger than the closure of J(x,). q.e.d.

We can also provide examples of nonanalytic functions which operate
on AJ(a, 8, 0)|r_1,,_, analogous to [25].

THEOREM 3.3. Ifa=pR=—-1/2,a=21/2,0<e<1, FeA, (T) and
iof f is a real valued element of AJ(a, B, 0) then

F°f[[s—1,1—s] € AJ(a, B: 0)‘[5-—1,1-:1 .

PrOOF. From Theorem 2.9 we know that there is a real-valued
gEAJ(—1/2, —1/2,  + 1/2) such that fl._..-0= glte—r,;_aq- Then 60—
g(cos 0) is an element of A:,,,(T) and from [20, p. 153] we know that
0 — F(g(cos §)) is an element of A:,.,(T). Finally note that Foge
AJ(—1/2, —1/2y a + 1/2) CAJ(ay B; 0) and Fogl[e-—l,l—e] = Fof'[s—l,l—EP

q.e.d.

Similarly, we can treat the case —1/2 < a < 1/2.

THEOREM 3.4. If 12>a=pR8= —1/2 and a> —1/2, 0<e<1,
FeAginearn(T), and if f is a real-valued element of AJ(a, B, 0) then
Fofl[e—-l,l—e] € AJ(a; B; 0)][5-1,1-—:]'

Apply [21] in place of [20] in the proof of Theorem 3.3.

In [4] Askey and Wainger prove a Wiener-Lévy theorem for
AJ(e, B, 0).

Theorems 3.3'and 3.4 state that if « = 8= —1/2 and a > —1/2 then
closed subintervals of ]—1, 1] are not sets of analyticity for AJ(a, B, 0),
in contrast with the case of A(T). See [20, pp. 80 and 84].

4. Compact rank one symmetric spaces. We wish to apply the
results of Chapter 2 to demonstrate the failure of spectral synthesis for
the Fourier algebras of the classical compact groups SO(n) (n = 4),
SU(n) (n = 8), and Sp(n). First we recall some facts from harmonic
analysis on compact groups [18] and the theory of zonal spherical func-
tions [10].

For the moment let G denote a compact Hausdorff group with dual
object G and equip G with normalized Haar measure mg. To each geG
fix a representation (7z°, 5#°) e o and set d, = dim 5#° and X, = tr (z°).
Let H be a closed subgroup of G, with normalized Haar measure my.
We assume that the pair (G, H) has the following property: for each
ge@G
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P27 ={ee 7 :n(x)e = & Vx € H}
is either zero or ome-dimensional. Let G, be the collection of ¢ in G
such that #2577 = {0}. Associated to such a pair (G, H) are a family of

special functions, indexed by GH. These are the zonal spherical functions,
defined by setting

¢a(x) = Xa*m}[(x) y xe@ ’ O'GGH .
The properties of {¢,} are examined in [10]. In particular, if ge Gy,

¢0(h1xh2) = ¢a(x) ’ Vx e G ’ hl, hz e H .

Functions with this property are called bi-H-invariant. The fact that
dim (*27°) = 1 implies that ¢,(1) = 1= ||4,]l.. The Fourier algebra of
G is defined to be K(G) = L¥G)=LX@), [18, (34.15)]. It is sometimes
denoted A(G) and its properties are described in [18, §34]. K(G) is an
algebra of continuous functions on G and is equipped with the norm

(4.1) 1 I = inf {{loplle [ 9alle : f = dux ) .

There is an alternative description of the norm on K(G) in terms of
absolutely convergent Fourier series on G, [18, (34.4)].

We are interested in the subspace of bi-H-invariant elements of
K(G), which we denote by ZK(G)?. It is a fact that “K(G)? consists
of series f(@) = Sei,, Gup(@), With | fllx = 3, |a,| < oo.

There is a projection P: K(G) — “K(G)¥ defined in the following
manner. If f is a continuous function on G set Pf(x) = myx* f *xmy(x).

LEMMA 4.2. If fe K(Q) then Pfe”K(@" and |Pflx<|flx If
FeZK(G)" then Pf= f.

Proor. If fe K(G) and ¢ > 0 there exists w4, yn€ L(G) with f=
Arkar, and || fllk = |4 ll:l|¥e]l. — . From the definition of P, Pf=

(Mg % 4fry) % (4, *my) Which shows that Pfe L*G)*L*G). Furthermore,

[ PFllx < llmu sl g e mg fle S Npllellvelle < L F e + €
The ¢ was arbitrary, hence | Pf||x < || f]lx. The last part of the lemma

is obvious. q.e.d.
DEFINITION 4.8. If E is a closed subset of G we let
I(E)={feK(@G): f(x) =0 Yz e K}

and J(E) = {f € K(G): f = 0 on a neighbourhood of E}. We say that E
is a set of synthesis for K(G) if I(E) is the closure of J(E) in K(G).

We now restrict our attention to some special groups, namely those
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corresponding to the compact rank-one Riemannian symmetric spaces.
The possibilities are tabulated as in Table 1, see [2].

TABLE 1
G H G/H
SO(n) {1} x SO(n — 1) St
SO(n) S({£1} X 0(n)) P™Y(R)
SU(n) S(T x Un — 1)) PYC)
Sp(n) Sp(1) X Sp(n — 1) Pr-Y(H)
Fys0 S0(9) P%(Cayley).

