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Introduction. In this paper, we give a method of constructing certain
examples of compact complex manifolds U with 7,(U) =~ Z and study the
structure of U. Those manifolds are toroidal compactifications of the
quotient spaces of open sets of algebraic tori (C*)* by the groups g¢*
generated by elements g in GL(r, Z) satisfying certain conditions (Defi-
nition 1.1). As examples of such g, we can take integral matrices whose
entries are all positive. Since the first Betti numbers of such manifolds
are equal to one, they are not Kahler manifolds. In the two-dimensional
case, those manifolds U are hyperbolic Inoue surfaces or half Inoue sur-
faces (see [3]). Hence we may regard our examples as higher-dimensional
analogues of hyperbolic Inoue surfaces. On the other hand, one of them
is bimeromorphic to that constructed by Kato [6]. Therefore, we call
them Inoue-Kato manifolds. (The name was suggested by Ishida.)
Sankaran [9] also constructs certain examples of compact complex mani-
folds M, which are in another sense higher-dimensional analogues of
hyperbolic Inoue surfaces, and whose fundamental groups are free abelian
groups of rank dim M — 1.

This paper is organized as follows. In Section 1 and Section 2, we
construct compact complex manifolds mentioned above and their degen-
erations, respectively. In Section 3, we show that a part of them contain
global spherical shells. In Section 4 and Section 5, we calculate some of
their analytic invariants. We show some examples in Section 6.

The author would like to thank Professor T. Oda who pointed out
the fact in Proposition 1.4.

1. The construction. Let N =~ Z” be a free Z-module of rank » and
let T= N®C* be an algebraic torus of rank r.

DEFINITION 1.1. Let K(N) be the set of Z-linear transformations g
of N satisfying the following condition.
g has a simple real eigenvalue » = \(g) such that || <\ for all the
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other eigenvalues 7 of g.
Clearly, we have:

PROPOSITION 1.2. If g is im K(N), then *g is in K(N*), where the
transpose *g 1is the linear tramsformation of N*:= Hom(N, Z) definined
by {(m, gn) = {’'gm, n), for all m € N* and for all ne N.

PROPOSITION 1.8. Let g be in K(N). Then there exists an open convexr
cone C such that the closure of gC is contained in CU{0}, that H(g):=
Uiez 8°C 18 a half-space of Ny and that L(g):= N,z 9'C is a half-line of
Ny, where we denote by the same letter g, the image of g under the
natural map GL(N) — GL(Ny).

ProOF. Let v and v* be eigenvectors of g and ‘g, respectively, as-
sociated with the real eigenvalue A\(g). Then clearly, {v* v) = 0. Hence
we may assume that (v*, v)>0. Then the half-space H:= {y € Ng|{(v*, ) >
0} contains the half-line L:= R.,w. Take an open polygonal cone C, =
R.mn, + R, + -+« + R.yn, containing L and contained in H. Then
Niez9'Cy, = L. Hence there exists a positive integer [, such that the
closure of g"C, is contained in C,U{0}. Let C;= R.n,(5)+R>n,(3)+ -+
R.m,(j), where n,(j) = n,+(je/l,)v. Then the closure of g"C, is contained
also in C,)U{0} for a positive real number ¢ small enough. Moreover,
the closure of C;,, is contained in C;U{0}. Let C=C,_,NgCy_,N---N
g"7'C,. Then the closure of gC = g"*C,NgC,_,N---Ng"'C, is contained in
CU{0}. Since also C contains L and contained in H, we have N,;.,9'C=L
and U,.;9'C = H. q.e.d.

Let g be in K(N). Then we see by the above proposition that the
cyclic group g# generated by ¢ acts on D(g) := (H(g)\L(9))/R-, properly
discontinuously and without fixed points and that the quotient D(g)/g*
is compact. Moreover, D(g)/g? is homeomorphic to S"*xS!, if ¢ is in
SL(N).

PROPOSITION 1.4. Let g be in the group GL(N) of Z-automorphisms
of N and let C be the interior of a non-singular rational cone of dimension
r in Nx. Assume that gC is contained in C and that the closure of ¢'C
1s contained in CU{0}, for a positive integer l. Then g 1s in K(N).

