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Introduction. Fix real numbers a ^ β ^ — 1/2 and let P^β\x) denote
the corresponding Jacobi polynomial of degree n in x, defined by the
relation

( θ( ^
2n n\

We then form the normalized polynomials R{

n

a>β)(x) = P^β){x)IP^β\l), so
that sup.^^i \R{f>β)(x)\ = 1, Vw ^ 0. We let AJ(α, /9, 0) denote the space
of series f(x) = Σ»=o αJ^'^OiO subject to the condition Σ*=o|αJ < °°

The main result of Chapter 2 of this paper states that if / e
AJ(α, βf 0) and if 0 < ε < τr/2 then on [ε, π — ε] we can write

(1) /(cos 0) = Σ &n cos (Λ»)
71 = 0

with

(2) Σ | δ J ( ^ + l)α + 1 / 2<oo .
71 = 0

Conversely, if a cosine series (1) satisfies condition (2) then it represents
an element of AJ(a, β, 0). The earlier paper [8] treats the case a = β =
m + 1/2 for an integer m ^ 0.

That such a result should be possible is suggested by the work of
Gatesoupe [14] on the local properties of radial Fourier transforms in
Rn and that of Ricci [25] on absolutely convergent series of characters
on compact semisimple Lie groups.

The space AJ(a, β, 0) can be given the structure of a Banach algebra
of continuous functions on [—1,1], with the usual multiplication of
functions, and this has been studied by Askey and Wainger [4], Bavinck
[6], Gasper [12], and Igari and Uno [19]. It can also be viewed as the
Fourier algebra of the hypergroup formed by [—1, 1] when convolution
of functions on [—1, 1] is defined as in [5]. In Chapter 3 we show that
if a ^ 1/2 and — 1 < x < 1 then the singleton {x} is not a set of synthesis
for AJ(a, βy 0). The case AJ( + l/2, +1/2, 0) is an example in the work
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of Chilana and Ross [9], namely the algebra of absolutely convergent
series of characters on SU(2).

We also show that when a > -1/2 and α ^ /3 ̂  -1/2 nonanalytic
functions operate on AJ(a, β, 0)\ίt_ltl_tl. This corresponds to [25, Thm.
2].

In the final chapter we use the preceeding results to study spectral
synthesis in the Fourier algebra K(G) of the compact Lie groups G =
S0(n) (n ^ 4); SU(n) {n ^ 3); Sp(n) (n ^ 2); and F4{_δ2). For example,
we show that if n ^ 4 and 0 < θ < π then the double coset

/I

0

\0

0

SO(n - 1)

cos θ sin θ

- sin θ cos θ

0 II

n o . o\

SO(n - 1)

\0

is not a set of synthesis for K(SO(ri)). This could be considered as a
"compact group version" of L. Schwartz's theorem [26] which states
that if m ^ 3, S™"1 is not a set of synthesis for the algebra of Fourier
transforms on Rm.

NOTATION. We let R, C, and H denote the real numbers, complex
numbers, and quaternions, respectively. We set T = R/(2πZ) and view
functions on T as 2τr-periodic functions on R.

If {αjn and {bn}n are two sequences we write an ~ bn Vn ^ 0 to mean
that there are positive constants cλ and c2 so that c j α j ^ |6n | ^ c2\an\,
Vn ^ 0.

1. Review of Jacobi polynomials. Our references for the properties
of Jacobi polynomials are the book of Szegδ [27] and the works of Askey,
Gasper, and Wainger [1], [3], [[4], [12] and [13]. We begin by setting
up some notation. For a, β > - 1 and - 1 < x < 1 let

(l l) Wa,β(x) — (1 — x)a(l + x)β

and

(1.2) dμa>β(x) = Wa,β(x)dx .

DEFINITION 1.3. For a, β > -1 and an integer n ^ 0, Rι°>β)(x) is
the unique polynomial of degree n in x such that:

( i ) for every polynomial p(χ) of degree less than n,

and
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(ii) ΛίfΛl) = 1.

In terms of the notation of Szegδ [27], ££"•"(») = Pi" β>(x)fP^)(l).
If a ^ β ^ -1/2 and » ^ 0 then

(1.4) sup |Λίί"«(x)| = Λi- »(1) = 1 .

If α 6 R and neN we use the notation

(1.5) (α)0 = 1 and (α)n = α(α + 1) (a + n - 1) .

In the case when a is not a negative integer then we can write

(1.6) (α)n = Γ(α + n)/Γ(a) , VneN .

Recall the following properties of the Gamma function.

