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1. Introduction. In 1926, R. Nevanlinna proved the following
unicity theorem for meromorphic functions on C ([12]).

THEOREM. Let φ, ψ be nonconstant meromorphic functions on C. If
there exist five distinct values alf ••-, a5 such that φ~\a^) = f~ι{a^) (1 <;
i ^ 5), then φ = ψ.

The author gave several types of generalizations of this to the case
of meromorphic maps of Cn into PN(C) in his papers [3] ~ [8]. In this
paper, we study meromorphic maps of an ^-dimensional complete Kahler
manifold M into PN(C) and give a new type of unicity theorem in the
case where the universal covering of M is biholomorphic to the ball in
Cn and meromorphic maps satisfy a certain growth condition.

Let M be an n-dimensional connected Kahler manifold with Kahler
form ω and / be a meromorphic map of M into PN(C). For p ^ 0 we
say that / satisfies the condition (CP) if there exists a nonzero bounded
continuous real-valued function h on M such that

ρΩf + ddc log h2 ^ Ric ω ,

where Ωf denotes the pull-back of the Fubini-Study metric form on
PN{C) by / and dc = (v^^Λ/AπXd - 3).

Take a point peM. We represent / as / = (fλ: : fN+1) on a neigh-
borhood of p with holomorphic functions fif where f : = (flf

 mmm,fN+1) 3=
(0, , 0). Let ^^p denote the field of all germs of meromorphic functions
at p. For each k ^ 0 we consider the ^^-submodule ^~p

k of ^ € ^ + ί

generated by all elements (dlal/dza)f with |α| ^ k, where z — (zlf — ,zn)
is a system of holomorphic local coordinates around p and \a\ — ax +
••• + an for a = (alf •••, an).

By definition, the fc-th rank of / is given by

rf{k) : = rank^ p ^rv

k - r a n k ^ p ^ ^ ,

which does not depend on the choices of a point peM, a reduced



328 H. FUJIMOTO

representation of / and holomorphic local coordinates z (cf. Section 2).
Set

m, := Σ (* - l)+ minL^, (rf(k) - Σ U-.HX] ,
k,l I \ λ=0 I )

where x+ = max{#, 0} for a real number & and n^Hλ denotes the number
of repeated combinations of λ elements among n — 1 elements. We have
always

The main result in this paper is stated as follows.

MAIN THEOREM. Let M be a complete, connected Kdhler manifold
whose universal covering is biholomorphic to Cn or the unit ball in Cn,
and let f and g be nondegenerate meromorphic maps of M into PN(C). If
f and g satisfy the condition (CP) and there exist q(^N + 2) hyperplanes
in PN(C) located in general position such that

(i) f=gon UUfΛHά)Ug-\H3),
(ii) q > N + 1 + p(lf + la) + mf + mg,

then f = g.

If n = N and / is of rank n, then mf = 1 and lf = N (cf. Example
3.3). Therefore, we have:

COROLLARY 1. In Main Theorem, ifn = N and f and g are of
rank n, then the condition (ii) of Main Theorem can be replaced by

(ii)' q> N+ 2pN + 3.

For the case M = Cn, we can take the flat metric whose Ricci form
vanishes. Therefore, all meromorphic maps of Cn into PN(C) satisfy the
condition (Co). This gives:

COROLLARY 2. Let f g: Cn —> PN(C) be nondegenerate meromorphic
maps. If there exist q hyperplanes Hly •••, Hq in general position such
that

(i) f^gon ΌUif-KHjUg-KHj),
(ii) q > N + 1 + mf + mg,

Then f=g.

This yields the classical theorem of R. Nevanlinna for the case n =
N = 1, and the result of S. J. Drouilhet for the case n = N and /, g are
of rank n (cf. [1]).
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In Section 2 we shall recall some known facts which will be needed
later and in Section 3 we shall furnish a lemma concerning the order of
poles for a special type of meromorphic function. In Section 4 we shall
prove Corollary 2 directly. Moreover, we shall study meromorphic maps
/, g of the unit ball into PN(C) satisfying the condition

lim sup logd/α - r » < oo
- i Tf(r, r0) + Tg(r, r0)

and give a unicity theorem for such maps. Main Theorem will be com-
pletely proved in Section 5.