ProOF. By assumption, there exists a Z-basis {n, 7, -+, n,} of N
with C = R.mm, + Rogn, + +++ + R.m,. Then g (resp. ¢') is represented
with respect to the basis {n, n, -+, n,} by a matrix whose entries are
all non-negative (resp. positive) integers. Hence by the Perron-Frobenius
theorem (see [10, Ex. 37]), g (resp. ¢') has a real eigenvalue )\ (resp. a
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simple real eigenvalue )\') such that » = |7| (resp. »'>|7'|) for the other
eigenvalues 7 of g (resp. ' of ¢g*). Here clearly, \' = A'. Therefore, )
is a simple real eigenvalue of g and A > |7| for the other eigenvalues 7
of g. q.e.d.

PROPOSITION 1.5. Let g be in K(N). Then g% acts on H(g) properly
discontinuously and without fixed points.

Proor. Let v and v* be the same as in the proof of Proposition 1.3.
By Proposition 1.3, we have a cone C such that the closure of gC is
contained in CU{0}. Let F = {yeC|{v* y> > 1}. Then U,., ¢'F = H(g),
Niez 9'F = @ and the closure of gF' is contained in F', because {v*,gy) =
Cgv*, yd = M)W, ¥) > A(g) > 1 for any y in F. Hence the action of
97 on H(g) is properly discontinuous and fixed point free. q.e.d.

In the following, we use the notation in [8]. Let g be in K(N) and
let W = ord‘(H(g)) be the inverse image of H(g) under the GL(N)-
equivariant map ord = —log| |: T— Ni. Then the quotient W := W/g*
of W with respect to the action of g? is a complex manifold by the above
proposition. In the following, we construct a toroidal compactification of
W. First, we show that there exists a gZ-invariant r.p.p. decomposition
Y in N with |¥] (:=U,ez0)=(H(@\L(9)U{0}. We can take a strongly
convex rational polyhedral cone C such that gC is contained in Int(C)U {0},
that U,.,¢'C = H(g)U{0} and that N,., ¢'C = L(g)U{0}, by Proposition 1.3.
Let 4 = {faces of C}\{C}. Then since 4Ug4 is an r.p.p. decomposition
in N, we have a complete r.p.p. decomposition A’ containing AUgA, by
[11, Theorem 3] and [8, Theorem 4.1]. Let X, = {g € A'|ccC\Int(g9C)}.
Then |¥,| = C\Int(gC), because C\Int(gC) is the closure of a connected
component of Nx\|4Ugd|. Hence 3 = {g'o|loceX,, le Z} is a g*-invariant
r.p.p. decomposition in N and |3| = Uz (@'C\Int(g'*'C)) = (U2 9'C)\
(Niez Int(g"'C)) = (H(g)N\NL(9)U{0}. Let X = Temb(Z)\ T and let U =
WUZX. Then U is an open set of Temb(Z) and is invariant under the
action of g¢~.

PROPOSITION 1.6. U is simply connected.

PrROOF. Note that the inclusion map W<=> T induces an isomorphism
7, (W)= z(T) of the fundamental groups. Hence we get the assertion
of the proposition in the same way as in the proof of [8, Proposition
10.2]. q.e.d.

We obtain from X, a g%invariant polygonal decomposition A :=
{(No\{O})/R>o|0€Z\{(O}}} on D(g), which coincides with the dual graph of
X. Since g7 has no fixed points on D(g), neither does it on X. Let
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U= U/g? and let X = X/g?>. Then X is a divisor on U and the dual
graph of X is the graph on D(g)/g?% which is the image of A under the
projection D(g) — D(g)/g>.

PROPOSITION 1.7. U 1s an r-dimensional compact complex variety
with the fundamental group n(U) = Z.

PROOF. Since g% has no fixed points on X and on W, neither does
it on U =WUZX. Let F be the same as in the proof of Proposition 1.5.
Then the closure G of F\gF in l7/CT is compact, where CT is the
compact real torus N@ U(1) in T. Hence the inverse image of G under
the map ord: U — U/CT is also compact and is a fundamental domain with
respect to the action of g?. Therefore, U is an r-dimensional compact
complex variety. Moreover, 7, (U) = g* = Z by Proposition 1.6. q.e.d.

Assume that I consists of non-singular cones. Then U and U are
complex manifolds. Moreover, the dual graph A of X is a triangulation.

