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1. Introduction. In 1926, R. Nevanlinna proved the following
unicity theorem for meromorphic functions on C ([12]).

THEOREM. Let ¢, 4 be monconstant meromorphic functions on C. If
there exist five distinct values a,, - -+, ay such that ¢ (a;) = v a,) 1=
1 = 5), then ¢ = .

The author gave several types of generalizations of this to the case
of meromorphic maps of C" into P¥(C) in his papers [3] ~ [8]. In this
paper, we study meromorphic maps of an n-dimensional complete Kahler
manifold M into P¥(C) and give a new type of unicity theorem in the
case where the universal covering of M is biholomorphic to the ball in
C" and meromorphic maps satisfy a certain growth condition.

Let M be an m-dimensional connected Kahler manifold with Kahler
form ® and f be a meromorphic map of M into PY(C). For o =0 we
say that f satisfies the condition (C,) if there exists a nonzero bounded
continuous real-valued function 2 on M such that

02; + dd°logh* = Ric w ,

where 2, denotes the pull-back of the Fubini-Study metric form on
P¥(C) by f and d° = (V' —1/47)@ — ).

Take a point pe M. We represent f as f= (fi: -+ : fys) On a neigh-
borhood of p with holomorphic functions f;, where f:= (f, ---, fwvs) &
0, --+,0). Let _# denote the field of all germs of meromorphic functions

at p. For each k=0 we consider the _#,-submodule &,* of _Z "
generated by all elements (0'%!/02z*)f with |a| <k, where z = (2, +*-, 2,)
is a system of holomorphic local coordinates around p and |a| = a; +
oo +a, for a = (a, -+, a,).
By definition, the k-th rank of f is given by
rs(k) := rank_,, &,* — rank_, F,**,

which does not depend on the choices of a point peM, a reduced
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representation of f and holomorphic local coordinates z (cf. Section 2).
Set

L= 3 krs(l)
my = 30 = O mind,H, (r,0) - 5.8}

where z* = max{z, 0} for a real number z and ,_,H,; denotes the number
of repeated combinations of A elements among n — 1 elements. We have
always

ogmfglfgﬂ%.

The main result in this paper is stated as follows.

MAIN THEOREM. Let M be a complete, connected Kahler manifold
whose universal covering is biholomorphic to C™ or the unit ball in C",
and let f and g be nondegenerate meromorphic maps of M into P¥(C). If
S and g satisfy the condition (C,) and there exist ¢(=N + 2) hyperplanes
in PY¥(C) located in gemeral position such that

(i) f=g on UL, f(H)Ug™(H),

) ¢>N+1+p0l;+1,)+ m;+ m,
then f=g.

If n =N and f is of rankn, then m; =1 and l; = N (cf. Example
3.3). Therefore, we have:

COROLLARY 1. In Main Theorem, tf n = N and f and g are of
rank n, then the condition (ii) of Main Theorem can be replaced by
@i g¢> N+ 20N + 3.

For the case M = C", we can take the flat metric whose Ricci form
vanishes. Therefore, all meromorphic maps of C* into P¥(C) satisfy the
condition (C;). This gives:

COROLLARY 2. Let f,g:C"— P"(C) be mondegenerate meromorphic
maps. If there exist q hyperplanes H,, ---, H, in general position such
that

(i) f=g9 on UL, f(H)Ug™(H)),

(i) ¢>N+1+m;+ m,

Then f = g.

This yields the classical theorem of R. Nevanlinna for the case n =
N =1, and the result of S.J. Drouilhet for the case » = N and f, g are
of rank n (cf. [1]).
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In Section 2 we shall recall some known facts which will be needed
later and in Section 3 we shall furnish a lemma concerning the order of
poles for a special type of meromorphic function. In Section 4 we shall
prove Corollary 2 directly. Moreover, we shall study meromorphic maps
f, g of the unit ball into P¥(C) satisfying the condition

lim sup log(1/(1 — 7)) < oo
ro1 Tf(’r, ’ro) -+ Tg(ry 'ro)

and give a unicity theorem for such maps. Main Theorem will be com-
pletely proved in Section 5.