2. Preliminaries. For later use, we recall some known results
concerning meromorphic maps into PN{C).

Let M be an -^-dimensional complex manifold and f:M—> PN(C) be a
meromorphic map. We take a point peM and denote by ^ the field
of all germs of meromorphic functions at p. Let U be a holomorphic
local coordinate neighborhood of p which is a Cousin-II domain. Then,
/ has a reduced representation on Z7, namely, a representation / =
(/i /N+I) such that each ft is a holomorphic function on U and f(z) =
(/i(z): :Λ+iGzO) outside the analytic set {z e U .fάz) = 0, 1 ^ i ^ N + 1}
of codimension 2^2. For a set a — (a19 •••, an) of nonnegative integers
aif we set

(
where we mean D°f = f := (flf ,/^ + 1 ) . For each k ^ 0 we denote by

the ^^-submodule of ^ ; ^ + 1 generated by {Daf: \a\ ̂  k} and set

DEFINITION 2.1. We define the k-th rank of / by

rf{k) : = r a n k ^ ^ - rank^^ jr*-^ .

(2.2) The k-th rank rf{k) does not depend on the choices of a point
p, a reduced representation of f and holomorphic local coordinates
it* ••*, *»)•

For the proof, see [10, §4].

DEFINITION 2.3. We define the total rank of / by

and the total degree of the Jacobian matrix of / by
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h : = Σ krf{k) .

(2.4) ( i) If ^ N(N + l)/2 /or αϊϊ meromorphic maps into PN(C).
(ii) A meromorphic map f:M^> PN(C) is nondegenerate, namely,

has the image not contained in any hyperplane, if and only if rf — N.

For the proof, see [10, §4].

We now consider a meromorphic map / of B(RQ) : = {zeCn: \\z\\ < Ro}
(0 < Ro ^ + oo) into PN{C), where ||*|| - (Σ?=i I^I2)1/2 for z = (zl9 •• , ^ )
and we mean B(oo) = c*. Taking a reduced representation / = (f:
fN+1) on 5(Λ0), we set

11/11 = (l/il1 + • + IΛ+il1)171

By definition, the pull-back of the normalized Fubini-Study metric form
by / is given by

ΰ,:=(M log 11/11*.

We set v, = (dίίc | |2||2) !, σn = d log ||2||2Λ(cίcίclog||z||2)'!~1 and S(r) =
{zeC':\\z\\ = r}.

DEFINITION 2.5. The characteristic function of / is defined by

Tf(r, n): = Γ J L ( ΩfΛv^ (0 < r0 < r < Λβ) .

We then have

(2.6) Γ,(r, n) = ( log | |/ | |σ, - ί log||/||σ,. .
JS(r) JS(r0)

For the proof, see [15, pp. 251-255].

Let φ be a nonzero meromorphic function on B(R0). We may regard
φ as a meromorphic map into Pι(C). For each aePx{C) we denote the
zero multiplicity of φ — a at a point zeB(RQ) by uj(z). Set

'-4=; 5 yX-i if

Σ
zeB{r)

Σ υ?(«) if w = 1 ,
B{

and define the valence function for α by

iVJ(r, r0) = Γ i f f idt (0 < r0 < r < Ro) .

We then have the following Jensen formula:



MEROMORPHIC MAPS OF A COMPLETE KAHLER MANIFOLD 331

(2.7) ( log \φ\ σn - \ log \φ\ σn = N°φ(r, r.) - N?(r, r0) .
JS(r) JS(r0)

For the proof, see [15, p. 248].

Let /: B(R0) —> PN{C) be a nondegenerate meromorphic map with a
reduced representation / = C/i: : fN+1) and set f = (/„ -,fN+1).

DEFINITION 2.8. Let a1 = (al, , a*n) (1 ^ i ^ iV + 1) be TNT + 1 sets
of nonnegative integers. The generalized Wronskian of / (or of f) is
defined by

: 1 ^ ΐ ^ iV+ 1) .

DEFINITION 2.9. We say that a system {a\ , aN+1} {a1 =
(αί, , αJr+i)) i s admissible for / (or for f) if for each Λ ^ 0 {Dalf, ,
DaUk)f) gives a basis for the .^-module ^ ί * , where p is an arbitrarily
chosen point in M and l(k) = rank^^ ^^ f c .

For an admissible system {α1, , α^+1} for f and a holomorphic
function g on B(R0), we see

(2.10) ΪFβi...β2m(0f) = gN+1Wai...aN+i(f) .

