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Introduction. A compact submanifold M (without boundary) immersed
in a Riemannian manifold M is called minimal if the first variation of
its volume vanishes for every deformation of M in M. Clearly, if the
volume of M is a local minimum among all immersions, M is a minimal
submanifold of M. But the volume of a minimal submanifold is not always
a local minimum. Nowadays we know a large number of examples of
minimal submanifolds (e.g. totally geodesic submanifolds, complex sub-
manifolds of Kaehler manifolds and extremal orbits of compact transfor-
mation groups, etc.). It is an important problem to know whether a
given minimal submanifold has a local minimum volume or not.

We say that a compact minimal submanifold M in M is stable if the
second variation of its volume is nonnegative for every deformation of
M in M. Clearly, if M has a local minimum volume, then it is stable.
The class of stable minimal submanifolds is much smaller than the class
of general minimal submanifolds. The existence of a stable minimal sub-
manifold is closely related to the topological and Riemannian structures
of the ambient manifold. In fact, Simons [13] and Lawson-Simons [9]
proved the following remarkable theorems.

THEOREM A. No p-dimensional compact minimal submanifold im-
mersed in the Euclidean sphere Sn is stable for each p with 1 ^ p ^ n — 1.

THEOREM B. Let M be a p-dimensional compact minimal submani-
fold immersed in the complex protective space Pn(C) with the Fubini-Study
metric. Then M is stable if and only if p = 21 for some integer 1^1
and M is a complex submanifold in the sense that each tangent space of
M is invariant under the complex structure of Pn(C).

The purpose of this paper is to complete the classification of compact
stable minimal submanifolds in all compact rank one symmetric spaces
(the sphere Sn, the real projective space Pn(R), the complex protective
space Pn(C), the quaternionic projective space Pn(H) and the Cayley pro-
jective plane P\Cay)). We will prove the following theorems.
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THEOREM C. Let M be a p-dimensίonal compact minimal submanifold
immersed in the real protective space Pn{R) with the standard metric.
Then M is stable if and only if M is a real protective subspace PP(R)
of Pn{R).

THEOREM D. Le M be a p-dimensional compact minimal submanifold
immersed in the quaternionic protective space Pn(H) with the standard
metric. Then M is stable if and only ifp = U for some integer I ^ 1
and M is a quaternionic protective subspace P\H) of Pn(H).

THEOREM E. Let M be a p-dimensional compact minimal submanifold
immersed in the Cayley protective plane P2(Cay) with the standard metric.
Then M is stable if and only ifp = 8 and M is a Cayley protective line
P\Cay) = S8 of P\Cay).

From these results we see that for a compact rank one symmetric
space M except Pn(C), every compact stable minimal submanifold represents
a basis of the homology group (with coefficients in Z or Z2 according as
M is simply connected or not), and vice versa. For compact symmetric
spaces of rank greater than one we cannot expect such a relationship
between stable minimal submanifolds and homology (cf. Chen, Leung and
Nagano [3]). Takeuchi [15] showed that there are many noncomplex
compact stable minimal submanifolds in compact Hermitian symmetric
spaces of rank greater than one.

Lawson and Simons [9] generalized Theorems A and B to currents on
Sn and P\C). We generalize Theorems D and E to currents on Pn(H)
and P\Cay) (cf. Theorem 3.3). [9] and [13] carried out the proof by
deforming a submanifold or a rectifiable current along conformal vector
fields or holomorphic vector fields taking the average of the second vari-
ations. We deform a submanifold or a rectifiable current on a compact
symmetric space along gradient vector fields of the first eigenfunctions
for the Laplacian, and use the standard immersion of the compact sym-
metric space into the first eigenspace in order to compute the average
of the second variations. Conformal vector fields of Sn, holomorphic vector
fields of Pn(C) and infinitesimal projective transformations of each projec-
tive space are gradient vector fields of the first eigenfunctions for the
Laplacian. So our method is a generalization of that of Lawson and
Simons. We will get the nonexistence of stable currents of certain degree
on some compact rank two symmetric spaces (cf. Theorem 4.3).

In [9] the following was posed:

CONJECTURE. Let M be a compact simply connected Riemannian
manifold with the sectional curvature K satisfying 1/4 < K <̂  1. Then
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there exist no stable p-currents on M for 1 ^ p ^ dim(ikί) — 1.

If the conjecture is true, then by virtue of the fundamental theorems
on integral currents by Federer and Fleming (cf. [4], [8] or [9]), M is a
homology sphere.

In the last section we show the nonexistence of stable currents on
certain convex hypersurfaces of the Euclidean space as a partial answer
to this conjecture.

THEOREM F. Let M be an n-dimensional compact Riemannian mani-
fold isometrically immersed in an (n-\-l)-dimensional Euclidean space En+1

and suppose that every principal curvature tct of M satisfies V δ r^/c^l
(i = 1, , n). If δ satisfies 1/2 < δ ^ 1, then there exist no stable p-
currents on M for each p with 1 ^ p ^ n — 1.

Mori [10] showed the above consequence under the assumption that
δ > n/(n + 1). Theorem D was proved independently by M. Takeuchi.

The author wishes to thank Professor K. Kenmotsu for his constant
encouragement. Thanks are also due to the referee for his careful reading
of the manuscript.