2. Preliminaries. For later use, we recall some known results
concerning meromorphic maps into PY(C).

Let M be an n-dimensional complex manifold and f: M — PY(C) be a
meromorphic map. We take a point p e M and denote by _#, the field
of all germs of meromorphic functions at p. Let U be a holomorphic
local coordinate neighborhood of p which is a Cousin-II domain. Then,
f has a reduced representation on U, namely, a representation f =
(fi: -+« : fyr) such that each f, is a holomorphic function on U and f(z) =
(fi®): -+« ¢ fwi:(2)) outside the analytic set {ze U:f,(2) =0,1 =1 < N+ 1}
of codimension =2. For a set a = (a,, :++, a@,) of nonnegative integers
a;, we set

. PICL ol
Def = (mfu ] mfm-1> G%NH ’
where we mean D'f = f:= (f, -+, fy.). For each k = 0 we denote by
¥ the _#,-submodule of _#Z"*' generated by {D°*f:|a| <k} and set
F = {0}

DEFINITION 2.1. We define the k-th rank of f by
rs(k) := rank ., &* — rank . 7'

(2.2) The k-th rank rs(k) does mot depend on the choices of a point
p, a reduced representation of f and holomorphic local coordinates

(e +*+, 2,).
For the proof, see [10, §4].
DEFINITION 2.3. We define the total rank of f by
rei= %frf(lc) -1

and the total degree of the Jacobian matrixz of f by
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lf = Iék’rf(k) .

2.4) (i) Iy = N(N + 1)/2 for all meromorphic maps into PY(C).
(ii) A meromorphic map f: M — PY(C) is mondegenerate, mamely,
has the image not contained in any hyperplane, if and only if r; = N.

For the proof, see [10, §4].

We now consider a meromorphic map f of B(R,) := {z€C": ||z]] < Ry}
(0 < B, = + o) into P¥(C), where [2]| = i, |2,[)"* for 2 = (z,, - -+, 2,) € C"
and we mean B(e) = C". Taking a reduced representation f= (fi: ---:
fvs) on B(R,), we set

Hf” = (|f1|2 + e+ |fz\r+1|2)1/2 .
By definition, the pull-back of the normalized Fubini-Study metric form
by f is given by
2y := dd° log || f|I* .

We set v, = (dd°|z]|®)} o, = d°log ||z]*A(dd° log ||z||»)"* and S(r) =

{zeC™ 2| = r}.

DEFINITION 2.5. The characteristic function of f is defined by

To(r, 7o) i= S dt SM Q2 Av,, O<r<r<R).

r0 tzn—l
We then have
2.6) Ty, =\, loglflo,~| toglfla,.
S(r) S(ro)

For the proof, see [15, pp. 251-255].

Let ¢ be a nonzero meromorphic function on B(R,). We may regard
é as a meromorphic map into P'(C). For each a e P(C) we denote the
zero multiplicity of ¢ — a at a point z € B(R,) by v5(z). Set

1 S vi,, if n>1
ni(r) = 772 Jig=a}nB(r)
>, vi(2) if n=1,
zeB(r)

and define the wvalence function for a by

Ni(r, 7o) = S

7o

ﬂt(i)dt O<r,<r<R).

We then have the following Jensen formula:
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en | loglslo.—~ | loglslo. = Nytr, m) — Nytr 7).
S(r) S(rg)

For the proof, see [15, p. 248].

Let f: B(R,) — PY(C) be a nondegenerate meromorphic map with a
reduced representation f= (f,: -+ :fys) and set £ = (f, +++, fyro)-

DEFINITION 2.8. Leta‘=(af, -+, a!) 1 21X N+ 1) be N+ 1 sets
of nonnegative integers. The generalized Wronskian of f (or of f) is
defined by

Weateoavis(f) = Watoqwns(f) :=det(D*f: 1 < i< N+1).

DEFINITION 2.9. We say that a system {af, -, &} (&=
(@t -+, aky) is admissible for f (or for f) if for each k =0 {D*f, ---,
D**f} gives a basis for the _#-module .&7;*, where p is an arbitrarily
chosen point in M and I(k) = rank . F,".

For an admissible system {a, --:, @™} for f and a holomorphic
function g on B(R,), we see

(2.10) Wot..aiv+1(gf) = ¥ Woa.qwia(F) ©
For the proof, see [10, Proposition 4.9].
Now, let us consider ¢ (=N + 2) hyperplanes
Hpidsw, + -+ +aiwyy, =0 A=7=0)
in P¥(C) located in general position and set
Fi=aifi+ - +0i"fru=0 1=27=09.
Taking an admissible system {a?, ---, "'} for f, we define

e Woteoqna(f)
@.11) b= TECTE

which is a nonzero meromorphic function on B(R,. In this situation,
we can prove:

PROPOSITION 2.12. Let0 <7, < Ryand 0 <l;t < p' <1. Then, there
xists a constant K > 0 such that for r,<r < R < R,

2n—1 »’
SS“_) |za1+...+a1v+1¢[zHf”z(q—zv—no.n < K<RR_ /rTf(R: "'o)) ’

where 25 = 251 -+ 2% for 2 = (2, »++, 2,) and a = (@, ***, Q,).
For the proof, see [10, Proposition 6.1].