For the proof, see [10, Proposition 4.9],

Now, let us consider q (^N + 2) hyperplanes

Hό: a)w, + + af+1wN+1 = 0 (1 £ j £ q)

in PN(C) located in general position and set

Fά = a)fx + + af+1fN+ι = 0 ( l ^ j ^ q ) .

Taking an admissible system {a1, , aN+1} for /, we define

(2.11) ό:= w ( f )

which is a nonzero meromorphic function on B(R0). In this situation,
we can prove:

PROPOSITION 2.12. Let 0 < r0 < Ro and 0 < lft < v' < 1. Γfce^, there
xists a constant K > 0 swcΛ, ίfcαί /or rQ < r < R < Ro

— r

for z = fe, •••,««) α^d a = (α l f , α j .

For the proof, see [10, Proposition 6.1].

For real-valued functions f(r) and g(r) on [r0, Ro) by notation /(r) ^
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g(r)\\ we mean that fir) 5g g(r) on [r0, Ro) outside a set E such that

I dr < oo in case Ro — oo and \ (iϋ0 — r)~λdr < °° in case i£0 < oo. We

can conclude from Proposition 2.12 the second main theorem in value

distribution theory, which is stated as follows.

THEOEEM 2.13. Let f: B(RQ) —> PN(C) be a nondegenerate meromorphic
map and Hlf •••, Hq be hyperplanes in general position. Then,

(q- N- l)Tf(r, r0) ^ N7(r, r0) + Sf(r) ,

where there exists a positive constant K such that

1° Sf(r) ^ If log — i — + K\og+ Tf(r, ro)\\ if Ro < oo

2° Sf(r) ^ K(log+ Tf(r, r0) + log r)\\ if Ro = oo .

The proof is given by the same argument as in the proof of [10,
Proposition 6.2].

REMARK 2.14. In Theorem 2.13, if RQ = oo and l i m ^ Tf(r, r0)/logr <
oo, or equivalently / is rational, then we can choose Sf(r) to be bounded.

3. A lemma. Let /: B(R0) -+ PN(C) be a nondegenerate meromorphic
map with a reduced representation / = (/x: :fN+ί).

DEFINITION 3.1. As stated in Section 1, we define

m, := Σ (fc - D+ minLjϊ,, (r,(fc) - Σ n-Ά)+\ .

(3.2) It holds that mf£lf.

Indeed, if we set A(l) = Σi^»-i-Hi and Vo : = max{ϊ: A(ί) g r/A;)}, then

m, ^ Σ ( Σ (k - Dn-Ά + k(rf(k) - A(IJ)))

+ (rf(k) -Σ
EXAMPLE 3.3. Suppose that N = n and / is of rank N, namely, the

Jacobian of / does not vanish at a point p& If, where If denotes the set
of all indeterminate points of /. Then, we have mf — 1 and lf = N.

To see this, we take a point p$If and a system of holomorphic
local coordinates zlf

 # ,2 n around p. Changing indices if necessary, we
may assume that fN+1(p) Φ 0. Then, the Jacobian of / is given by

J,:=det ^-ι
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On the other hand, if we take

σ}= (0, . . . , 0 ) , α2 = (l,0, . . . , 0 ) ,

c?= (0,1,0, . . . , 0 ) , . . . , aN+1=(0, . - . , 0 , 1 ) ,

then PΓβi...βy+i(/) = (-l)Nf%tUf Φ> 0. This shows that mf = 1 and lf = N.

Taking hyperplanes H5 (1 ̂  i ^ q) and an admissible system
{a1, , α^+1} for /, we consider as in the previous section holomorphic
functions Fd and define the meromorphic functions φ by (2.11).

The purpose of this section is to prove:

LEMMA 3.4. v™(p) tί mf on B(R0) outside an analytic subset of
codimension 2^2.

For our purpose, we first note the following:

(3.5) // {a1 := (α?, , ai): 1 ^ i ^ N + 1} is an admissible system
for /, then

N+l

Σa{^mf (1 ^ i ^ N + 1) .
3=1

PROOF. Without loss of generality, we may assume i = 1. For each
k ^ 0, the number of j ' s with |α 5 | = k is just rf(k). For each i ^ fc the
number of α's with |α:| = k and α^ = k — I is ^^iίi ( = n+ι-2Cί). If we
choose α y with \a3'\ = k so that Σ i α i i ^ ^ ί attains the maxmum among all
possible choices, we see

Σ ai = Σ (k - l)+ min{n^Hlf (rf(k) - A(l))+} .
\a3\=k I

This concludes (3.5).