LEMMA 1.7. If aeR\(—N) then

Γ(n + a)/Γ(n) ~ (n + l)α , Vn ^ 0 .

If 0 ̂  x < oo ίfee^

22a;-T(α;)Γ(α; + 1/2) = 7Γ1/2Γ(2ίu) .

This latter equation is called the duplication formula. From Szego
[27, (4.3.3) and (4.1.1)] we know that for a ^ β ^ -1/2 the sequence

N(a,β,n):=

satisfies

(1.8) N(a, β, n) - ca,β(n + I)"1"2" , Vn 6 N .

Note the following important special cases. When (α, β) = (0, 0) we
have it^M)(sc) = Pn(αj), the Legendre polynomial of degree n. If we set
α = cos0 then for n ^ 0, i?i-1/2'"1/2)(cos^) = cos (nθ) and i2i1/2'1/2)(cos θ) =
sin ((n + l)0)/{(w + 1) sin ^}.

In the work below we will need some formulae connecting systems
of Jacobi polynomials for different indices (α, β). For a summary of
these results see the survey article of Gasper [13].

PROPOSITION 1.9. For a, β, a> —1 and n^O, R{

n

a'a\x) is equal to

n 1 (a+l).-2»(tt + 2a- l)n_2fe(l/2) fe(α - α)feigj%1 (a?)

-2fc)! (2k) I (a+l)n-2k(n-2k+2a+ϊ)n-2k(n-2k+a+ΐ)k(n-2k+a + 3/2)*'

R{

n

a>β)(x) equal to

nl(q + l)k(n + a + β + l)k(a - a)n-fe(fc + β + D ^ U
a + ^ + l)*(fc + a + l)n_fc(2& + a + β + 2)n_) n _ k
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The first of these identities is [27, (4.10.27)], due to Gegenbauer,
and the second is [3, (2.8)]. We abbreviate these identities by setting

(1.10) R{:>h)(x) = Σ f f ( " , k; a, 6, a9 β)R{f-β)(x) .

The coefficients g(n, k; ) always exist and we have just written ex-
plicit descriptions of g(n9 k; α, α, a, a) and g(n9 k; a, β9 a, β).

For arbitrary a, β > — 1 and n, m ^ 0 it is clear that there exist
coefficients H(n, m, k; a, β) such that

(1.11) Rla>β)(x) - R%'β)(x) = " Σ H(n, m, k; α, β)R{

k

a'β)(x) .

An elementary argument shows that H(n, m, k; a, β) = 0 for k < | n — m \.
Furthermore, Gasper [12] has shown the following to be true.

PROPOSITION 1.12. For a ^ β > - 1 and a + β ^ - 1 , and all

n, m ^ 0 ίfeβ coefficients H(n, m, k\ α, jS) are nonnegative for \n — m | ^
& rίg ?ι + m. In particular,

, m, fc; α, /S) I = Σ ^ ( ^ ^ m > fc; α, ̂ 8) = 1 .
fc=0 Λ=|n-m|

For further results in this direction see [1], [4], and [12].
This result enables us to equip spaces of absolutely convergent series

Σjn=oa<nRn'β)(%) w^^ Banach algebra structure, as in [4] and [19].
The spaces which we consider are modelled on certain spaces of

absolutely convergent Fourier series, the so called weighted algebras
[20, p. 153]. We review their properties here, prior to setting up the
more general algebras of absolutely convergent Jacobi polynomial series.

DEFINITION 1.13. For v ^ 0, AV(T) denotes the space of absolutely
convergent Fourier series

A*) = Σ ane
inx

— o o

such that || / ||y = Σ-oo I a J( | n \ + 1)" < oo.

Note that A(T) is a Banach algebra of continuous functions on T
and if 0 ^ vx ^ v2 then AV2(T)dAVl(T). In particular, C°°(T) c AV(T),
Vv ^ 0. We use the notation Ae

u(T) to denote the subspace of even
elements of AV(T), that is, cosine series.

If v ^ 1 then elements of AV(T) are continuously differentiable
functions on T. In fact, if n = [v\ ̂  1 and fe AU(T) then fn) e Au__n(T) Q
A0(T). One consequence of this property is that singletons {x} are not
sets of synthesis for A£T), when v ^ 1. This means that the closure
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of the ideal J(x) = {f e A^T): f = 0 on a neighbourhood of x} is not all
of the closed ideal I(x) = {/ e A£T)\ f(x) = 0}. To see this, observe that

J{x) £ {/ e AXT): f\x) = f{x) = 0} Φ l{x) .