1. Second variational formulas.

1.1. Let ψ: (M, g) —» (M, g) be a minimal isometric immersion of a
^-dimensional compact Riemannian manifold (Λf, g). We denote by
C°°(^*Γ(M)) the space of all C°°-vector fields along ψ. For any V in
C°°(ψ*T(M)) let {ψt} be a C°°-one-parameter family of immersions of M
into M with ψ0 = ψ and with the variation vector field (d/dt)ψt(x)\t=o =
Vx (xeM). We put T(t) = Vol(M, φfg). We denote by QM(V) the second
derivative of 3^(ί) at t = 0. From the classical second variational formula
QM(V) is described as follows (cf. Simons [13, p. 73]):

QM(V) = \ (-A^V*) - A{VN) + R(VN), VN)dv .
JM

Here dv denotes the Riemannian measure of (M, g) and VN the normal
component of V: Vx = Vξ + ψ* VJ (xeM). Δ 1 = Trσ(Vx)2 is the Laplacian
on the normal bundle N(M) of ψ. Ά, R e C°°(End N{M)) are defined by

{A(u\ v) = Ύτg(AuAΌ) ,

(R(u), v) = Σ (R&n u)et, v)

for u, v e NX(M), where A is the shape operator of ψ, {ej is an ortho-
normal basis of TJM) and R is the curvature tensor of (M, g). Put

= — Δ 1 — Ά + R. ^f is a self-ad joint strongly elliptic differential
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operator of order 2 on the space C°°(N(M)) of all C°°-sections of N(M),
called the Jacobi operator of ψ. QM(Y) defines a quadratic form on
C°°(ψ*T(M)). A minimal immersion ψ is called stable if QM(V) ^ 0 for all
V in C°°(φ*T(M)). In this case, M is said to be a stable minimal sub-
manifold of M. We put Eλ = {Ve C°°(N(M)); ^F(V) = λF}. Σ;<o dim #,
is called the index of ψ. dimEΌ is called the nullity of ψ. A normal
vector field V in J57O is called a Jacobi field of τ/r. We define a subspace
P of C°°(N(M)) by

P = {X*; X is a Killing vector field on M]

and call dimP the Killing nullity of ψ. It is known that PCJEΌ (cf.
Simons [13]). A minimal immersion ψ is stable if and only if the index
of ψ is zero.

1.2. In subsequent sections we need the description of the curva-
ture tensor for Pn(C), P\H) and P\Cay) (cf. Brown and Gray [2]). The
curvature tensor R of the Fubini-Study metric on Pn(C) with constant
holomorphic sectional curvature c is given by

(1.1) R(X, Y)Z = (c/4)«F, Z)X - <X, Z) Y + (JY, Z)JX

- <JX, Z)JY + 2<X, JF>JZ}

for any X, Γ, Z e Tx(Pn(C)), where J is the complex structure of Pn(C).
The curvature tensor R of the standard metric on Pn(H) with the

maximum c of the sectional curvatures is given by

(1.2) R(X, Y)Z=

Σ, Z)J,Y) + 2Σ <X

for any X, Y, Ze Tx(Pn(H)), where {Jlf J2, J3} is a canonical local basis of
the quaternionic Kaehler structure (cf. Ishihara [6]) of Pn(H).

A 4i-dimensional submanifold M immersed in a quaternionic Kaehler
manifold M is called a quaternionic submanifold if each tangent space
of M is invariant under J^ (i — 1, 2, 3).

Let a; be a point in P\Cay). We can identify Tx(P\Cay)) with
Cay ($ Cay in a natural manner. Using the structure of the Cayley
algebra, the curvature tensor R of the standard metric on P\Cay) with
the maximum c of the sectional curvatures is given by

(1.3) R((x, y), (z, w))(u, v)

= (c/4)(—4<x, M>Z + 4<z, M># + (uw)y* — (uy)w* + (xw — zy)v,

x*(zv) — z*(xv) — 4:(y, v)w + 4(w, v)y — u*(xw — zy))
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for any (x, y), (z, w), (u, v) e TJJP\Cay)) = Cay φ Cay, where α* denotes
the conjugate of a as a Cayley number and (a, 6> = (α*6 + δ*α)/2 for
α, 6 e Cα#. Cα^ φ {0} = {(#, 0); a; e Cα#} is an 8-dimensional Lie triple
system of the symmetric space P\Cay). The complete totally geodesic
submanifold generated by Cay φ {0} is the Cayley protective line P\Cay)
of P2(Cay). P\Cay) is isometric to an 8-dimensional sphere S8 with con-
stant sectional curvature c. If an 8-dimensional subspace of a tangent
space of P\Cay) is congruent to the Lie triple system Cay φ {0} by an
isometry of P\Cay), then we call it of Cayley type. An 8-dimensional
submanifold M immersed in P\Cay) is called a Cayley submanίfold if each
tangent space of M is of Cayley type.

1.3. Here we give examples of compact stable minimal submanifolds
in protective spaces.

PROPOSITION 1.1. Let M be a protective space and M a protective
subspace of M or a compact complex submanifold in M — Pn(C). Then
the index, the nullity and the Killing nullity of M are given as in Table
1, where CCS means an l-dimensional compact complex submanifold.

(1)

(2)

(3)

(4)

M

PniR)

PniC)

PniH)

P\Cay)

M

PKR)

CCS
PιiC)

PιiH)

P'iCay)

TABLE

index

0

0

0

0

0

>

1.