We next prove:

(3.6) Let F= (F19 •• 9FN+1) be a system of holomorphic functions
on B(RQ) such that F19 , i*V+i are linearly independent over C and let
{α\ , aN+1} be an admissible system for F. Take an arbitrary system of
holomorphic local coordinates ulf — ,un around a point peB(R0). Then,
there exist finitely many systems {β(τ)\ , β(r)N+ι} (1 ̂  τ ^ t) such that
for each k ^ 0

*D*M1F, , *D'Mlik)F (l(k) = r a n k ^ p ^ ; f c )

give a basis for the ^^-module ^Γj6 and we can write

Wau..aN+ι(F) = Σhτ άet{uD^τ)iFά: 1 ^ i, j ^ N + 1)

with suitable holomorphic functions hτ on a neighborhood of p, where we
mean uDβF = {dmldu{^ - dut)F for β = (βlf , βn).
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PROOF. AS is easily seen by induction on |α|, each D«F can be
written as

Σ 9aβ
l l lέ lαl

with suitable holomorphic functions gaβ on a neighborhood of p. Since
the determinant is linear as a function of each row vector, we get

Wai...aN+ι(F) = Σ g«w ^

Take a system {/3\ , βN+1} with |/8'| ^ |α' | ( l ^ i ^ i V + 1 ) and set
No:= #{ΐ: 1/3*1 ^ ft}, where #A denotes the number of elements of a set
A. We see easily No ^ ϊ(fc) because |/3'| ^ |α*| and #{i: |α' | <^ k} = l(k).
On the other hand, since l(k) = Σϊ=o τf{ιc) does not depend on the choice
of holomorphic local coordinates by (2.2), we have necessarily det(uDβlF:
l < ^ ί 5 g J V + l ) = 0 if No> l(k). So we consider the only case where
#{i: 1/3*1 ^k} = l(k). We denote by {/3(τ)\ , β(τ)N+1} (1 ^ r ^ ί) all
systems {/3\ , /3^+1} such that

and set fe(τ) : = SfαM(r)i gaN+iβ{v)N+u We then have the desired represen-
tation of Wαi

PROOF OF LEMMA 3.4. Since / = (/x: •• :/iV+i) is a reduced represen-
tation, the analytic set If — {fx = = /^+1 = 0} is of codimension ^ 2 .
On the other hand, if we set Z := {z e B(i20); (FiF2 Fff)(z) = 0}, the set
S{Z) of all singularities of Z is an analytic set of codimension ^ 2 . We
have only to show v~(p) ̂  mf for each p

Changing indices, we may assume that

|f\(p)| ^ |Ff(p)| ^ ^

By assumption, f19 * 9fN+i can be written as a linear combination of
Fly *',FN+1 with constant coefficients. The assumption pίlf implies
that FN+1(p) Fq(p) Φ 0. Set

Then, we can write

Φ
FN

with a nonzero constant c and the function c/(FN+2 -F?) is holomorphic
and has no zero in a neighborhood of p. Therefore, we have v?(p) = u?(2>)
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By the assumption p e Z\S(Z), we can choose a system of holomorphic
local coordinates u19 , un on a neighborhood U of p with p = (0) such
that ZΓ\U = {ut = 0}. Then, we can write

with nowhere zero holomorphic functions gt(u) on U. By the help of
(3.6), taking an arbitrary system β\ , βN+1 such that uDβlF, , "DβUk)F
give a basis for the ,^^-module .^Λ we have only to show v™*(p) ^ my for
the function

^Fj: 1 ^ i, j ^ N + 1) ,
FN+1

For each β = (βlf , /3J, we have

• duί*

and hence we can easily show that uDβFJFi has a pole of order ^βλ at
p. Since

/I 2 —N+l \ F F
σ=\σ1σ2"'σN+1)

 σ l σiV+l

we can conclude from (3.5)

Therefore, we have Lemma 3.4.

4. The proof of Main Theorem for particular cases. The purpose
of this section is to prove Corollary 2 stated in Section 1 and to give a
unicity theorem for meromorphic maps of the unit ball into PN(C) with
suitable growth condition.