For further discussion of this behaviour see [24, Chpt. 2], [9], and [14].
Another property of AU(T) (v > 0) which distinguishes these spaces

from A(T) = A0(T) is the fact that nonanalytic functions operate on
AV(T). More precisely, it is known [20, p. 82] that if F is a function
on [-1, 1] with the property that FofeA(T) for every feA(T) with
values in [—1, 1] then F is analytic on [—1,1], However, if v ^ 1 and
μ ;> v + 1/2 then for every FeAv(T) and every real-valued feAv(T),

(1.14) FofeAXT).

See [20, p. 153]. Leblanc has shown [22] that if 0 < v <; 1 and μ > 1 +
then A^Γ) operates on AU(T).

2. Absolutely convergent Jacobi polynomial series. In this section
we investigate local properties of some algebras of absolutely convergent
Jacobi series. A special case involving certain ultraspherical polynomials
appears in [8]. Our approach is suggested by the work of Gatesoupe
[14] and Ricci [25].

DEFINITION 2.1. For a ^ β ^ —1/2 and λ ^ 0 let AJ(a, β, λ) denote
the space of those continuous functions / o n [—1,1] whose Jacobi poly-
nomial series

(2.2) f(x)= ±anR

satisfies

(2.3) 11/11(̂ .2, : = Σ | α . | ( Λ + I ) 2 < o o .
0

REMARKS 2.4. From (1.4) we know that if (2.3) is true then the
series (2.2) is uniformly absolutely convergent on [—1, 1]. The coefficients
in (2.2) are determined by

(2.5) anN(a, A " ) = f χ fKn'β)dμa>β , Vn 6 N .

Clearly, if X, > λ2 then AJ(a, β, λj c AJ(a, β, λ2). The spaces AJ(a, β, 0)
have been studied by Bavinck [6] who has shown that for a ^ β ^ —1/2
and a ^ 6 ^ —1/2, AJ(a, β, 0)cAJ(α, 6, 0) provided either:

(2.6) α = α and b - /3 > 0 or a - a = β - b > 0 .
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Note that the spaces AJ( —1/2, —1/2, λ) are isomorphic with A\(T).
That is, feAJ(-1/2, -1/2, λ) if and only if 0->/(cos0) is an even
element of Aλ{T). Leblanc has studied weighted ^-spaces of absolutely
convergent trigonometric series, in [21] and [22].

In [4] and [12] it is shown that AJ(a, β, 0) is a Banach algebra.
This is a consequence of Proposition 1.12. Similarly, one can show the
following holds.

PROPOSITION 2.7. For a ^ β ^ —1/2 and λ ^ 0, AJ(a, β, λ) is a

Banach algebra of continuous functions on [—1, 1], equipped with usual
multiplication of functions.

As mentioned in the introduction, AJ(a, β, 0) is the Fourier algebra
of the hypergroup formed by equipping [—1, 1] with the convolution
described in [5]. This convolution generalizes that due to Bochner and
GeΓfand for series of ultraspherical polynomials. The Fourier algebra
of a compact abelian hypergroup is studied in [9].

We next verify the fact that smooth functions on [—1, 1] provide
a space of test functions contained in AJ(a, β, λ) for all relevant {a, β, λ).

Suppose / is an even element of G°°{T). Then

f{θ) = Σ αJ2ίr1/2>-1/2)(cos θ), 0 ^ θ ^ π ,
π=0

and the sequence {an} is rapidly decreasing. For a, β ^ —1/2,

Rlrm>-1/2) - ±g(n, k; -1/2, -1/2, a, β)Rΐ>β)

and

Σ \g(n, k; -1/2, -1/2, α, β)\2N(a, β, k) ^ CN(-1/2, -1/2, n) ,
k=0

since

S JfgC—1/2,—1/2) 12^ „ = 1 JP \R{~1/2'~1/2) \2dβ

- 1 U J - l Λ + 1 2 > + 1 2 n -12,-12

From this we conclude that for a ^ β ^ —1/2 and λ ^ 0,

flr(Λ,fc;-l/2, -l/2,α,/3)|(fc + iy

\g(n, k; -1/2, -1/2, a, β)\\k + I)"1"
\Λ=0

and so
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Let S denote the collection of functions on [—1, 1] defined by F(cosθ) =
f(θ) for some even feC°°(T).

LEMMA 2.8. For all α ̂  β^ -1/2 and λ ^ 0, SaAJ(a, β, λ).

The principal result of this section is the following description of
the restriction of AJ(a, β, 0) to subintervals of [—1,1].