(I

I 2(1

2(1

4α

nullity

+ Din

+ Din

+ D(n

+ l)(n

16

-I)

-I)
-I)

-I)

Killing nullity

(I + Din - I)

^ 2(1 + l)(n - I)

2(1 + l)(n- I)

4(1 + l)(n- I)

16

REMARK. (1) The results in the case of Pn(C) are contained in
Simons [13] and Kimura [7]. The index and nullity for the other cases
can be computed by means of Hopf fibrations and the method of Chen,
Leung and Nagano [3]. The Killing nullity is determined in a way similar
to Simons [13, p. 87]. Here we omit the detail of the proof.

(2) It is interesting to study the nullity of minimal submanifolds.
Simons [13] asked when a Jacobi field on a minimal submanifold arises
from a one-parameter family of minimal submanifolds. By the above
result the nullity of the protective subspace of the protective space coin-
cides with the Killing nullity. Hence in this case any Jacobi field arises
from a one-parameter family of minimal submanifolds. It seems that the
nullity coincides with the Killing nullity for fairly many compact totally
geodesic submanifolds in compact symmetric spaces.
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1.4. Next we explain the variational formulas for rectifiable currents.
We use the same notation as in Lawson and Simons [9]. See also [8] or
[9] for detailed definitions. Let (M, g) be a compact ^-dimensional Rie-
mannian manifold and V its Riemannian connection. We denote by g or
< , > the inner product of Ap TX(M) induced by g. Let &V{M) be the
set of all rectifiable ^-currents on M, where 0 ^ p tί n. For a current
S? e £PP(M), Sfx denotes the orientation of Sf. It is an ^p-measurable
field on M of simple p-vectors of unit length which represent tangent
planes of S^, where έ%fv is the Hausdorff p-measure on M. For a vector
field V on M we define an endomorphism s/v of TjjΛ) by s/v(X) — VXV
for Xe TJM). This endomorphism can be extended to ΛPTX(M) uniquely
as a derivation. At x in M, we define also an endomorphism VF>.F of
TX{M) by

for XeTx(M), where X is any extension of X to a local vector field.
This is independent of an extension X, and also the endomorphism VΓ ).F
carries over to Λp TJM) uniquely as a derivation. Consider a current
^ e ^ ( M " ) and a vector field V on M. Let φt:M->M, teR, be the
flow generated by V. Then for each t we have a rectifiable current
Φt(^)' Let M denote the mass of rectifiable currents which is defined
as the norm of a linear functional on CCO(AP(M)) which has the supremum
topology. If & is an oriented C^-submanifold with finite volume, then

is just the volume of &*. Then,

where \φt*&?Λ = ((Φ*g)(^x, 5^J)1/2 and \\<9*\\ is the total variation measure
associated to S^ defined by means of the p-dimensional Hausdorff measure

on M.

DEFINITION. A rectifiable p-current S? e &P(M) is called stable if,
for each vector field V on M, the following two conditions hold:

(d/dt)M(φt^)lt=0 = 0 ,

(dηdf)M(φt^)ιt=0 ^ o ,

where φt is the flow generated by V.

The first and second variational formulas for the mass of rectifiable
currents were obtained by Lawson and Simons [9] as follows:

PROPOSITION 1.2. Let M be a compact Riemannian manifold and V
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a vector field on M with associated flow φt. Then for any rectifiable
p-current ^e^

(dk/dtk)M(φt^)\t==0 = [ (dk/dtk)\φt^x\{t^d\\^\\ (k = 1, 2) ,

where for a simple unit p-vector ξ e /V(M)

(1.5) (d*/df)\φt.ξ|lί=0 = - < J ^ ( f ) , f>

REMARK. In the special case where V = grad/ for some
is symmetric and (1.5) is simplified as

(1.6) (d ΛZOI&.eli.-. = -<^r(Θ, ί>2 + 2| J^ F (f) | 2 + <Vr>f F, f> .

For future reference we shall write the right-hand side of (1.6) at
x eM in terms of tangent vectors at x. Let {elt •--, ep, nlf , nq} be an
orthonormal basis of TX{M) and ξ = ^Λ Aep. Then

(1.7) - <j*"Xf), ί>2 + 2| ̂ r{ζ) I2 + <VF>f F, f>

= JΣ <^F(e, ), e,>Γ + 2 Σ Σ

where \^fv(ξ)\ denotes the length of the p-vector

To a simple p-vector ς e Ap TX{M), x e M, we can associate a quadratic
form Qξ on the space X(Λf) of all C°°-vector fields on M as follows; for
VeX(M) with associated flow φt, define Qξ(V) = (d2/dt2)\φt*ξ\H=0. We
associate to each ^e&p(M) a quadratic form Q<? on ϊ(iίϊ) as follows;
for Vedi(M) with associated flow φt, define

QΛV) = (dydf)M(Φt^)[t=0 = [o*m<y)d\\s'\\.
J M

REMARK. If a p-dimensional compact oriented minimal submanifold
M of M is stable in the sense of 1.1., then M is stable as a current.
But in general the converse is not true.

1.5. We define a class of rectifiable currents on a quaternionic Kaehler
manifold M and P2(Cay), respectively.

DEFINITION. A 4ί-current S? 6 &U(M) is called a quaternionic current
if || ̂ | |-almost all tangent planes S?x of ^ are invariant under Jt (i =
1, 2, 3), where {/̂  J2, J3} is the canonical local basis of the quaternionic
Kaehler structure of M. An 8-current S? e &8(P2(Cay)) is called a Cayley
current if | |^| |-almost all tangent planes of S? are of Cayley type.
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Recently Tasaki [17] introduced a calibration by the fundamental
4£-form for the quaternionic Kaehler structure and obtained the following:

PROPOSITION 1.3. Any closed, canonically oriented quaternionic cur-
rent is a homologically mass minimizing current, in particular a stable
current.