For real-valued functions f(r) and g(r) on [r, R, by notation f(r) <
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g(r)|| we mean that f(r) < g(») on [r, R, outside a set E such that
S dr < o in case R, = « and S (R, — r)7'dr < o in case R, < . We

E E
can conclude from Proposition 2.12 the second main theorem in value

distribution theory, which is stated as follows.

THEOREM 2.13. Let f: B(R,) — P¥(C) be a nondegenerate meromorphic
map and H, ---, H, be hyperplanes in general position. Then,

(@ = N~—=1Tsr, r) < Ng(r, ro) + Si(r) ,

where there exists a positive constant K such that

1° Sy(r) =1, log

+ Klog™ Ti(r, r)l| if R, < oo

0
2° Sy(r) £ K(og* T;(r, r)) + log )| if R, = oo.

The proof is given by the same argument as in the proof of [10,
Proposition 6.2].

REMARK 2.14. In Theorem 2.13, if R, = < and lim,_. T((r, ry)/log r <
oo, or equivalently f is rational, then we can choose S;(r) to be bounded.

3. A lemma. Let f: B(R,) — P¥(C) be a nondegenerate meromorphic
map with a reduced representation f = (fi: +-+ : fyio)-

DEFINITION 3.1. As stated in Section 1, we define

myi= 306 = min{n_lH,, <frf(k) - g n_1H1)+,} .

(3.2) It hOldS that mys é lf .
Indeed, if we set A(l) = >i2h . H, and ¥ := max{l: A(l) < r,(k)}, then

k
l0

my < 35 (k= Do H, + e, () — A®)))

=0

< é‘é E(AUS) + (ry(k) — AUD)) =1, .

EXAMPLE 3.3. Suppose that N = # and f is of rank N, namely, the
Jacobian of f does not vanish at a point p ¢ I,, where I, denotes the set
of all indeterminate points of f. Then, we have m, =1 and [, = N.

To see this, we take a point p¢ I, and a system of holomorphic
local coordinates z,, ---, z, around p. Changing indices if necessary, we
may assume that fy..(p) # 0. Then, the Jacobian of f is given by

J, = det(ﬁ—(—fi_): 14, N).

Zi N v+
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On the other hand, if we take
a=(0,---,0), o =1,0,---,0),
a=(0,1,0,+--,0), ---, a’tt =0, ---,0,1),
then W ,vu(f) = (=1)Yf¥1iJ; #= 0. This shows that m; = 1 and [, = N.

Taking hyperplanes H; (1<j=<4¢) and an admissible system
{a, +++, a¥} for f, we consider as in the previous section holomorphic
functions F'; and define the meromorphic functions ¢ by (2.11).

The purpose of this section is to prove:

Lemma 3.4. v3(p) = my; on B(R,) outside an analytic subset of
codimension =2.

For our purpose, we first note the following:

@3.5) If {a':=(af, -+, at):1 =71 < N+ 1} is an admissible system
for f, then

N+1

Saism, AI<i<N+1).
=

Proor. Without loss of generality, we may assume 7 = 1. For each
k = 0, the number of j’s with |a‘| = k is just r,(k). For each [ <k the
number of a’s with |a| =% and a, =k -1 is ,H, (=,..C). If we
choose a/ with |a/| = k so that 3./, a attains the maxmum among all
possible choices, we see

2 of = 3 (k — ) min{,_,H, (r;(k) — AD)*} -

lad|=k

This concludes (3.5).
We next prove:

(8.6) Let F=(F, ---, Fy.,) be a system of holomorphic functions
on B(R,) such that F,, -+, Fy., are linearly independent over C and let
{at, «--, a¥*'} be an admissible system for F. Take an arbitrary system of
holomorphic local coordinates wu,, -+ -, u, around a point p € B(R,). Then,
there exist finitely many systems {B(c)}, ++-, B@)" ™} A £ v £ t) such that
for each k=0