THEOREM 2.9. If α ̂  β^ -1/2 and 0 < ε < 1 then

AJ(a, ft O ) ! ^ - . ] - AJ(-1/2, -1/2, α + 1/2)1^,^ .

When a = /3 = 1/2 then AJ(l/2, 1/2, 0) can be identified with the
algebra of absolutely convergent central Fourier series on 517(2) and
Theorem 2.9 corresponds to [25, Thm. 1], [23], and [9, p. 327].

We prove this in several stages. Firstly, for a ^ β ^ —1/2 we show
that

(2.10) Wa_β,0 AJ(a, ft 0) c AJ(β, β, a - β)

and

(2.11) AJ(β, β,a-β) c AJ(a, β, 0) .

This reduces the problem to the case of ultraspherical polynomials. Next
we fix an integer N 2> β + 1/2 and show that for λ ^ 0

(2.12) WN,N AJ(β, β, λ) c AJ(-1/2, -1/2, λ + β + 1/2)

and

(2.13) AJ(-l/2, -1/2, X + β + 1/2) c AJ(/3, β, λ) .

Then

(2.14) Wa+N_β,w AJ(α, /9, 0) c AJ(-l/2, -1/2, α + 1/2) c AJ(a, β, 0) .

Finally fix 0 < ε < 1 and let φε be an element of S such that
φε(x)(l - x)a+N-β(l + x)N = 1, ε - 1 ̂  x ^ 1 - ε. For each / e AJ(α, β, 0),
(2.14) implies that φε T7α+ΛΓ_ ,̂̂  / e AJ(-1/2, -1/2, α + 1/2) and ^ε

Wa+N-β>N / |[e-i,i-εi = / |[.-i,i-.] Hence

AJ(af β, 0)|[e_1,1_£:cz AJ(-l/2, -1/2, α + 1/2)1^,^ .

The reverse inclusion follows from the second part of (2.14).
It remains to prove (2.10)-(2.13).

PROOF OF (2.10). We need to prove that for k ̂  0,

(2.16) \\Wa_β,0.Rίa>β)\\ίβiβ,a-β) = 0(l).

Fix k for the moment and consider the (/3, /3)-series Wa_βt0Rϊa'β) =

Σ^oCnR
{

n

β>β), w h e r e
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(2.17) cnN(β, β, n) = j 1

1 Wa^βl0R}!"β)Elf^dμβfβ = f χ R{

n

β>β)Rΐ>β)dμa,β

= g(n, k; β, β, a, β)N(a, β, k) .

In particular, cn = 0 for w < &. Furthermore, if a — βeN then
Wβ-^oίαO-Ri*'̂ ) is a polynomial of degree k + a — β, in which case cn = 0
for w > & + α - /3.

Case a - βeN. Here we can write TFe_,f0#*ri/i) = Σ ί ί Γ ^ c ^ ' ^ and
observe that

*Σ~' \Cn\2N(β, A Λ> = f ( T Γ ^ ^ Λ l ^ d Λ , ,
n=A; J - l

= \\w._fΛ (Rr »ydμaιt ^ Ca,β N(a, β,k) .

For any λ ^ 0,

* + £ % ( » + i)2+"-' ̂  (Σ \eΛ\n=ifc

since n is limited to range over k^n^k + a — β. This shows that
for λ ^ 0

(2.18)

In particular, when a — βeN,

(2.19) Wa_β,0 AJ{a, β, λ) c ΛJ(α, ftλ + α - ^ ) , Vλ ^ 0 .

Case a — β$N. Now we must use the explicit description of
g(n, k; β, β, a, β) given in Proposition 1.9 combined with the asymptotic
properties of the Gamma function in estimating cn. We know that

g(n, k; β, β, a, β)

= Γ{n + ϊ)Γ{k + 1 + a)Γ{n + k + 2/3 + l)Γ(n - k + β - a)

Γ(a + l)Γ(n + 2β + ΐ)Γ(k + l)Γ(n -k + l)Γ(β -a)

χ Γ(k + a + β + l)Γ(2fe + a + /3 + 2)Γ(/3 + 1)
Γ(2k + a + β + ϊ)Γ(n + k + a + β + 2)Γ(fc + /3 + 1)

From Lemma 1.7 we conclude that for n ^ k 2: 0,

(2.20) flr(n, k; β, β, a, β)

~ Ca,,(n + l)-2"(fc + l)2α+1(% - fc + l ) ' - " " 1 ^ + A; + l

Combining this with (2.17) and (1.8) we see that
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c. ~ Ca,β(n

Hence,

(2.21) ||TΓβ_/),.Bi" « H,,.,..-,, ^ C

In particular, TFβ_MAJ(α, β, 0) c AJ(/3, β, a — β), which completes the
proof of (2.10).