2. Stable minimal submanifolds in Pn(R). In this section we shall
prove the following:

THEOREM 2.1. If M is a p-dimensional compact stable minimal sub-
manifold in the real protective space Pn(R), then M is a p-dimensional
real protective subspace PP(R) of Pn(R).

We may suppose that the standard metric on Pn(R) has constant
sectional curvature 1. Let Sn be the unit hypersphere in the (n + 1)-
dimensional Euclidean space En+1 with the standard inner product < , >
and π: Sn —• Pn(R) the natural isometric covering. We denote by a the
antipodal involution of Sn: σ(x) — — x (xeSn). Let M be a p-dimensional
compact minimal submanifold immersed in Pn(R) and we denote the
immersion by ψ. Let Mf be a connected component of the total space
of the pull-back ψ-'S71 for the principal Z2-bundle π:Sn-^Pn(R). We
have a commutative diagram:

ikΓ — SnaEn+1

M —U Pn(R) .

α/r': Mf —> Sn is also an immersion, and so we may define a Riemannian
metric on M' in such a way that ψ'\ Mf —> Sn is an isometric immersion.
Then πM: M' —> M is an isometric covering and ψ': M' —> Sn is also minimal.
We denote by A', B' and ^ f the shape operator, the second fundamental
form and the Jacobi operator for α/r', respectively. We denote by ^ the
Jacobi operator for ψ.

For any vector v in En+1, we define a C°°-function /„ on Sn by
fυ(x) = (x, v} (xeSn). fv is the height function on S n in the direction
of v. Put V= grad/,e3e(Sn), where ϊ(Sn) is the space of all C°°-vector
fields on S\ V is a conformal vector field on Sn. Since <7*(V) = — V,
V does not project to any vector field on Pn(R). Now let u and v be
two arbitrary vectors of En+1 and put U — grad/tt and V = grad/<,. We
consider a vector field Z' = f%V = Λ(grad/V) on Sw. Since σ^CZ') = Zf,
Zf projects to a vector field on Pn(J8), that is, there is a vector field Z
on Pn(i?) such that π*Z'x = Z^,, for α e Sn. We shall compute
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where Z'N is the component of Z' normal to M'.

LEMMA 2.2 (cf. Simons [13, p. 85]). IfVτ and VN are the components
of V tangential and normal to M', respectively, then they satisfy

(2.1) V'XV
T = A'r»(X) - fv(x)X,

(2.2) VixF" = -B\X, Vτ) ,

for any Xe TX(M'), where V and V'1 are the Riemannian connection
and normal connection of M', respectively.

LEMMA 2.3. // Z'τ and Z'N are the components of Z' tangential and
normal to M', respectively, then they satisfy

(2.3) ΨXZ'T = A'MX) + <X, u)Vτ - fMUx)X ,

(2.4) V'/Z'» = -B'(X, Zτ) + (X, u)VN ,

for any Xe TX(W).

PROOF. Using (2.1) and (2.2), we have V'XZ'T = Ψx(f«Vτ) = (Xf«Wτ +
Vτ = (X, u)Vτ + A'MX) -fJ«X, and Ψ/Z'» = Ψ/tf.V") = (XfJV* +
VN = (X, u)VN - B'(X, Z'τ). q.e.d.

LEMMA 2.4. ^\Z'N) = 2B'(UT, Vτ).

PROOF. Choose an orthonormal frame field (elt , ep) around a point
x in M' such that (Ve^ = 0 (1 ̂  i ^ p). By (2.4) at x we have

ί=l

P
S I

1 = 1

P

7'4(-B'(fit, Z'τ) + <β€f %>Fff)

where V' is the Riemannian connection of <S" and V'*B' is denned by
(V'X*B')(Y, Z) = Ψ/(B'(Y, Z)) - B'(ΨZY, Z) - B'(Y, ΨXZ). By (2.2), (2.3)
and the minimality of ψ', we have

Δ'λZ'N = Σ (-(V^B')(e« Z'τ) - B\et, A'MeJ) ~ <e» u>B'(et, V
τ)

+ L(x)L(x)B'(e{, e,) + <B'(e<f βt), u}VN - tf,{x)V»

- <fiit iϊ>B'(eit V
τ))

= -Ά'(Ztlf) - 2B'(UT, Vτ) - pZ'N .

Since R\Z'N) = -pZ'N, we obtain ^\Z'N) = 2B'(UT, Vτ). Here Ά and
JB' are defined for ψ' in the same way as in 1.1 of Section 1. q.e.d.
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In the above situation we shall prove Theorem 2.1.

PROOF OF THEOREM 2.1. We assume that M is stable. Let ZN be
the component of Z normal to M. Since π is a local isometry, we have

Vτ), VN)fu. We may regard (B'(UT, Vτ), VN)fu as a function on M. Then
we have

(2.5) QM{Z) = ί (J?{Z»), ZN)dv = 2 \ (B'(UT, Vτ), VN)fJv .