If k=R, C,or H, P™(k) denotes the space of k-lines in k™*'. P*Cayley)
is the Cayley projective plane. The geometry of these spaces is described
in [7].

In each case listed here there is a closed subgroup of G isomorphic
to T, which we will denote by A, such that

(4.4) G = HAH .

Let a: T — A be this isomorphism. Then if €T there exist h, h,ec H
with

(4.5) h.a(@h, = a(—0) .

On account of (4.4) and (4.5) it follows that every bi-H-invariant funec-
tion is completely determined by its restriction to A, = {a(f):0 < 6 < x}.
Furthermore, the set H(int A,)H is an open set of full measure in G.

For example, if G = SO(n) and H = {1} x SO(n — 1), with n = 3,
we can take

cosd sind
A=

0
—sinf# cosé ): 0602
0 I

For G and H as above, G, and the zonal spherical functiions have
been completely determined, [16] and [11]. We can identify G, with N
and to each n € N the corresponding zonal spherical function is

(4.6) #a(a(0)) = R;#P(cos ), O0=b=m,

where the indices (a, 8) depend only on G/H.

The possible values of (@, 8) are as in Table 2. See [2] for details.
Note that if d = dim (G/H) then a = (d — 2)/2 and a = 8= —1/2. From
the discussion above and (4.6) we see that for (G, H, a, ) as in Table 2
the correspondence T: ”K(G)* — AJ(a, 3, 0)
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Tf(x) = f(a(arccos (v))), —-l=a=1,
is an isometric isomorphism.
TABLE 2

G/H dim (G/H) P 8
S™(m = 2) m (m — 2)/2 (m — 2)/2
P™(R) m (m — 2)/2 —1/2
P™(C) 2m (m —1) 0
P(H) 4m 2m —1 1
P2(Cayley) 16 7 3

In particular, suppose that G/H is a d-dimensional compact rank-one
Riemannian symmetric space and 0 < e < w/2. Then every fe7K(G)?,
when restricted to {a(d):e £ 6 £ 7w — ¢}, can be written as

f@O) = Sb.cos(nf), esosm—e,
with
@ 3, b0 + D" < C f lx -

This is a consequence of Theorem 2.9.

Hence, if d =38, 06— f(a(d)) is differentiable on ]0,z[. As in
Chapter 3, we wish to use this to demonstrate the existence of sets of
nonsynthesis.

THEOREM 4.8. If G and H are as in Table 1, if the dimension of

G/H is greater than two, and if 0 < 8, < 7w then the double coset Ha(6,)H
18 not a set of synthesis for K(G).

To prove this we will need the following lemma.

LEMMA 4.9. If G and H are as in Table 1, 0< 6, < m, and if U
18 a meighbourhood of Ha(6)H in G then there exists 6 > 0 such that U
contains
H.{a(0):160 — 6,| < 0}. H.

This follows from [15, Lemma VII 7.1].

Now fix 6, as in the statement of the theorem. Suppose that E =
H.a(0,). H and f€J(E). Then Lemma 4.9 implies that there is a 6 > 0
such that Pf(a(6)) = 0 for all |6 — 6,| < 6. Hence (d/dd)(Pf(a(9)))ls=s, = 0.
Since d = 3, (4.7) tells us that we can define a bounded linear functional
A on K(G) by setting

(4.10) A(f) = (d/d6)(Pf(a(0))) lo=s, -
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We have just seen that J(E) < ker (1), and so J(E) < ker (4).
However, I(E) is not contained in ker (4). For example, the func-
tion ¥ defined by

(4.11) U (h,a(0)h,) = cos (8) — cos (6,),  hh,cH,

is in I(E) N (“K(G)?) but A¥) = —sin (6,) # 0, on account of the choice
of §,. This completes the proof of the theorem.

Observe that we could define a collection of bounded functionals
4; (0 = 7 =[(d — 1)/2]) by setting
4;(f) = (@[d0)Y(Pf(a@))o=0, , 1=7=[(d~—1)2],
and A,(f) = Pf(a(6,)). Then the spaces
1;00) = {f e K(@): 4(f) =0, 0=1=<j}
are all closed subspaces of K(G) containing J(E) and
JE) Cita—nm@) & -+ & 0.0,) & I(E) .
This property is similar to [28, Thm. 3].

The theorem of Herz [17] that the circle is a set of synthesis for
the algebra of Fourier transforms on R? suggests that the case of
S0O(8)/S0(2) could be different from the higher dimensional cases described
in Theorem 4.8.

In [25, Thm. 2] Ricei shows that nonanalytic functions operate

locally on K*(G), the subalgebra of central elements of K(G), when G
is a compact connected semisimple Lie group.

THEOREM 4.12. Let G/H be a compact rank-one Riemannian
symmetric space of dimension d > 1. Let x,€ H.int (A,). H. Then there
is a meighbourhood U of x, in G such that A,.(T) operates on the real-
valued elements of (FK(G)®)|y.

PrOOF. Our hypothesis is that x, = h,a(f,)h,, for some 0< 6, < w
and h,, h,€ H. Let 20 = min {4,, |6, — #/2]} and put U = H.{a(f): |0 — 6, <
0}.H, an open set in G. Then (YK(G)7)|, is isomorphic with AJ(«, B, 0)|;,
where I is the interval cos ({6: | — 6,] < 6}). Now apply Theorem 3.3.

q.e.d.
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