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ON THE SOLUTIONS OF THUE EQUATIONS

MasaM1 FuJIMORI
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Abstract. Silverman’s estimate for the number of integral points of the so-called
Thue equation is improved in a certain special case. A sufficient condition for the
non-existence of rational solutions is also given.

Introduction. Let k/Q be a finite extension, p(X, Y)ek[X, Y] a homogeneous
polynomial of degree n>3 with non-zero discriminant, and aek* =k\ {0}. Then the
equation

pX, Y)=aZ",

which we call a Thue equation, defines a regular curve C® in P2, which we call a Thue

curve. Let J¢ be the Jacobian variety of C°.

First assume that a and the coefficients of p(X, Y) are in the ring o, of integers

in k. :
Let d=[k: Q] and R,=rankJ%k). Silverman [9] proved the following among

others:

THEOREM 0.1 (Silverman [9]). There is a constant G=G(k, p(X, Y)) such that if
ae o, \{0} satisfies | Nga|>G and |1+ p,(a)|<9/4, then

H(x, y)eo? | p(x, y)=a} <n*"(12n°d)*-,

where p,(a) is a number which measures the defect in a of the n-th power freeness and
differs from e(a) in Theorem 0.2 below by addition of the multiple of 1/log| Néal by a
constant depending only on k and n.

He mapped C“(k) to J%k) and estimated the number of lattice points which lie in
a ball of J%k) ®zR.

On the other hand, Mumford [7] had asserted that the heights of rational points
on the Jacobian which come from a curve under a certain map grow exponentially if
the genus is greater than 1.

We here try to count the integral points by the technique of Silverman and the
method of Mumford and to improve the result of Silverman. Consider the prime ideal
decomposition of ao,. Collecting the factors appropriately, we get a unique factorization
of the form ao, =ab", where a is an integral ideal not divisible by the n-th power of any
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prime ideal and b is a fractional ideal.

THEOREM 0.2. Let e(a)=nlog| Ngb|/log| Nea|. Ifn>3, p(X, Y) has a linear factor
in k[X, Y], | 1+e(a)| <2, and | Nga| is sufficiently large, then we have

#{(x, y)eod|p(x, y)=a} <4-7R«.

In Theorem 5.4, we obtain the S-integer version of this theorem.
The following result is also relevant to what we consider in this paper:

THEOREM 0.3 (Bombieri and Schmidt [2]). Assume that a and the coefficients of
p(X, Y)arein Z and that p(X, Y) is irreducible in Z[ X, Y. Then the number of primitive
solutions (i.e., solutions in coprime integers in Z) of the equation | p(x, y)|=a does not
exceed c,*n**", where c, is an absolute constant and t is the number of prime factors of
a. When n is greater than an absolute constant c,, the number of primitive solutions (with
(x, y) and (—x, —y) regarded as the same) does not exceed 215-n**".

As for rational points, we find the following property:

From now on, a and the coefficients of p(X, Y) are in k and may not be in o,. Let
1, be the set of n-th roots of unity in an algebraic closure of k. For P=(x:y:1)e C%k)
and {ep,nk\ {1}, we let Qe C%k) be the point (x:y:{)e C%k). Then we have (cf.
Proposition 6.4):

ProPOSITION 0.4. Assume that n>3 and that p(X, Y) has a linear factor ink[ X, Y].

The angle that P and Q make in J*(k) ® z R under a certain map and by a certain metric
is cos (= 1/(n—1)).

The proof depends on the calculation of the pull-back of an invertible sheaf and
uses the global Néron pairing.

THEOREM 0.5. Assume that n>3 and that p(X, Y) has a linear factor in k[ X, Y].
Then, except for a finite number of a mod(k *)", the assumption rank J*(k) <min{#(u,n k),
n—1} implies

{(x, ek |p(x, y)=a}= .

In fact this is an example to which [11, Theorem 1] is applicable. We show Theorem
0.5 directly. (The essence of the proof is the same as that in [11, Theorem 1].)

TERMINOLOGY AND NOTATION. Basically we use the terminology of [3].

Let k/Q be a finite extension, d:=[k: Q], k* :=k\ {0}, N§ the norm function
of numbers or ideals, k an algebraic closure of k, and , the set of n-th roots of unity
in k.

Let P? be the p-dimensional projective space over k. For a scheme X over k,
X:=Xx,k, X(k):=Hom(Speck, X), and X(k):=Hom,(Speck, X). We do not dis-
tinguish an element of X(k) and X(k) from the corresponding closed point of X and X.

For a regular integral projective scheme V over k, we denote by Div V' the group
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of Weil divisors on ¥ and by Pic V the Picard group of V. For such a scheme V, the
divisor class group and PicV can be identified, so, sometimes we use the term
correspondence to mean a certain type of invertible sheaf. For a non-zero function f
on V, let div(f) be the divisor attached to f. For DeDiv V, we denote by #(D) the
invertible sheaf associated with D. When dim V=1, Pic® ¥ denotes the subgroup of
Pic V of degree 0. We often identify an invertible sheaf with its isomorphism class and
use such an expression as #(D)ePic V. We use similar notation for regular integral
projective schemes over k. For a morphism f of schemes, let f* be the pull-back
functor of invertible sheaves.