Fix the vector u and regard QM(Z) as a quadratic form with respect to
v 6 En+1. We compute the trace of QM(Z) on v e En+1 with respect to the
inner product < , >. Let {vlf -—,vn+1} be an orthonormal basis of En+1

with respect to < , ). Then we have

(2.6) Tvv QM(Z) = 2 ( Σ <B'{UT, Vf), Vf}fndv ,
JM i=l

where Vt = grad/V ί (i = 1, •••,% + 1). We fix any x eikΓ. Since the
integrand on the right-hand side of (2.6) is independent of the choice of
the orthonormal basis {vv " fvn+1}f we may assume that v19 '' ,vp and
Vp+i, '*'tVn are tangent and normal vectors at xeM', respectively, and
vn+1 = x. Since (V7)« and (V*)x are the TJJM'Y a n ( i -^(MO-components
of Vt in En+1, respectively, we have

Λ + l

Σ (B\UT, Vt)9 Vi)fu = 0 at x .

As x is any point of M'9 the integrand of (2.6) vanishes identically on
M. Therefore we have Ίrυ QM(Z) = 0. Since QM(Z) is nonnegative by
the stability of M9 we have QM{Z) = 0 for any u, v e En+1. As ^
has no negative eigenvalue by the stability of M, we get ^F(ZN) =
2π*B\Uτ, Vτ) = 0 for any u, v e En+1. Hence B' = 0 on M'. Thus both
Mr and M are totally geodesic. Therefore, either M is isometric to PP{R)
and ψ is a totally geodesic imbedding, or M is isometric to Sp(l) and ̂
covers a projective subspace PP(R) of Pn(R). We have only to show that
the latter never happens. In the latter case there is a lift φ: M —> Sn

such that ψ — π°φ. ^ is a minimal isometric immersion of M into S\
By Theorem A the second variation of the volume of M is negative for
some V eC°°(φ*T(Sn)). Then the second variation QM(π*V) for π*V e
C°°(ψ*T(Pn(R))) is negative. This is a contradiction. q.e.d.

Combining (1) of Proposition 1.1 with Theorem 2.1, we obtain Theo-
rem C.

3. Stable minimal submanifolds in Pn(H) and P\Cay). The purpose
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of this section is to show the following theorems:

THEOREM 3.1. If M is a p-dimensional compact stable minimal
submanifold immersed in the quaternionic protective space Pn(H), then
p — 4J for some integer I and M is an l-dimensional quaternionic pro-
jective subspace P\H) of Pn(H).

THEOREM 3.2. If M is a p-dimensional compact stable minimal
submanifold immersed in the Cayley protective plane P\Cay), then p = 8
and M is a Cayley protective line P\Cay) of P\Cay).

Put F = R,C, H and Cay, and let Pn{F) be the ^-dimensional projec-
tive space over F with the standard metric of the maximum c of the
sectional curvatures. Here n = 2 when F = Cay.

We shall give the unified proof of the following theorem.

THEOREM 3.3. Let M be a compact rank one symmetric space, that
is, M = Sn or Pn{F) and Sf e &P(M) a stable p-current.

(1) If M — Sn, then p = 0 or p = n (Lawson and Simons).
(2) If M — Pn(C), then p = 21 for some integer I and ^ is a com-

plex current {Lawson and Simons).
(3) If M — Pn(H), then p = 4£ for some integer I and Sf is a qua-

ternionic current.
(4) If M = P\Cay), then p = 0, 16 or p = 8 and S? is a Cayley

current.

In particular, we obtain the following.

COROLLARY 3.4. Let M be a p-dimensional compact stable minimal
submanifold immersed in Pn(F).

(1) If F = C, then p = 21 for some integer I and M is a complex
submanifold (Lawson and Simons).

(2) If F = Hf the p = 41 for some integer I and M is a quaternionic
submanifold.

(3) If F= Cay, then p — 8 and M is a Cayley submanifold.

First we derive the following trace formula for a submanifold in a
Euclidean space.

PROPOSITION 3.5. Let M be an n-dimensional Riemannian manifold
isometrically immersed in the Euclidean space Em with the canonical
inner product < , > and denote by Φ the immersion. Assume that the
image of M does not lie in any hyper plane of Em. We define

T = {gradΛ € 3£(M); v e Em} ,
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where fυ(x) = (Φ(x), v} (xeM). Making use of the natural isomorphism

(3.1) τ = Em,

we introduce an inner product on Tl To any unit simple p-vector ξe
Ap TX(M), xeM, we associate a quadratic form Qξ on JΓ in the same
way as in 1.4. of Section 1. Then we have

V P

(3.2) Tr Qξ = Σ Σ (2|| B(es, nk) ||2 - <B(βif eά)B(nk9 n*)» ,

where B is the second fundamental form of Φ and {elf , ep9 n19 , nq}
is an orthonormal basis of TJJίSt) with ξ = ex/\ Λep.

PROOF. Assume that VeY* corresponds to veEm under the isomor-
phism (3.1). Then at any xeM we have Vx = vτ, where ( )τ denotes
the orthogonal projection Tx(Em) -> TJjΛ). By a simple computation it
follows that