REMARK. When r» = 2, U is a hyperbolic Inoue surface or is a half
Inoue surface, according as g belongs to SL(N) or not.

2. Degenerations. Since A in Definition 1.1 is greater than one, we
have:

ProPOSITION 2.1. If g is in K(N), then §. 1s in KNP Z) where
§. s the linear transformation of N@ Z sending (n,l) to (gn, +1).

Let g be in K(N) and assume that there exists an r.p.p. decomposition
3 with | 2| = (H(g)\L(g))U{0}. Let 4 = {Rx:.1, {0}, R-,(—1)}. Then 4 is
an r.p.p. decomposition in Z and B:= T,emb(A) is a non-singular rational
curve. Assume that there exists an r.p.p. decomposition 5 in N@ Z
satisfying the following condition.

(D) 3 is (§.)*invariant, || = ((H(g) x R)\(L(9)) X {0})) U{0}, the sub-
complex {c€2|0CNg} of 2 is equal to X and the natural projection
N@PZ—Z induces a morphism (NP Z, 3)—(Z, A) of r.p.p. decompositions.

Then we have an (r + 1)-dimensional compact complex variety Z :=
(ord™"(H(g) X R) U ( Tyezemb(E)\ Tyez))/(§.)%, a divisor 27 := (Tygzemb(3)\
Trvez)/(§.)? on 77 and a holomorphic map ¢: Z— B with ¢ (T;) =
UxT; (7 (T))NZ = XX T)p)

THEOREM 2.2. Assume that there exist a convexr rational cone C and
a set X% of r-dimensional cones in X such that gCcInt(C)U {0} and that
3¢ = C\Int(gC). Then there exists an 7r.p.p. decomposition S in
N Z satisfying the above condition (D). Moreover, @ (orb(R:,1)) =
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@ (orb(Rx,(—1))) s a toric variety intersecting itself along two disjoint
divisors.

PrROOF. First, we note that 3? consists of representatives of -
dimensional cones of X modulo g%, i.e., {g'c|l€ Z, o € 3%} = {r-dimensional
cones in 3} and | = 0 if g'c = ¢ for ¢,7€3%. Take an element » in N
so that gv — v is contalned in Int(¢C) and let C = (Rx(v, 1) + C)U
(Rso(v, —1) + C). Then g+C is contained in Int(C)U{O} Let 2° = {faces
of gloe3) and let 3°={G., 7. |0, t € 3°, tCgC}, where 6, = R.y(v, +1)+0
and 7. = Ry(v, +1) + Rs(gv, £1) + 7. Then we can verify that g'pnNx
are faces of g'» and ), for », v € S'and for | € Z and that |f°]=é\1nt(§+@).
Hence 3 : = {faces of (§,)'\|n€23°, l € Z} is an r.p.p. decomposition in ND Z
and satisfies the condition (D). The last assertion follows from the con-
struction of 5. q.e.d.

COROLLARY 2.3. Let g be in K(N) and assume thal there exist an
r.p.p. decomposition X with |3| = (H(g)\L(g))U{0}, a positive integer I,
a convex rational cone C and a set 3¢ of r-dimensional cones in X such
that | 22| = C\Int(¢'C) and that g'CcInt(C)U{0}. Then there exists an
r.p.p. decomposition 5 satisfying the condition (D).

PROOF By Theorem 2.2, we have a (§,)"*-invariant r.p.p. decompos1—
tion & such that |5|=((H(g) x R)\.(L(g) X {0})) U {0} and that {o € ”IoCNR}—
3. Let 3 = {ho,Nhg,N - Nho;|o, €5}, where h, = (§, )'. Then 5 is
(§4)%-invariant, consists of rational cones, [Z |=|&| and {o eS|oCN}=23,
because I is g-invariant. Hence it is sufficient to show that 5 is an
r.p.p. decomposition. Let 7 be a face of an element ¢ = ho,Nh,0,N - N
ho, in 5. Then 7 =onNa', for an element z = X, +®+ -+ in