PROOF OF (2.11). We have defined the coefficients g(n,k; ) by-
setting

£ ( , β f β ,
k=0

Alternatively, the orthogonality of the 22iβf*}'s implies that

g(n, k; β, β, a, β)N(a, β, k) =

and if a — β is an integer we saw that this is zero when k < n — a + β.

Case a — βeN. When

RX β)= Σ g(n, k; )Rί*'»
kiπ-a+β

we see that

Σ I g(n, k>
k

and so

(2.22) W > ||(β̂

This says that for a — βeN and λ ^ 0,

(2.23) AJ(β, β,X + a- β)a AJ(a, β, λ) .

Case a — β$N. Recalling the asymptotic relation (2.20) we see that
for n ^ 0,

(2.24) \\W \\Mtl) ^ Ca,β Σ(n+l)-*β(k+l)*+1+Kn-k + i y - ^

^ Ca,β(n + I
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J_ 1 \2α+l+J/ /w i 1 \l+α-j8

±i) ( 5 + i ) (x Σ

Combining (2.23) and (2.24) we prove (2.11).

LEMMA 2.25. // a ^ β ^ -1/2 αwd λ ^ 0, A/(/3, β,\ + a - β)a
AJ{a, β, λ).

PROOF OF (2.12). We now examine the norm \\WNiN'R\?'fi)\\{_1/2t_lM),
where k ^ 0, β^ —1/2, and JV is the smallest integer such that N ^
/3 + 1/2. Observe that WNtN(x)Rίp>β)(x) is a polynomial of degree (A? + 2N)
in x, which means that

(2.26) || WNiN Λi' " ||(_1/2,_1/2,,) ^ C, (k + 1YII WNίN . Λî  ^ ||(_1/2,-i/2,o) ,

for all k ^ 0.
In [6] it is shown that

Wμ,0 e AJ(-1/2, -1/2, 0) , μ ^ 0 and JFOf, 6 AJ(-1/2, -1/2, 0) μ ^ 0 .

In particular,

(2.27) || T 7 ^ - RΪ-» ||(_1/2,_1/2,o) ^ C, || ̂ + 1 / 2 , , + 1 / 2 - Rl™ ||(_1/2,-1/2,o)

since WNtN = WβΛ.mtβ+υ2WN_β_ι/2tQWQ)N_β_lί2. We now have a s i tuation

similar to the proof of (2.10).

Case β + 1/2 6 N. If W^+1/8^+1/2 is a polynomial of degree 2β + 1
then for each k ^ 0 there are coefficients {cn}n such that

v /» D(-I/2,-I
n=k

with

*+£Ίc.|W(-l/2, -1/2, n) = Γ (Wf+in,,+1Λ-Rl> ')ydμ_lΛ.-iΛ£CrN(β, β, k) .
n=k J - l

From this we conclude that

*Σ + 1 | c« | ^ CjJVίft β, k)1/2 ~ C,(fc + l)-^-1/2 .
n=fc

Hence, for all k ^ 0 and λ ^ 0

\£i.AO) (I VV jsf,N ttk ||<—1/2,—1/2,-2) — U l l / C ^ *-) )

LEMMA 2.29. If β^ -1/2 αtid /3 + 1/2 eiV ίfee^

^+i/2,^+i/2 AJ(/3, ft λ) c AJ(-1/2, -1/2, X + β + 1/2) ,

/or evert/ λ ^ 0.
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This corresponds to the result in [8], when λ = 0.

Case β + 1/2 giV. Recalling proposition 1.9 and (2.17) we see that

W R{βtβ)

= Σfir(», k; -1/2, -1/2, β, β)N(β, β, k)N(-l/2, -1/2, nY'R^'-^ ,
n=k

for k ^ 0. If n — k is odd, g(n, k; •) = 0. If n — k is even,
g(n, k; -1/2, -1/2, β, β) is equal to

( 2 3 0 ) c(n+l)Γ(fc + ̂ +l)Γ(n + k)Γ{(n - fc)/2 + l/2)Γ((?t - fc)/2 -1/2 - β)
Γ{β + 1)Γ( -1/2 - β)Γ{k + ΐ)Γ(n - fc+l)Γ(2fc + 2β+l)Γ((π + k)/2+1/2)