“DFNF, .., »DFYPF (I(k) = rank ., ;")
give a basis for the _#,-module Z,* and we can write

Woaris(F) = 3 b det(*DFO'F: 1 <4, j < N + 1)
=1

with suitable holomorphic functions h. on a meighborhood of p, where we
mean “DPF = (5" [ouft - - oui»)F for B = (B, +++, Bu)-
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PROOF. As is easily seen by induction on |a|, each D*F can be

written as
D*F = 3, g.,.*D’F
1Blslal

with suitable holomorphic functions g,, on a neighborhood of p. Since
the determinant is linear as a function of each row vector, we get

Wet...qver(F) = ‘ﬂig, ; Galpl * ¢ JuN+1gN+1 det("DﬁiF: 1=41=N+1).
Take a system {8 --:, 8¥"} with B <Z|af| 1<t < N+1) and set
N, := #{1: |8'| = k}, where #A denotes the number of elements of a set
A. We see easily N, = l(k) because |B| < |afl and #{i: |a'| < k} = U(k).
On the other hand, since I(k) = >}k, r,(£) does not depend on the choice
of holomorphic local coordinates by (2.2), we have necessarily det(*D#F"
1+t N+1)=0if N,>Ilk). So we consider the only case where
${i: |8 = k} = l(k). We denote by {B(z)}, -+, B@)""} 1=7=1¢) al
systems {8, -+, 87"} such that

Jatpl *** JuN+1pN+1 det(“DpiF: 1<41=N+1)=+#0,

and set A(7) := Gapr ** * gal+ipnr+1.  We then have the desired represen-
tation of W,i..pv+i(F).

Proor OF LEMMA 3.4. Since f= (fi: -+ +: fys) is a reduced represen-
tation, the analytic set I, = {f, = -+ = fy,, = 0} is of codimension >2.
On the other hand, if we set Z:= {z € B(R,); (F.F, -+ F,)(2) = 0}, the set
S(Z) of all singularities of Z is an analytic set of codimension =2. We
have only to show v3(p) < m, for each peZ\ (I;US(Z)).

Changing indices, we may assume that

|F(p)| = [Fy(p)| = « -+ S |Fy(p)| -
By assumption, fi, *+-, fy;:. can be written as a linear combination of

F, .-+, Fy,, with constant coefficients. The assumption p¢ I, implies
that Fy (D) -+« Fy(p) # 0. Set

5 e= Wa-\---sz*l((Fv ) FN+1)) .
F1F2 et FN+1
Then, we can write
c ~
P = =9
Fyps -+ F,

with a nonzero constant ¢ and the function ¢/(Fy,, -+ F,) is holomorphic
and has no zero in a neighborhood of p. Therefore, we have v(p) = v3 (D).
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By the assumption p € Z\ S(Z), we can choose a system of holomorphic
local coordinates u,, --+, %, on a neighborhood U of p with p = (0) such
that ZN U = {u, = 0}. Then, we can write

Fu) =ulgw) 1=t=N+1)

with nowhere zero holomorphic functions g,(w) on U. By the help of
(3.6), taking an arbitrary system &, ---, 87+ such that “D#'F, ..., *D#*"F
give a basis for the _#,-module &%, we have only to show v3(p) < m, for
the function

_det(D*F;1<4,j<N+1)
F1F2"'FN+1 B

For each 8= (B, *-+, B.), we have

0f1 / ) ofet - tbn
uw])B j— i
DPF; = Uk \uf U - ouin gz(“))

o*

and hence we can easily show that *D?F,/F, has a pole of order <3, at
p. Since

“DFF, “DEY R,
= son(g) 1 ... N1 R
o=t 22'.1\7“ gn(o) _Fa1 F

0109 O +] ON+1

¢*

we can conclude from (3.5)
va@) =B+ B+ o + BT S my

Therefore, we have Lemma 3.4.

4. The proof of Main Theorem for particular cases. The purpose
of this section is to prove Corollary 2 stated in Section 1 and to give a
unicity theorem for meromorphic maps of the unit ball into P¥(C) with
suitable growth condition.

Let us consider two distinct nondegenerate meromorphic maps f, g:
B(R,) — P"(C) and assume that there exist ¢ hyperplanes H,, ---, H, in
general position satisfying the condition (i) of Main Theorem. Take
reduced representations f= (f: -+ :fvy) and ¢ = (g -+ : gy and set

LA = G2 1A gl = GUt lgal)v*.  Let
H;:a;w, + +++ + ayﬂ'wzvﬂ'—— 0 d=7=09.