= (h0,)V + (ho,)V + +++ + (ha)" (x;€(ho;)"), where ¢V is the dual
cone of ¢ and z* = {y € Ng|<x, ¥y> = 0}. Let z, = h,o;Nx}. Then 7, is a
face of h,o, and

t={yeallz, y) = 0}

= {y€0'|<x1, y> = <x27 ’!/> = = <xl9 y> = 0} =7, NTN e nflej ’
because {x,, y> =0 for yeo. Next, let ¢ = ho,Nho,N - Nho,and 7=
hoNhz,N -+ Nhz, be in 5. Then oNt = h(o,N7)Nhy(G.NTHN -+ N
h(o;N7). Since h(o,Nz,) is a face of h,o;,, there exists an element =z,
in (h,0,)Y with h(o,N7;) = ho;Nxi. Hence
oNt={yeo|<x, y) ={x, yp = -+ =, Yy = 0}
={yeol<x, + 2, + -+ + =z, y) = 0}

is a face of g, because x, + 2, + -+ + x, € (h,0,)Y + (h,0,)V + <+ + (hoy)Y =
. q.e.d.
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3. Global spherical shells. We keep the notation in Section 1.

DEFINITION 3.1. An open set S of a complex manifold U is a global
spherical shell, if UNS 1is connected and if S is biholomorphic to
{2 2oy *+, 2,) €C" | < 3oy |2, P < B} for positive real numbers « and 8
with 0 < a < 8.

See [5], for the properties of compact complex manifolds containing
global spherical shells.

THEOREM 3.2. If there exists an r-dimensional non-singular rational
cone o in Ngr such that go\{0} is contained in the interior of ¢ and
that [o] := {faces of o}\{o} is contained in X, then U contains a global
spherical shell.

Proor. Let {n, n, ---,n,} be a Z-basis of N with ¢ = R.n, +
R.m, + «++ + Ryn, and let {m, m,, -+, m,} be the Z-basis of N* dual
to {n, n, -+, n,}. Let 2z, be the holomorphic function on Temb([s])
(=C"\{0}) which is the natural extension of the character m, ® l¢x: T'—
C* of m;. Then (z, 2z, -+, 2,) is a global coordinate on T emb([g]). Let
S ={(z, 25 +++, 2,) € Temb([o]) |7 — e < D=1 121> < ¥ + ¢} for positive real
numbers ¥ and ¢ with ¥ — e >0 and v + ¢ < 1. Then we easily see that
the image ord(S\X) = {un, + um, + -+ + u,n,|v — & < exp(—2u,) +
exp(—2u,) + - -+ + exp(—2u,) <7 + ¢} of S\X under the map ord: T— Ng
is contained in o\ {0})cH(g). Hence S is contained in U. Let P, =
{umn, +um, + -+ - + u,m, | exp(—2u,) + exp(—2u,) + - - - + exp(—2u,) < v * €}.
Then the closure of gP, is contained in P_ for small enough ¢, because
gn; = Qn, + Ay + + ¢+ + an, with a; = 1, for 7 =1 through r. Since
S\ X = ord (P,\\P_) and since SN X< Temb([¢])\ T, the restriction to
S of the quotient map ¢: U —U is injective. Moreover, the image ¢(S)
of S is global, i.e., UN\gq(S) is connected, because U\ (¢(S)UX) is the
image under g of the connected set ord—‘(P_\ gP,). q.e.d.

4. Invariants. We keep the notation in Section 1. Throughout this
section, we assume that there exists an r.p.p. decomposition X satisfying
the conditions of Corollary 2.3 and consisting of non-singular cones. Let
03(—log X) and @,(—log X) be the logarithmic tangent sheaves of (U, X)
and (U, X), respectively, and let 25(log X) and 24(log X) be the dual
sheaves of 03(—log X) and 6,(—log X), respectively. The first purpose
of this section is to prove the following proposition.

PROPOSITION 4.1.

,=0,1
HY(U, &) =~ {C Jor 1

0 for 1 =2,
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ker(g — 1) for =20
H(U, Oy(—log X)) = {coker(g — 1) for i1=1
0 for 1
and
ker(*g — 1) for 1=0
H{(U, 24(log X)) =~ {coker(g — 1) for 1=1
0 for 1 =2,
where (g —1): No— N, and (‘g — 1): N¥ — N¥ are the C-linear maps
sending | and 1* to gl — 1 and ‘gl* — I*, respectively.