Let us consider two distinct nondegenerate meromorphic maps /, g:
B(RQ)-+PN(C) and assume that there exist q hyperplanes H19 •• , i ϊ ί . in
general position satisfying the condition (i) of Main Theorem. Take
reduced representations / = (/i: : fN+i) and g = (g^ : gN+ι) and set
II f | | . _ (S?N+1 I f I2N1/2 l l^ l l _ (\1N+1 \π |2\l/2 T af

11/II •— V2JΪ=I \Ji\ ) > \\g\\ — l2-ιΐ=i |y<l ) -Lieu

Hό: a)w, + + af+1wN+1 = 0 (1 ^ j ^ g) .

As in the previous sections, setting Fό = ΣfJi1 a5/t and Gά = Σ S
we define the function φ by (2.11) and the function ψ by

ψ:=z Wβi...βN+i(g) ^

GλG2 Gq
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where {a1, , aN+1} and {β\ , βN+1} are admissible systems for / and
g, respectively. Then, according to Theorem 2.13 we get

(4.1) (q-N- l)(Γ,(r, r0) + T,(r, r0))
£ N?(r, r0) + Nψ(r, r0) + S,(r) + Sg(r) ,

where S/(r) and Sg(r) denote real-valued functions of r with the properties
stated in Theorem 2.13 for maps / and g, respectively.

Now, we choose distinct indices i0 and j0 such that

If Vφ(p) > 0 for a point p eB(i20), then i^ (p) = 0 for some j (1 ̂  i ^ q)
and so p e \Jj~if~\Hj). By assumption, we have Z(p) = 0. Accordingly,
we conclude from Lemma 3.4 that v™ <; mfv\ outside an analytic set of
codimension ^2 , and hence

N?(r, r0) ^ mfN°χ(r-r0) (r0 < r < Ro) .

Similarly, we have

N+(r, rQ) ^ mgN°χ(r, r 0) (r0 < r < Ro) .

On the other hand, since \X\ ^ 2| |/ | | ||ff||f it follows from (2.6) and (2.7)
that

N°χ(r, r0) ^ \ log \X\ σn + 0(1) <: ( log | |/| | σn + \ log || f f | | σn + 0(1)

^ Γ,(r, r0) + Γ,(r, r0) + 0(1) ,

where 0(1) denotes a bounded term. We thus conclude from (4.1)

(4.2) (q-N-l-mf- m,)(T,(r, r0) + Tg(r, r0)) ^ Sf(r) + Sg(r) .

PROOF OF COROLLARY 2. We now proceed to prove Corollary 2 stated
in Section 1. We first consider the case where / and g are rational.
Then, Sf{r) and Sg(r) can be taken to be bounded according to Remark
2.14. Then,

Sf(r) + Se(r) = 0

0

τf(r, r0) + Γ,(r, r0)
and hence q ^ iV + 1 + mf + mg as a result of (4.2). We next assume
that / or g is transcendental. In this case, we have

lim lMZ = 0 .
- ~ Tf{r, rβ) + Γ,(r, r0)

On the other hand, by Theorem 2.13 we have
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SΛr) + S,(r) ^ K(\og+(Tf(r, n ) + Γ.(r, r0)) + log r) 11
Tf(r, n ) + Tg(r, r0) ~ Tf(r, r 0) + Tβ(r, r0) II *

Therefore, we obtain

liminf g ^ > + ^ ) = 0 ,
r— Γ,(rf r0) + Γg(r, r0)

From this and (4.2) we conclude q <̂  iV + 1 + mf + mff in this case too.
This completes the proof of Corollary 2.

Next, we consider meromorphic maps of the unit ball into PN(C).
We shall prove the following:

THEOREM 4.3. Let f, g be nondegenerate meromorphic maps of the
unit ball B(l) into PN(C). Suppose that

,(r, r0) + Tg(r, r0)

If there exist q hyperplanes Hlf , Hq in general position such that
(i) f=g on UUΓKH^Όg-KHj),
(ii) q > N + 1 + X(lf + lg) + mf + m,,
f = g

PROOF. It suffices to show that

q ^ N + 1 + λ(ί/ + Zff) + m, + mg

under the assumption that / Φ. g and they satisfy the condition (i) of
Theorem 4.3. Theorem 2.13 implies that there exists a subset £Όf [0, 1)
such that I (1 — r)~ιdr < oo and, for every r$E,