As in the previous sections, setting F, = 3\Yi'aif, and G; = X alg,,
we define the function ¢ by (2.11) and the function + by

Wpl...,gN«H(Q)

’Eb‘:: Gle"'Gq ’



336 H. FUJIMOTO

where {a!, - -+, &'} and {8, -+, B¥*'} are admissible systems for f and
g, respectively. Then, according to Theorem 2.13 we get
(4.1) (@ — N — 1)(T(r, r) + Ty(r, 7o)

= Np(r, ro) + Ng(r, r)) + Sp(r) + Sy(r) ,

where S;(r) and S,(r) denote real-valued functions of » with the properties
stated in Theorem 2.13 for maps f and g, respectively.
Now, we choose distinet indices %, and j, such that
X:=fi9i,— Ji9:, 0 .

If v3(p) > 0 for a point p € B(R,), then F(p) =0 for some j 1 <j=<¢q)
and so pe UL, f(H;). By assumption, we have X(p) = 0. Accordingly,
we conclude from Lemma 3.4 that vy < m,v} outside an analytic set of
codimension =2, and hence

Ng(r, r)) = meNy(rery) (ro<r < R).
Similarly, we have

N"O/:(”'y ) = mgN;(z)("'; r) (e <r<Ry).
On the other hand, since [X| < 2||f]|lgll, it follows from (2.6) and (2.7)
that

Nyr, ) s | logitlo, + 0w = | loglfllo, + | loglgllan + OQ)
S(r) S(r) 8(r)
é Tf(’ry 7‘0) + Ta('rv 7‘0) + 0(1) ’
where O(1) denotes a bounded term. We thus conclude from (4.1)
4.2)  (@— N-—=1—m; —m)(Ts(r, ro) + Ty(r, 7)) = Ss(r) + Sy(r) .
PrROOF OF COROLLARY 2. We now proceed to prove Corollary 2 stated

in Section 1. We first consider the case where f and g are rational.

Then, S;(r) and S,(r) can be taken to be bounded according to Remark
2.14. Then,

lim Ss(r) + S,(r) _
ro T(r, 1) + Ty(r, 1)

and hence ¢ < N+ 1+ m; + m, as a result of (4.2). We next assume
that f or g is transcendental. In this case, we have

lim log »
o Tf('r’ 7'0) + TU(’I‘, 'ro)

On the other hand, by Theorem 2.13 we have
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S;(r) + Sy(r) . Klog*(T(r, vo) + Ti(r, 7)) + log 'r)H .
Tf(’r, ’ro) + Tg('r’ 'l"o) o Tf(/rr 7'0) + Tg(ri 7'0)
Therefore, we obtain
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lim inf —SA) + S0 _ g
r—o0 Tf(’l‘, ’ro) + Tg(”‘, ’ro)

From this and (4.2) we conclude ¢ < N+ 1+ m; + m, in this case too.
This completes the proof of Corollary 2.

Next, we consider meromorphic maps of the unit ball into P¥(C).
We shall prove the following:

THEOREM 4.3. Let f, g be nmondegenerate meromorphic maps of the
unit ball B(1) into PY(C). Suppose that

NRY log(1/(1 — 7))
A= lim su < oo,
e © Tlr, 70) + Ty, 79
If there exist q hyperplanes H,, - -+, H, in general position such that
(i) f=9on Ui, fT(H)Ug™'(H)),

) ¢>N+1+nl;+ 1)+ my+ m,,
then f=g.

PrOOF. It suffices to show that

g=N+1+Nls+ 1) +m;+ m,
under the assumption that f# g and they satisfy the condition (i) of
Theorem 4.3.