For the proof, we need some lemmas. Let & = q‘,’fﬁ', for a locally
free sheaf % on U with an action of g%, where g: U > U = U/g? is the
quotient map and ¢%%. 5 ~denotes the subsheaf of q*5~7~‘ consisting of germs
of g”-invariant sections. Then by [2, Corollary 3 to Theorem 5.3.1], we
have the spectral sequence:

Pi(g?, &) = Hg% HY(U, )= H*(U, &) .
Here we note that & = %, 24(og X) or O,(—log X), according as G =
T, 5(log X) or 63(—log X). Since g% is a free group, we have
E?(g?, &) =0 for p > 1. Hence the above spectral sequence degener-
ates and HY(U, &) = E¥(¢%, &)@ Ey"'(¢?, ). First, we calculate
EP*, (g%, &) for p=0,1 and for & = 7, O3(—log X), 25(log X).
LeEMMA 4.2. HYU, o;) = C.

PROOF. Since U is an open set of Temb(Z), any holomorphic function
f on U is expressed as a series

f=_3, cuelm),

where e(m) is the natural extension to Temb(Y) of the character
m @ lex: T— C* of m. Here ¢, must vanish, if {(m, n) <0 for a non-
zero element neN with R.me€l, because e(m) has poles along
orb(Rsm)c U. However,

{meN*|{(m,n) =20 for all neN with R ne€ X}
={meN*|(m,y) =0 for all y in H(g)}
= (L('"g)u{ohnN* = {0} ,
because |J| = (~H(g)\L(g))U{O}. Hence f=¢, is a constant function.
Therefore, H'(U, #’5) = C. q.e.d.

By [4, Proposition 1.12], there are g¢%*-equivariant isomorphisms
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63(—log X) = 73 ®, N and Q%(log X)~ 7 ®,N*. Hence by the above
lemma, we have:

EJEMMA 4.3. Therf exist gf—equiva'riant isomorphisms H(U, 63(—
log X)) = N¢ and H(U, 2;(log X)) = N¢.
LEMMA 4.4. H?(¢% C)=C for p=0,1,
Ho(g%, Ny ~ {ker(g -1 for p=20
coker(g — 1) for p=1

and
ker(lg — 1) for p=20

H?(g? N¥) =
(o ¢) {coker(‘g —1) for p=1.

ProoF. Clearly, H%g? N¢) = (N¢)? = ker(g — 1) and H°(}¢? Ng&) =
(N¥)? = ker(*9 — 1). Since g? (resp. ‘g%) is generated by g (resp. 'g),
we have Z'(g?% N¢) = N (resp. Z'(*g?, N&) =~ N¢&) and B%g¢? N¢) =~ Im(g —1)
(resp. B'(*9?, N¢) =~ Im(*‘g — 1)). Hence H'(g? N) =~ coker(g — 1) (resp.
H(tg?, N¥) =~ coker(tg — 1)). Since g% acts on H U, ~3) = C trivially,
we get H%g% C) = C and H g% C) = Hom(g? C) = C. q.e.d.

Next, we show that EP%g? <) =0 for ¢ = 1. Let [ be an integer
such that ¢' and Y satisfy the condition of Theorem 2.2 and let U’ =
U/g% (resp. X' = X/g'?). Then U’ (resp. X') is an l-sheeted unramified
covering of U (resp. X). By Theorem 2.2, we have a degeneration
@: 72 — P* of U’ and a divisor &2 on % such that ¢7'(t) = U’ (7'(t)N
& = X') for t #0, < and that U,:= »7%(0) is an irreducible variety we
obtain by identifying two disjoint divisors of a toric variety. Let
O0.(—log &) be the subsheaf of the tangent sheaf 6, of % consisting
of germs of holomorphic derivatives § with dIc T and let 2L (log &) be
the dual sheaf of 0,(—log 2°), where Ic”, is the ideal of definition
for 2%

LEMMA 4.5.