(3.3) (V2Λ)(X, Y) = (B(X, Y), v) ,

(3.4) (V3/J(X, Y, Z) = -(B(X, Y), B(Z, V)} + <(V*5)(Xf Y, Z), v)

for X, Y, ZeTx(M). Here V is the Riemannian connection of M and

V*S is the covariant derivative of B defined in the same way as in Sec-

tion 2. We define jχfv and VV,V in the same way as in 1.4. of Section

1. Since (V2Λ)(X, Y) = <VyF, X) and (V3Λ)(X, Y, Z) = <VZ,FF, X>, it

follows from (3.3) and (3.4) that

(3.5) <J^F(X), Y)> = <B{X, Y), v) ,

(3.6) <yv,xV, Y) = -{B{Y, X), B{V, V)} + <(V*5)(Γf X, V), v)

for X, Y, Ze TZ(M). Thus from (1.5), (1.6) and (1.7) we have

(3.7) Qξ(V) = ( Σ <B(βif e,), v)\ + 2±± (B(ei9 nk), vY
\jl / j l fclΣ

j=l

- Σ <B(eJf e,), B(V, F)> + ± <(V*5)(ey, es, V), v) .
i=i i=i

We now choose an orthonormal basis {elf , epf nlf , nq, ζ19 , ζm_n}
for Em and let {Fly F2, , Fm} be an orthonormal basis of 3Γ correspond-
ing to {e19 '--,ep,n19 , nq9 ζ19 , ζ m _J via (3.1). Hence from (3.7) we
obtain

Σ Σ <B( ) B{ )) Σ= 2 Σ Σ <B(ej9 nk), B{e5, nk)) » Σ Σ <B(βi9 e,)9 B(nk, nk)} . q.e.d.
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Next we review quickly the definition of the standard minimal
immersions of compact irreducible symmetric spaces (cf. [14], [11]). Let
M = G/K be an ^-dimensional compact irreducible symmetric space repre-
sented by a symmetric pair (G, K) and gQ a G-invariant Riemmannian
metric on M induced by the Killing form of the Lie algebra of G. We
should note that the scalar curvature of (M, g0) is equal to n/2 (cf. [16]).
Let Δ be the Laplacian of (M, g0) acting on functions. For the &-th
eigenvalue χk of Δ, we choose an orthonormal basis {/0, •• ,/TO(fc)} of the
λ -th eigenspace Vk with respect to the ZΛinner product defined by g0.
We define a mapping Φk of M into Em{k)+1 by

where C = (Vol(iί?, go)/(m(Jc) + 1))1/2. Then Φk = coφk is the composite of
a G-equivariant minimal isometric immersion φk of (M, (Xk/n)g0) into the
unit sphere Sw(fc)(l) and the inclusion map c of Sm{k)(l) into Emik)+1. φk is
called the k-th standard minimal immersion of M. Φk(M) is not contained
in any hyperplane of Em{k)+1. We have Vk = {fv; veEm{k)+1}, where fv{x) =
(Φk(x), v) (xeM).

We consider the case of M = Sn or Pn(F). Let φλ be the first standard
minimal immersion of M. If M = Sn, then φλ is the identity map of Sn.
If M = Pn(F), then ^ is the generalized Veronese imbedding (cf. Sakamoto
[12]). Then Φx — t°φx has the following properties.

PROPOSITION 3.6.

(i) Φx is an isotropic immersion, that is, there is a positive constant
λ such that

(3.8) ||S(X, X)||2 = λ2 for any unit vector X on M ,

where B denotes the second fundamental form of Φx.
(ii) Let c he the maximum of the sectional curvatures of the Riemann-

ian metric on M induced by Φλ. Then the values of c and λ2 in each
case are given as in Table 2.

TABLE 2.

M

Pn(R)

Pn(C)

Pn(H)

PHCay)

dimilf

n

n

2n

in

16

c

1

n/2(n + 1)

2n/(n + 1)

2nl(n + 1)

4/3

λ*

1

2nl(n + 1)

2nl(n + 1)

2nl(n + 1)

4/3
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(3.8) is equivalent to

(3.9) (B(X, Y), B(Z, W)) + (B(Y, Z), B{X, W)) + <£(Z, X), B(Y, W))

= λ2«X, F><Z, W) + <Γ, £><X, T7> + <Z, X><

for X, Y, Z, ΫFe TX(M). Applying the Gauss equation for Φx to the second
and third terms on the left-hand side of (3.9), we obtain

(3.10) 3(B(X, Y), B{Z, W))

= (R(X, Z)W, Y) + R((X, W)Z, Y) + λ2<X, Y)(Z, W)

+ x\x, wχγ> zy + λ2<z, z)(w, Y)
for X, Y, Z, We TX(M), where R is the curvature tensor of M. We denote
by K the sectional curvature of M: K{X/\ Y) = (R(X, Y) Y, X) for ortho-
normal vectors X, Y.

PROOF OF THEOREM 3.3. We apply Proposition 3.5 to the imbedding
Φx of M. For any unit simple p-vector ξ e Ap TX(M), we choose an ortho-
normal basis {elf , e9, n19 , nq} of TX(M) with ξ = e1/\ Λep. By
(3.10) we have

P Q _

(3.11) 3 Σ Σ IIB{es, nk)\\* = - Σ Σ X(β,Λ»») + Pϊλ ! ,
j l j k i i = l fc=l

(3.12) 3 Σ Σ <5(βίf e,), B(nk, w»)> = 2 Σ Σ K(β,Λnt) +
j = l fc=i j = i fc=l

Hence it follows from (3.11), (3.12) and (3.2) that

(3.13) Tr Qt = pqx2β - (4/3) Σ Σ K(e^nk) .