Γ(fe+2/3+l)Γ(fc+/3+8/2)
Γ((w+fc)/2+/3+3/2)

_• (n + l)Γ(fe + 2/8+l)Γ((n + fc)/2)Γ((n-fc)/2-l/2-/8)Γ(fc+/8+3/2)
— c^—

~ cβ(n + l)(fc + 1)2*+1((% + &)/2 + l)-^3/2((w - k)/2 + l

Then, for k 2; 0 we see that

(2.31) || Wn.vt.wRl>-'> || (_1/2,-1/2,o,

(* + D((Λ + fc)/2 + D~β-s/\(n - k)/2
n=k

{n—k) even

2))(w - fc

In (2.26) we can w r i t e \\WN>N Rlβ>β)\\{_1/2,-1/2tλ) = 0((fc + 1 ) ^ " 1 / 2 ) .

LEMMA 2.32. If β^ —112 and N is the least integer such that N^
β + 1/2, then

WN)N AJ(β, β, λ) c AJ(-l/2, -1/2, λ + β + 1/2) , Vλ ^ 0 .

3. Consequences. Fix a ^ β ^ —1/2 and 0 < ε < 1. We have shown
that AJ(α, β, 0)\u_ltl_ε] = AJ(-l/2, -1/2, α + l/2)| [Mfl_.]. If α ^ 1/2 we
know that AJ(-l/2, -1/2, a + l/2)\ίε_ltl_εl £ AJ(-l/2, -1/2,1)IC—LI—I and
so the elements of AJ(a, β, 0) are differentiate on ] —1, 1[. If fe
AJ(a, β, 0) and ε — l ^ α ^ l — e, then

(3.1) \f'(x)\ύCatβ,,\\f\\ia,β,0).

THEOREM 3.2. Ifa^β^ -1/2, a ^ 1/2, cmd - 1 < x0 < 1 ίfee^ {#0}
is ^oί α seί of spectral synthesis for AJ(a, β, 0).

PROOF. AS in the work of Chilana and Ross [9] observe that
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J(xo) = {fe AJ(a, β,0):f=0 on a neighbourhood of xQ} is contained in

{/ 6 AJ(a9 ft 0): f(x0) = f'(x0) = 0} and this is a proper cZoseeZ subspace

of I(x0) = {/ 6 iU(α, ft 0): /(a0) - 0}.

Hence I(x0) is larger than the closure of J(x0). q.e.d.

We can also provide examples of nonanalytic functions which operate
on AJ(a, β, 0)|[f_lfl_,], analogous to [25].

THEOREM 3.3. Ifa^β^ -1/2, a ̂  1/2, 0 < ε < 1, FeAa+1(T) and
if f is a real valued element of AJ(a, ft 0) then

F°f\u-i,i-*zAJ(a, β, 0)![._!,!_.] .

PROOF. From Theorem 2.9 we know that there is a real-valued
geAJ(-l/29 -1/2, a + 1/2) such that A..!.!-.] = ffk.-i.i-.i- Then 0->
g(cosθ) is an element of A;+ 1 / 2(JΓ) and from [20, p. 153] we know that
0-> F(g(cos θ)) is an element of Ae

a+1/2(T). Finally note that Fogs
AJ(-l/2, -1/2, α + 1/2) cAJ(a, ft 0) and J Ό ^ ^ = F o / | [ s _ u _ e ] .

q.e.d.

Similarly, we can treat the case —1/2 < a < 1/2.

THEOREM 3.4. If 1/2 > α ^ £ ^ -1/2 αwd α > -1/2, 0 < ε < 1,

jPe i4(2α+2)/(2β+iϊ(ϊτ), α^ώ if f is a real-valued element of AJ(a, β, 0) ίfee^
-Pτ°A.-i.i-.]S A/(α, ft 0)![..!,!_.].

Apply [21] in place of [20] in the proof of Theorem 3.3.
In [4] Askey and Wainger prove a Wiener-Levy theorem for

AJ(a, ft 0).
Theorems 3.3 and 3.4 state that if a ̂  β ̂  -1/2 and a > -1/2 then

closed subintervals of ] — 1, 1[ are not sets of analyticity for AJ(a, ft 0),
in contrast with the case of A(T). See [20, pp. 80 and 84].

4. Compact rank one symmetric spaces. We wish to apply the
results of Chapter 2 to demonstrate the failure of spectral synthesis for
the Fourier algebras of the classical compact groups S0(n) (n ̂  4),
SU(ri) {n ̂  3), and Sp(n). First we recall some facts from harmonic
analysis on compact groups [18] and the theory of zonal spherical func-
tions [10].