1 —0,1
dim H(U,, mo)z{ for »=0,

0 for p=2,
dim N> +1 for p=0,1
dim H*(U,, 6.,(~log Z),) = 7{
( (—log 27),) lo for p=2

and
dim(NH%? +1 for p=o0,1

dim H*(U,, 2.1 =
im H*(U,, 2%(log 2°),) {O for p=2.
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PrOOF. Let D be the double locus of U, and let U, be the normali-
zation of U,., Then we have an exact sequence
0= Py, = Tp, = Tp—0 .
Since U, and D are compact torie varieties and since ¥ ® b, and ¥ Q 7
are free sheaves on U, and D, respectively, we have HYU, KR 7, =
H*(D, Q&) = 0 for p > 0, where ¥ = ~,, 0,(—log Z°) or 2*, (log Z).
Hence H(U,, ¥ ® &y,)=ker(d), H IAIO, Z Q y,)=coker(d) and H*(U,, ¥ Q
Ty,) =0 for p =2, where d: H'(U, ¥ Q &) — H(D, ¥ ® &,). Here
HU, 2 Q@) =HD, R)=C, Ne@®C or Ns@C* and d =0,
@)—=1 (=("—-10) or ((g.))—1 (=(¢'—1,0)), according as ¥ =
O, 0,(—log Z°) or 2%, (log 2°). q.e.d.
Since o (C*)=U'xC* (7 (CHYNZF =~ X'xC*), we see that
6. (—log #),~ Oy (—log X")P 7y and that Q' (log 2°), = 2%, (log X")D 7y
for each ¢t € C*. Hence by the upper semi-continuity [1, Theorem 4.12],
we have

dim H*(U’, &) = dim H*(U,, &y,) ,

dim H*(U’', 2%.(log X)) + dim H>(U’, 7y,) < dim H?(U,, 2" (log Z°),)
and

dim H*(U’, 6,.(—log X)) + dim HU’, ;) < dim H?(U,, 0 ,(—log Z°),) .
On the other hand, by Lemma 4.3, dim H?(¢"?, F) = dim EP(g"?, %) <
dim H*(U', &), where FF = C, N; or N, and &' = &y, Oy(—log X')
or Q4.(log X’), according as & = 7, O3(—log X) or Q%(log X). Hence
by Lemmas 4.3, 4.4 and 4.5, we obtain the equalities dim EP°(g"?, &) =
dim H?(U’, %), because dim(N¢)*'? = dim ker(¢® — 1) = dim coker(g* — 1)
and dim(N#)""” = dim ker(‘g* — 1) = dim coker(*g’—1). Therefore, we have
Eri(g\s, o )= 0for g = 1. Then by the Hochschild-Serre exact sequence,
we have EP(g?, &) = H*(g%?, H(U, <)) = H*(g%/g**, H(U, & )"'% =0 for
¢ =1. Hence HYU, &) = EFg?.%). Thus we complete the proof of
Proposition 4.1, by Lemmas 4.3 and 4.4.

PRrROPOSITION 4.6.

0 %~ 1
dim HYU, 2%) = sor z.i
for 1 =1,

where s is the number of the irreducible components of X.

PrOOF. Let R ., + Rym, + +++ + Ry, be an r-dimensional non-
singular cone in 3 and let {m,, m,, -+, m,} be the Z-basis of N* dual to
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{n, ny +-+, n,}. Let e(m) be the same as in the proof of Lemma 4.2 and
let w; = de(m;)/e(m;) for j =1 through . Then {w, ®,, ---, ®,} is a C-
basis of HY(U, 2%(log X)) = N¥. Here we note that w; has poles along
orb(R.,m;) and does not have poles along orb(R..n,) with k =# 7, be-
cause {m;, m,y = 0;,. Hence any non-zero element of H°(U, 2}(log X)) =~
H (U, 25(log X))* has poles along X. Thus we conclude that H(U, Q%) =
0. Next, consider the long exact sequence of the cohomology groups
arising from the short exact sequence

0— Qy — 24(log X) —» Pi-, 73, — 0,
where X, are the normalizations of the irreducible components X, of
X=X+ X,+ -+ X,. Since each X’,, is a compact toric variety, we
have H‘(X'k, 2%,) =0 for 1>0 and H“(Xk, 2%,)=C. Hence by Proposition
4.1, we get HY(U, 2%) = 0 for ¢ >1 and dim HYU, 2%) = dim H(U, 2%) —
dim ker(®9 — 1) + s + dim coker(‘g — 1) = s. q.e.d.