If M = Sn, then from (ii) of Proposition 3.6 we have

Hence for any p-current ^ 6 ̂ ^(S71) we have

to obtain (1). Suppose M = Pn(F) with F = C, IT or Cay. From (ii) of
Proposition 3.6 we have c = λ2. By this together with the fact that the
sectional curvature K of Pn(F) is 1/4-pinched, we obtain

(3.14) Tr Qe = pqφ - (4/3) Σ Σ i^(βiΛ^fc) ^ 0 .
i l fc

Hence for any p-current S? e &p(Pn(F)) we have

(3.15) TrQ^ J
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= j (W/3 - (4/3) g g

where {elf

 m

 fep,nlf — -,nq} is an orthonormal basis of Tx(Pn(F)) with
,5*; = e ^ Λβp at | |^| |-almost all xePn(F). Suppose now that ^ is
stable. Then by virtue of (3.14) we have Tr Q^ = 0. Again by (3.14)
we have Tr Q?χ = 0 for || S? ||-almost all x e Pn(F). Since K is 1/4-pinched,
we get K{eό/\nk) = c/4 for 1 ^ i ^ p and 1 ^ fc ^ ^. Hence any stable
p-current S? e &p(Pn{F)) satisfies

(3.16) #(XΛζ) = c/4

for any two unit vectors I e ^ , ζ e ^ 1 at | |^ | |-almost all xePn(F).
Here i ^ 1 is the orthogonal complement of S% in Tx(Pn(F)).

Case 1. Suppose F = C or H. Substituting (1.1) or (1.2) into the
left-hand side of (3.16), we obtain

(JX, ζ> = 0 or Σ <JtX, O2 = 0
i=l

for any l e y , and ζ e ^ 1 , at | |^| |-almost all xeP n (F) . Hence, for
|| ^ ||-almost all xePn(F), the tangent space y a of y is invariant under
J or Ji (i = 1, 2, 3). Therefore if F = C, then p is even and y is a
complex current. If F = JBΓ, then p is a multiple of 4 and y is a qua-
ternionic current.

Case 2. Suppose F = Cα#. We fix any point cc e P2(Cay) such that
^ satisfies (3.16). We have to show that S?m is of Cayley type. We
can identify Tx{P\Cay)) with Cay φ Cay as in 1.2 of Section 1. Let
{elf - , ep, nίf , nq} be an orthonormal basis of Tx{P\Cay)) with S?m =
eiΛ Λβp. Transforming it by an isometry of P2(Cay), if necessary, we
may assume that eλ = (1, 0). Put nk = (pk, dk) (1 ?ί k <* Q), where ck, dk e
Cay. Note that <elf nA> = <1, ck) = 0 and \\ck||

2 + ||dfc||
2 = 1. Substituting

(1.3) into the left-hand side of (3.16), we have

£(βiΛn4) = c(||c,||2 + II4HV4) = (c/4)(3||cfc||
2 + 1) = c/4 .

Hence we have ck = 0. Thus ^fc = (0, dk) (1 ^ i ^ ?), that is, {̂ , , nq}cz
{0} 0 Cα^. Put et = (aif &J for 2 ^ i ^ p, where aif bt e Cay. Note that
<eίf eά - | |αj | 2 + || 6, ||2 = 1, (nk, nk) = | | 4 | | 2 = 1 and (eif nk) = (bif dk) = 0,
Again using (1.3), we have

K(eiAnk) = c ( | | 6 J 2 | | c y | 2 + Hαjr/4) - e(\\bt\\% + 11^1174)

= (c/4)(3||6<||
t + l) = c/4

for 2 ^ ί ^ p. Hence we have 6* = 0. Thus e* = (αif 0) for 2 ^ i ^ p,
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that is, {e19 •••, ep}czCay®{0}. Hence we obtain p = 8 and J%
Therefore Sfm is of Cayley type. Thus & is a Cayley current. q.e.d.

Applying the same method to a submanifold, with d\\S^\\ replaced
by the Riemannian measure, we obtain Corollary 3.4.

Combining Corollary 3.4 with the following two propositions, we get
Theorems 3.1 and 3.2.

PROPOSITION 3.7 (Alekseevskii [1], Gray [5]). Any quaternionic sub-
manifold of a quaternionic Kaehler manifold is totally geodesic.

PROPOSITION 3.8. Any Cayley submanifold of the Cayley protective
plane P\Cay) is totally geodesic.

PROOF. Let M be a Cayley submanifold of P\Cay). We denote by
V and V the Riemannian connections of P\Cay) and M, respectively.
Since M is curvature invariant, that is, R(X, Y)Z e TX(M) for any
X, Y, Z e TJM) a n d a n y %εM, and since P2(Cay) is locally symmetric,
the curvature tensor R of P\Cay) and the second fundamental form B
of M satisfy the equation

(3.17) B(W, ϊt(X, Y)Z) = R(B(W, X), Y)Z + R(X, B(W, Y))Z

, Y)B{W,Z)

for X, Y,Z, WeTx(M). Indeed, for any local vector fields X, Y, Z, W
on M around x with (VI), = (V7)β = (VZ)X = 0, we have

B(W, R(X, Y)Z)

f f Y)Z)}N

, Y)Z + R(VWX, Y)Z + R(X, VWY)Z + R(X, Y)VWZ}«

= {R(B(W, X), Y)Z + R(X, B(W, Y))Z + R(X, Y)B(W, Z)}N .

By the curvature invariance of M we get (3.17).
Fix any point xeM. We identify Tx(Cay) with Cay φ Cay as before.

We may assume that Tx{M) = Cay®{ϋ). Then by (1.3) we have
R(X, Y) = c(XΛY) for X, YeTβ(M), where c is the maximum of the
sectional curvatures of P2(Cay). Now we shall show that 2?(X, X) =
—B(Y, Y) for any two orthonormal vectors X, YeTx(M). If we put
Z=Y, W= X in (3.17), then we have

(3.18) cB(X, X) = R(B(X, X), Y)Y + R(X9 B(X, Y))Y
+ R(X, Y)B(Xf Y) .