JE

Sf(r) + S.(r) ^ {I, + ?.)log(l/(l - r)) + K\og+(Tf(r, r.) + Γ,(r, r.»
Γ,(r, r0) + Tg(r, r0) Tf(r, r0) + Tg(r, r0)

From this and (4.2), we can conclude

q — N — 1 — mf — mg

<, {lf + If)lim inf log(l/d - r)) + g l o ^ Γ / r , n) + Γ/r, r0))
~ ^ . ' « Γ,(r, r0) + Γβ(r, r0)

^ (I, + If)lim sup l ^ y i - ^ ^ λ(I, + I.) .
- i 2V(r, r0) + Γ,(r, r0)

REMARK 4.4. As is easily seen from the above proof, the quantity
λ in the conclusion of Theorem 4.3 can be replaced by the least upper
bound of the quantities λ such that
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% = limϊnί
Tf(r, r0) + Tβ(r, r0)

for some subset E of [0, 1) with \ (1 — r ) " 1 ^
JE

oo .

5. Proof of Main Theorem. We now proceed to prove Main Theorem.
We first note:

(5.1) For the proof of Main Theorem, we may assume that M =

To see this, we consider the universal covering π:M-^M. For
meromorphic maps /, g satisfying the assumptions of Main Theorem, if
we set f:=foπ and g;=goπ, they satisfy all assumptions of Main
Theorem as meromorphic maps of the complete Kahler manifold M with
metric induced from M through π into PN(C). Since f = g on M implies
f — g on My we may assume fit — M for our purpose. Moreover, we may
assume that M = B(R0)(0 < Ro <̂  + °°) by the assumption of Main Theorem.

Let /, g: B(R0) -+ PN(C) be nondegenerate meromorphic maps satisfying
all assumptions of Main Theorem. We shall show that they lead to a
contradiction under the assumption / φ g. We use the same notations
as in the previous section.

(5.2) For the proof of Main Theorem we may assume that M =
J5(l) and there exists a positive constant K such that

(5.3) Tf(r, r0) + Tg(r, r0) ^ if log — ^ - (0 < r0 ^ r < 1) .
1 — r

In fact, the case M = Cn is nothing but Corollary 2 and so it suffices
to study the case M = B(l). Moreover, by virtue of Remark 4.4, Main
Theorem is true unless there exist a subset E of [0, 1) such that
\ (1 — r)~xdr < oo and
JE

(5.4) lim sup ?V(r, r0) + Γ,(r, r0) < ^

On the other hand, by the same argument as in the proof of [9, Proposi-
tion 5.5] we can easily show that (5.4) implies (5.3).

Now, we represent the given Kahler metric form as

(O = Σ hfr—-dzi A dz5

ί,3 2

on B(ΐ). By assumption we can take continuous plurisubharmonic func-
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tions ux and u2 on 2?(1) such that

(cf. Remark to [10, Definition 5.9]). Set φ := z"1+'~+aN+1φ and ψ: =
zβl+'"+βNΎlψ. Since v~ ^ msv\ and vψ ^ mgv°χ outside an analytic set of
codimension ^2, the functions φlmf and ψlma are both holomorphic on
B(l). Therefore, if we set

t : =
q — N—I — mf — mg

and define

w:=

then w is a plurisubharmonic function on J5(l). Since t(mf + mg) + p =
t(q- N- 1) and |Z| ^ 2| |/ | | ||flr||, we obtain

where Ki are some positive constants. The volume form on M is given
by

where cn is a positive constant. Therefore, we have

'vn .

Setting ^j = (If + Z,)/i/ and p2 = (lf + lg)/lg, we apply Holder's inequality
to obtain

J-B(l)

Here, we see

g — iV— 1 — m/ — mff

Take some p' with ί(Z/ + lg) < p' <1. Then, by the help of Proposition
2.12, for ro<r<R<RQ
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t \Φ\tPl

JS(r)

\ OT« llflfll'w' -^'σ,, ^ κί-1—UR, ro)Y' .

By the same argument as in the proof of [10, Theorem 5.10], we can
conclude

-B(l)

On the other hand, by the result of Yau ([17]) and Karp ([11]), we have
necessarily

e"+Ul+u*dV = °o ,

because w + ux + u2 is plurisubharmonic. This is a contradiction. Thus,
Main Theorem is proved.
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