For the moment let G denote a compact Hausdorff group with dual
object G and equip G with normalized Haar measure mG. To each σ e G
fix a representation (πσ, Sίf°)^σ and set dσ = &\m£ίfa and la = tτ{π°).
Let H be a closed subgroup of G, with normalized Haar measure mH

We assume that the pair (G, H) has the following property: for each
σeG
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= {ς e £era: π\x)ξ = ξ,VxeH}

is either zero or one-dimensional. Let GH be the collection of σ in G
such that H^fa Φ {0}. Associated to such a pair (G, H) are a family of
special functions, indexed by GH. These are the zonal spherical functions,
defined by setting

*) i » e G , σeGH .

The properties of {φσ} are examined in [10]. In particular, if σeGH,

ΦoihiXhz) = 0σ(a&) , VxeG , huh2eH .

Functions with this property are called bi-H-invariant. The fact that
d i m ( H ^ α ) = 1 implies that φσ(ΐ) = 1 = ||$UU. The Fourier algebra of
G is defined to be K(G) = L\G)*L2(G), [18, (34.15)]. It is sometimes
denoted A(G) and its properties are described in [18, §34]. K(G) is an
algebra of continuous functions on G and is equipped with the norm

(4.1) 11/IU = in£{||+i 11.11^11.:/ = + i * ^ } -
There is an alternative description of the norm on K(G) in terms of
absolutely convergent Fourier series on G, [18, (34.4)].

We are interested in the subspace of bi-iZ-invariant elements of
K(G), which we denote by HK(G)H. It is a fact that ΠK(G)H consists
of series f(x) = ΣiaedHaσφβ(x)f with | | / | | * = Σ* K l < °°

There is a projection P: K{G) ->RK(G)H defined in the following
manner. If / is a continuous function on G set Pf(x) — mH*f*mH(x).

LEMMA 4.2. If feK(G) then PfeHK(G)H and \\Pf\\κ ^ | | / | |* . //
feHK(G)H then Pf=f.

PROOF. If feK(G) and ε > 0 there exists ψlfψ2eL\G) with / =
ψt*ψ2 and | | / | U ^ ll^i | | 211^2| | 2-e. From the definition of P, Pf =
{mH * ψx) * (ψ2 * ̂ H) which shows that PfeL\G)*L\G). Furthermore,

IIP/Ik ^ l | m i r * t 1 | | ϊ | | t 2 * m 2 r | | 2 ^ H f i l U l ^ l l ί ^ l l / l k + e .

The ε was arbitrary, hence | |P/ |U ^ II/IU The last part of the lemma
is obvious. q.e.d.

DEFINITION 4.3. If E is a closed subset of G we let

I(E) = {feK(G):f(x) = 0 VαeS}

and J(J&).= {feK(G):f= 0 on a neighbourhood of E}. We say that E
is a set of synthesis for K{G) if /(£?) is the closure of J(E) in K(G).

We now restrict our attention to some special groups, namely those



{1} x SOin - 1)
S({±1} x 0(n))
S(Tx U(n-1))
Sp(l) x Spin - 1)

S0(9)

p-i(iJ)
p-i(C)
p»-l(#)
P2(Cayley)
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corresponding to the compact rank-one Riemannian symmetric spaces.
The possibilities are tabulated as in Table 1, see [2].

TABLE 1

G H G/H

SOin)
SOin)
SU(n)
Spin)

If k = R, C, or H, Pm(k) denotes the space of ft-lines in km+1 P2(Cayley)
is the Cay ley protective plane. The geometry of these spaces is described
in [7].

In each case listed here there is a closed subgroup of G isomorphic
to Γ, which we will denote by A, such that

(4.4) G = HAH .

Let a: T —> A be this isomorphism. Then if θ e T there exist hlf h2 e H
with

/A pς\ 7 n(ff\Tn /γ/ /Q\

On account of (4.4) and (4.5) it follows that every bi-iϊ-invariant func-
tion is completely determined by its restriction to A+ = {a(θ)\ 0 <̂  θ ̂  π}.
Furthermore, the set iϊ(int A+)H is an open set of full measure in G.

For example, if G = SO(n) and H = {1} x SO(n - 1), with n ^ 3,
we can take

cos 0 sin 0 V

-s in0 cos0 I: 0 < Θ < 2π

o // - ~
For G and H as above, GH and the zonal spherical functions have

been completely determined, [16] and [11]. We can identify GH with N
and to each nGN the corresponding zonal spherical function is

(4.6) ΦJίβ{θ)) = Rla'β)(cos θ) , 0 <: θ ̂  π ,

where the indices (α, /5) depend only on G/H.
The possible values of (α, /5) are as in Table 2. See [2] for details.