Interchanging X and Y in (3.18), we have
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(3.19) cB(Y, Y) = R(B(Y, Y), X)X + R{Y, B(Y, X))X

+ R(Y, X)B(Yf X) .

Adding (3.18) to (3.19), we have

(3.20) c(B(X, X) + B{Y, Y)) = R(B(X, X), Y)Y + R{B(Y, Y), X)X

+ R(X, B(X, Y))Y+ R(Y, B(X, Y))X.

We put X = (x, 0) and Y = (y, 0) for some x, y e Cay. Then B(X, Y) =
(0, /3(x, y)), where β is a symmetric j?-bilinear mapping of Cay x Cay into
Cα#. Then substituting (1.3) into (3.20) we get

β(χ, x) + β(y, v) = {β{χ, x) + β(y, y))/4 - {»*(aj/S(ίc, ») + χ*(yβ(χ, »))}/4 .

Hence, if we define the associator of the Cay ley algebra Cay by (α, 6, c) =
α(6c) — (α6)c (α, 6, ceCay), we have

(3.21) 3(/3(α, OJ) + β(y, y))

= -(«?* + »*, α + y, /S(a?, ?/)) - 2(x, y)β{xf y) .

Since (α*, α, 6) = 0 (α, 6 6 Cay) and <X, F> = (x, y) = 0, the right-hand
side of (3.21) vanishes. Thus we obtain B(X, X) = -B(Y, Y). Since
dim TJM) ̂  3, this implies that B = 0. Hence Λf is totally geodesic, q.e.d.

Combining Theorems 3.1 and 3.2 with (3) and (4) of Proposition 1.1,
we get Theorems D and E.

4. Remarks on the nonexistence of stable currents. In this section
we show two theorems on the nonexistence of stable currents. Now we
assume that M is an ^-dimensional compact Riemannian manifold isomet-
rically immersed in the (n + l)-dimensional Euclidean space En+1 with
the inner product < , >. Let R and A be the curvature tensor and the
shape operator of M, respectively.

Let δ be a constant with 0<<5 ^ 1, and suppose that at each x of M
every principal curvature /e* of M with respect to a suitable unit normal
vector field ζ satisfies V δ ^ κt ^ 1, ί = 1, , n. The assumption implies
that M has the sectional curvature satisfying δ ^ Kσ ^ 1 for any tangent
2-plane σ. The above assumption also implies that M is orientable. There-
fore we can choose a global field ζ of unit normals on M which satisfies
the above condition, and then we can write Aζ = A. We use the same
notation as in Proposition 3.5. We show the following.

LEMMA 4.1. For any simple unit p-vector ξe Ap TJM)* xεM, we
have

Tr Qξ = —pq(2δ — 1) , where p + q = n .
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PROOF. By virtue of Proposition 3.5 we have

TrQf = 2 Σ Σ <A(ey), nkγ -±± (A{es), es}(A(nk), nk) .
3=1 fc=l j = l fc=l

Applying the Gauss equation to the first term of the above equation,
we have

Tr Qζ = - 2 Σ Σ <Λ(βy, nh)nk, e/> + Σ Σ <A
i i fci i i fci

By the assumption V δ <; ιct ^ 1 (i = 1, , w), we get V δ ^ CA(ey), e,>,
CAίttfc), wfc> ^ 1 and <5 ̂  <Λ(βy, wfc)nfc, βy> ̂  1, for j = 1, , p and & =
1, , q. Thus we have

Tr Qξ £ -2pqδ + pq = -pq(2δ - 1) . q.e.d.

Combining Proposition 1.2 and Lemma 4.1 we get the following theo-
rem, from which Theorem F follows immediately,

THEOREM 4.2. Let M be an n-dimensional compact Riemannian
manifold satisfying the conditions above. Then for any S? e &P(M)

TrQ^rg -pg(2δ - l)M{&>) ,

where q = n — p.

Our next interesting problem is to classify stable minimal submani-
folds and stable currents in compact symmetric spaces of rank greater
than one. We here show a theorem on the nonexistence of stable cur-
rents on some compact rank two symmetric spaces.

THEOREM 4.3. Let M be an n-dimensional simply connected compact
rank two symmetric space of type AZ9 that is, one of the following sym-
metric spaces: Sϊ7(3)/SO(3) (n = 5), SU(3) (n = 8), SU(fi)/Sp(S) (n = 14)
and EJF4 (n = 26). Let n = p + q where p and q are positive integers.
If p < nβ or q < nβ, then there exist no rectifiable stable p-currents on M.

PROOF. Let φ1:M-^Sm{1) be the first standard minimal isometric
immersion of M into a unit sphere Smω where m(l) + 1 denotes the
multiplicity of the first eigenvalue for the Laplacian of M. We denote
by c the inclusion of Sm(1) into Em{1)+1. Then it is not difficult to verify
that coφ1 is an isotropic immersion. The square λ2 of its isotropic constant
is equal to 3/2 and the maximum c of the sectional curvatures of M is
equal to 3/2. Applying Proposition 3.5 to c<>φ19 straightforward compu-
tations show that, for any unit simple p-vector ξe ΛPTX(M),

Tr Qζ ^ Um{-p(n - 3p)/2, -q(n - 3<?)/2} . q.e.d.
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