When r = 3, we can determine the dimensions of HYU, Q%) for all p
and ¢ by the Serre duality. In particular, dim H(U, 2%)=dim H¥( U, 2%)=0
and dim HY(U, ) = dim H*U, 2%) = 1. Since b,(U) = b,(U) = 1, the maps
EY — E** and E?*— E%* must be zero-maps and hence the spectral
sequence E??* = HY(U, Q%)= H**(U, C) degenerates. Thus we have:

THEOREM 4.7. When r =3, U has the following Betti-numbers:
b(U) =b(U) =by(U) =b,(U) =1, b,(U) =b(U) =s and b,(U) =0. Hence
the Euler-Poincaré characteristic of U is X(U) = 2s.

5. Deformations. We keep the notation and the assumption in the
previous section. Let @, be the tangent sheaf of U.

PROPOSITION 5.1. Assume that the dual graph of X=X, + X,+ -+
X, is a triangulation. Then HYU, 0y) = @i-, H(X,, O, (XV), for 1 =2,
HY(U, 6,) =~ ker(g — 1) and there exists an exact sequence

0 — HY(U, 6y(—log X)) — H(U, 6y) = Bi-, H(X,, Tx,(X3)) -0 .

Proor. Consider the long exact sequence of cohomology groups
arising from the short exact sequence of sheaves

0 — Oy(—log X) — 6y — Di-, Cx (X)) >0 .

Then by Proposition 4.1, it is sufficient to show that H(X,, 7% (X)) = 0,
for each irreducible component X, of X. Let Y be an irreducible com-
ponent of X such that the image ¢(Y) of Y under the quotient map
¢: X—> X is X,. Then Y is the closure of the orbit orb(R.,n) correspond-
ing to a one-dimensional cone R.n in Y. Let m, %, -+ and n, be the
link of n in X, i.e., Ryyn + Ry, (1 = 1 through ¢) are two-dimensional
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cones in X¥. Then the closures Y, of the orbits orb(R.,m; are the
irreducible components of X with Y.NY # @. We easily see that
dim H(Y, (Y)) = ¢g{fme N*|{m, n) = —1, {(m, ny =0 for 1 =1 =1t}
Suppose that there exists an element m in N* such that (m,n) = —1
and that {(m, n,) =0. Then the convex hull of {n, n, ---, »,} contains
the origin, a contradiction to the fact that {n, n,, - - -, n,}C|Z|\{0}C H(g).
Therefore, H(X,, 7%,(X})) = H(Y, &»(Y)) = 0. q.e.d.

Since the dimension of each irreducible component X, of X is equal
to r — 1, we get H'(X,, (X)) = 0. Hence we have:

COROLLARY 5.2. H"(U, 0,) = 0.

COROLLARY 5.3. When r = 2, t.e., U 18 a hyperbolic Inoue surface
or a half Inoue surface, we have dim HY U, ©y) = 2s, where s is the
number of the irreducible components of X.

PROOF. Note that when r = 2, any g in K(N) and any g*-invariant
r.p.p. decomposition ¥ with |X| = (H(g)\L(9)) U{0} satisfy the conditions
of Corollary 2.3. Since g has two real eigenvalues both of which are not
equal to one, we have HU, @,(—log X)) =~ coker(g — 1) = 0. On the
other hand, by the Riemann-Roch Theorem, we have

dim H(Y, @(Y)) = dim H(Y, 2%(Y)) — 1 —deg &(Y) = -1 —-Y*,

for each irreducible component Y of X, because Y is a rational curve with
Y2 < 0. Hence

dim HY(U, 6,) = kg dim H'(X,, &, (X.))

=§(—1—Xi)=—s—X2+23=2s,

1
because —X* = s, by Nakamura’s duality [7]. q.e.d.

Since H*(U,0y(—log X))=0, there exists a universal family =: (%, 2")—
D of deformations for the pair (U, X) = (z7(0), z7(0) N 22°) over a polydisk
D, i.e., the Kodaira-Spencer map p: Ty(D) — H (U, 0,(—log X)) is bijective.
In fact, we can construct such a family as follows. By Proposition 4.1
and Lemma 4.4, we have the canonical isomorphisms H*(U, 0y(—log X)) =
H'(g% N¢) =~ coker(¢g —1). Here we note that N, = ker(g —1) P Im(g —1).
Let §* be the automorphism group of T emb(X)xker(g — 1) generated
by §:(x, t)+ (e(t)-gx, t), where e:N.,— T is the map induced by
exp(2r1/—17): C— C*. Then §* preserve the open set Uxker(g — 1)
and has no fixed point on it. Hence % := (UxD)/g* is a complex
manifold and the natural projection 2 — D onto D is a proper smooth
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map, for a small enough polydisk D in ker(g — 1).