Note that if d = dim (G/H) then a = (d - 2)/2 and α ̂  ^ ^ -1/2. From
the discussion above and (4.6) we see that for (G, iϊ, α, β) as in Table 2
the correspondence T: HK(G)H —»AJ(a, β, 0)
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Tf(x) = /(α(arc cos (a?))) , - 1 ^ x ^ 1 ,

is an isometric isomorphism.

TABLE 2

GIH

Sm(m ^ 2)
PW(Λ)
pm(C)
p«(jar)
P2(Cayley)

dim (GIH)

m
m

2m
4m
16

α

(m - 2)/2
(m - 2)/2
(m-1)
2 m - 1

7

(m - 2)/2
-1/2

0
1
3

In particular, suppose that GIH is a d-dimensional compact rank-one
Riemannian symmetric space and 0 < ε < π/2. Then every feHK(G)H,
when restricted to {a(θ): ε <; θ ^ π — ε}, can be written as

= 2J bn cos (nβ) , ε-^θ ^π - ε ,
71=0

with

π=0

This is a consequence of Theorem 2.9.
Hence, if d ^ 3, 0 -> /(α(0)) is differentiate on ]0, ττ[. As in

Chapter 3, we wish to use this to demonstrate the existence of sets of
nonsynthesis.

THEOREM 4.8. // G and H are as in Table 1, if the dimension of
G)H is greater than two, and if 0 < 0O < π then the double coset Ha(θo)H
is not a set of synthesis for K(G).

To prove this we will need the following lemma.

LEMMA 4.9. If G and H are as in Table 1, 0 < 0O < π, and if U
is a neighbourhood of Ha(θo)H in G then there exists δ > 0 such that U
contains

H.{a(θ):\θ - 0OI <δ}.H .

This follows from [15, Lemma VII 7.1].
Now fix 0O as in the statement of the theorem. Suppose that E =

H. α(0o). H and / 6 J(E). Then Lemma 4.9 implies that there is a δ > 0
such t h a t Pf{a{θ)) = 0 for all |0 - 0 O | < 8. Hence (d/dθ)(Pf(a(θ)))\θ=θo = 0.

Since d Ξ> 3, (4.7) tells us that we can define a bounded linear functional
A on K(G) by setting

(4.10) A{f) = (dldθ)(Pf(a(θ))) \Mo .
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We have just seen that J(E) Q ker (A), and so J(E) £ ker (A).
However, I(E) is not contained in ker(Λ). For example, the func-

tion Ψ defined by

(4.11) Ψ{hxa{θ)h2) = cos (θ) - cos (0O) , hxh2 e H ,

is in I(E) Π (HK(G)H) but Λ{Ψ) = -sin(0o) Φ 0, on account of the choice
of θ0. This completes the proof of the theorem.

Observe that we could define a collection of bounded functionals
Λj (0 ^ j ^ [(d - l)/2]) by setting

and Λ(/) = Pf(a(θ0)). Then the spaces

ii(*o) = {/ 6 K(G): Atf) = 0 , 0 ^ Z ̂  i}

are all closed subspaces of K{G) containing J(E) and

J{E)

This property is similar to [28, Thm. 3].
The theorem of Herz [17] that the circle is a set of synthesis for

the algebra of Fourier transforms on R2 suggests that the case of
SO(3)/SO(2) could be different from the higher dimensional cases described
in Theorem 4.8.

In [25, Thm. 2] Ricci shows that nonanalytic functions operate
locally on K*(G), the subalgebra of central elements of K(G), when G
is a compact connected semisimple Lie group.

THEOREM 4.12. Let G/H be a compact rank-one Riemannian
symmetric space of dimension d > 1. Let x0 6 H. int (A+). H. Then there
is a neighbourhood U of x0 in G such that Ad/2(T) operates on the real-
valued elements of (HK(G)H)\u.

PROOF. Our hypothesis is that x0 = h^iθ^h^ for some 0 < θ0 < π
and K h2 e H. Let 2δ = min {θ0, \ ΘQ - π/21} and put U = H.{a(θ): \ θ - θo\ <
δ}.H, an open set in G. Then (HK(G)H)\σ is isomorphic with AJ(a, β, 0)|7,
where I is the interval cos ({θ: \θ — θo\ < δ}). Now apply Theorem 3.3.

q.e.d.
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