Theorem 2.13 implies that there exists a subset E of [0, 1)
such that S 1 — 7r)7'dr < o« and, for every r¢E,
E

Ser) + So(r) U+ log@/A — 1)) + Klog*(T(r, 1) + Ty(r, 1))
Ty(r, o) + Tg("" o) Ts(r, ro) + Tg('r; 70) )

From this and (4.2), we can conclude

g— N—-1—m; —m,

<, + )lim inf 108Q/A = 1)) + Klog*(Ty(r, ) + T(r, 72)

r1,7¢E Tf(’i", 7o) + T,(’I‘, )
< (I, + 1,)lim sup —0g1/A — 7))

Y (/ L) .
-1 Te(r, 1) + To(ry 1vo) — My + L)

REMARK 4.4. As is easily seen from the above proof, the quantity

A\ in the conclusion of Theorem 4.3 can be replaced by the least upper
bound of the quantities X such that
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X = lim inf 108/ — 7))
I-1,7¢E Tf(”', 7o) + Ty(’r, 1)

for some subset E of [0, 1) with S (1 — 7)'dr < co.
E

5. Proof of Main Theorem. We now proceed to prove Main Theorem.
We first note:

(5.1) For the proof of Main Theorem, we may assume that M =
B(R)(cC™).

To see this, we consider the universal covering z: i1 — M. For
meromorphic maps f, g satisfying the assumptions of Main Theorem, if
we set f:=fomr and §:=gom, they satisfy all assumptions of Main
Theorem as meromorphic maps of the complete Kihler manifold M with
metric induced from M through 7 into P¥(C). Since f = § on Il implies
f=g on M, we may assume I = M for our purpose. Moreover, we may
assume that M = B(R,)(0 < R, £ + =) by the assumption of Main Theorem.

Let f, g: B(R,) — P"(C) be nondegenerate meromorphic maps satisfying
all assumptions of Main Theorem. We shall show that they lead to a
contradiction under the assumption fz g. We use the same notations
as in the previous section.

(56.2) For the proof of Main Theorem we may assume that M =
B(1) and there exists a positive constant K such that

(5.3) T/(r, 7o) + T,fr, 1) < Klog 1 0<r=r<i).
—7r
In fact, the case M = C™ is nothing but Corollary 2 and so it suffices
to study the case M = B(1). Moreover, by virtue of Remark 4.4, Main
Theorem is true unless there exist a subset E of [0,1) such that

S (1 —7r)dr < o and

E

(5.4) lim Sup Tf(r’ ’ro) + T,,(T‘, ”'0)
roLrel log(1/(1 — 7))

On the other hand, by the same argument as in the proof of [9, Proposi-
tion 5.5] we can easily show that (5.4) implies (5.3).

< oo,

Now, we represent the given Kahler metric form as
v =1
2

on B(1). By assumption we can take continuous plurisubharmonic funec-
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tions u, and u, on B(1) such that

e det(h7)” < || fI1°,

e*zdet(h,5)"* < |lgl°
(cf. Remark to [10, Definition 5.9]). Set §:= 2+ ~+"*g and :=
2Pty Sinee vy < mp) and v < mpl outside an analytic set of

codimension =2, the functions ¢X™s and JX™s are both holomorphic on
B(). Therefore, if we set

= o
¢gq— N—-1—m;—m,

and define
w = tlog|gFAmsimd

then w is a plurisubharmonic function on B(1). Since t(m; + m,) + o =
t@— N —1) and [X| = 2]/ 1] |lg]l, we obtain

det(h,7)evturtye

< B2 f el
= KBTI gl

where K, are some positive constants. The volume form on M is given
by

dV:= ¢, det(h;7)v, ,

where ¢, is a positive constant. Therefore, we have

PO
B(1)

é K2 SB(I) l¢7‘t ”f“t(q—N—-l) lq’plt “gHt(q-N_l)’Un .

Setting p, = (; + 1,)/l; and p, = (I, + 1,)/l,, we apply Holder's inequality
to obtain

Z|tpy tpy(g—N-1) Ym S T\t tpg(g—N—1)
15 & (| g pimeroo) ([ wemlgloeii,)

Here, we see

1/pg

M, = (tp)l, = £, + 1) = oy + 1) 1.
p)l, = (tpl, =t + 1) q—N—1—m,—m,,<

Take some p’ with t(l; + I,) < p’ < 1. Then, by the help of Proposition
2.12, for r,<r < R < R,
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~ v 1 ?’
tpy tpy(g—N—1) <
[, B0, < K(ATR 1)

I, Fllgloero, < K(AT,R )"
S(r) R—17r

By the same argument as in the proof of [10, Theorem 5.10], we can
conclude

[, ety < oo
B(1)

On the other hand, by the result of Yau ([17]) and Karp ([11]), we have
necessarily

S ew+u1+u2dv = oo ,
B(1)

because w + u, + u, is plurisubharmonic. This is a contradiction. Thus,
Main Theorem is proved.
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