6. Examples. We give five 3-dimensional examples and show a list
of analytic invariants for them. Let {n, n, n,} be a Z-basis of Z°.

ExamPLE 1. gn,=2n,+n,+n, gn,=n,+n,+n, and gn,=n,+n,+2n,.
X = {faces of g'c,|leZ, i =1 through 6}, where
0, = R-m, + R:n, + R-,2n, + n, + ny) ,
0, = R.m, + Rxy(n, + my, + my) + Roi(@Cny + my + n)
03 = Rogny + Roo(n, + My + ns) + Raoy(ny, + my, + 2my)
o, = R.m, + Rxn; + Rxo(m, + n, 4 2n,) ,
0s = Rxon, + Rogny + Roy(n, + n, + 2n,) and
s = R.m, + R:(2n, + 1, + n3) + Rxo(n, + mp + 2my)
(See Figure 1.)

FJGURE 1

EXAMPLE 2. gn,=2n,+n,+n,, gn,=n,+n,+2n, and gn,=n,+n,+n,.
Y = {faces of g'o,|leZ, i =1 through 6}, where ¢, are the same as in
Example 1.

EXAMPLE 3. ¢gn, =mn,, gn, = n, + n, and gn, = n,. Y = {faces of g'r,
and ¢'z,|leZ}, where 7, = R.n; + Roo(n, + m3) + Ryy(n, + n, + m,) and
T, = Rogty + Rofs + Rxo(n, + n, + n,). (See Figure 2.)

EXAMPLE 4. gn, = n, + 0y, g0, = n, and gn, = n,. I = {faces of g'r,
and ¢'r,|le Z}, where 7, and 7, are the same as in Example 3.

EXAMPLE 5. gn, = n, + n, + n,, gn, = 0, and gn, = n,. 3 = {faces of
g'y, and g'i,|l € Z}, where pt, = Rym, + Rygny, + Rao(n, + my + ;) and p, =
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m

n, n3
FIGURE 2
n,
Hy
He
n, N3
Ficure 3

Ron, + Rony + Ryy(n, + n, + n,). (See Figure 3.)

We easily see that all the above examples satisfy the condition of
Definition 1.1. The complex manifolds we obtain from g and ¥ in Example
1 and Example 2 contain global spherical shells by Theorem 3.2. The
complex manifold we obtain from g and X in Example 4 is bimeromorphic
to that in [6]. Although our examples do not satisfy the assumptions
of Theorem 5.1, we can calculate the dimensions h*(U, ©y) of H*(U, 60y)
as follows. There are positive integers ! such that the dual graphs of
X' := X/g'” are triangulations. Then U and X are quotients of U’ := U/g"*
and X', respectively, by the finite cyclic groups G = ¢g%/¢'#, which have
no fixed points on U’. Hence 0,;/0,(—log X) are the subsheaves of
2By [0y (—log X)) = q.(BiL, & (X)) consisting of germs of G-invariant
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sections, where X' = X/ + X, + .-+ + X, and ¢: X' — X is the quotient
map. Therefore, dim H¥(U, 0,/0,(—log X))=dim(@;L, H( X}, Py (Xw))¢ =
@/ ik, dim H{( X, &%j(X1)). Then by Proposition 4.1, Theorem 5.1 and
its proof, we have AU, Oy) = dim ker(¢g—1), h'(U, 6,) = dim coker(g—1) +
/) Xk, dim HY(X;, Pxi(Xy) and h(U, 6y) = 1/1) 34, dim H{( Xz, Oxi( X)),
for ¢+ = 2.

kU, ©) | h(U, 0) | h¥(U, 0) |C,=XU)| C=X°
Example 1 1 8 1 6 —18
Example 2 0 7 1 6 —18
Example 3 0 0 0 2 -2
Example 4 0 1 0 2 —4
Example 5 0 3 0 2 —8
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