Let My be the set of absolute values on k such that for an Archimedean ve Mg,
the absolute value | - |, is the usual one if restricted to @; for a non-Archimedean ve Mg,
|gl,=1/q for some prime g€ Q. For a finite extension K of k, let ~ ; be the equivalence
relation on Mj so that v~ xw if and only if v|c=w|g, and M the set of representa-
tives of Mg/~ . Let K, be the completion of K at ve Mg and ¢X:=[K,: Q,]/[K: Q].
The standard height & on Pf(k) is defined by

h((xo: - x, )= ), &logmax{|Xoly, .-, 1%, 1.}
veMgk
for a finite extension K of k and x,, ..., x,€ K. We also denote by 4 the height on k
defined by

h(x)="h((1: x))

for xek. Let M be the subset of Archimedean absolute values of M,. For a finite
subset S of M, containing M, we denote by og (resp. og ) the ring of S-integers (resp.
the units of og).

1. Thue curves, twisting and the compatibility between heights. Let k/Q be a finite
extension, p(X, Y)ek[X, Y] a homogeneous polynomial of degree »n>3 with non-zero
discriminant and with a linear factor | in k[ X, Y], and aek™. Let C* be the closed
subscheme of P? defined by

(X, Y)=aZ".

Notice that the sheaf Qc., of (holomorphic) differential forms of C* over k is invertible,
because C* is a nonsingular curve (cf. [3, ITI. 10.2 and 10.0.2]). Let Q“e C%(k) be the
point defined by /(X, Y)=Z=0. Let D* be the divisor C*n{Z=0} on C“

LEmMMA 1.1 (cf. [9, Lemma 4(a)]). The divisor (n—3)D* is a canonical divisor on
ce.
Let J¢ be the Jacobian variety of C?. We embed C* in J°. We refer the reader to

[6] for details concerning relevant properties of the Jacobian varieties.
Let #“€ePic(C* x J°) be the universal divisorial correspondence between (C*, Q°)
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and J° Let 4° be the diagonal divisor on C*x ,C* and
L =L(4°—{0°% %, C*—C* %, {0%}) e Pic(C* x,,C?) .
Since .#“ is a divisorial correspondence between (C?, Q¢) and itself, there exists a unique

morphism f*: C*—J? such that f%(Q%) =0 and £*~(1c. xf*)*#°. We have a natural
group isomorphism

JYk)~Pic°(C%), Lrs>(lcax L)*M°,
through which we identify these two groups. Then we have
SUQ) =(lea X fAQN* M =(1ca X Q)* L= L(Q — Q) € Pic°(C?)

for Qe C%k).

Let m,: C°x J°—C“x,J° be the projection map. We also note that 7*.#° is the
universal divisorial correspondence between (C?, Q) and J%, and that J* is the Jacobian
variety of C°.

Let g be the genus of C*, which is equal to (n— 1)(n—2)/2, and ©* the prime divisor
on J* obtained by the (g — 1)-fold addition of C¥¢, i.e.,

O«R)={f(Q)+ - +fUQe-1)|Q1> -+ Qy-1€CUR)} .
Let s,, pa> qq: J %, J°—>J° be the sum, the projections onto the first and the second
factors, respectively,

N =5 L(O7) Q@ prL (0% ' ® ¢ L(O%) ' ePic(J* x,J%) ,

and B,:J%k)x J%k)—R the canonical height on J°x,J® attached to 4. B, is a
symmetric bilinear form on J(k) x J%k) and positive definite on J°(k) modulo torsion
(cf. [7, Proposition 1]).

Let o be an element of k such that a”=a, and ¢: C*~C! the isomorphism given
by (x:y:z)>(x:y:az). We see that ¢(Q%)=0Q".

Since (¢! x l7a)*n* #°ePic(Ct xJ% is a divisorial correspondence between
(CT, Q") and J° by the universality of n}.#', there exists a unique isomorphism
@:J°>J' such that #(0)=0 and

("' x l)*n* M~ (g x D)*n¥ .M’ .

Figure shows the relation among the maps. Because #(0)=0, ® is an isomorphism of
abelian varieties (cf. [5, 2.2]), i.e., the diagram

S %X 1 =4

Jix Jo 22k ja

el

TExJt 2l gr

is commutative. If we use the identification J°(k)=~Pic®(C?), we see by Figure that
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(L) =(¢~)*ZL ePic’(CY)
for & ePic®(C?). In particular, we have
2(fUQN=(p")V*ZL(Q—0%)=ZL(#(Q)—2")="($(Q))

for any closed point Qe C?%k). Since C* and J' are varieties, the morphisms are
completely determined by their effect on C*%k). So we have @0 f*=f10¢, i.e., the
diagram

ce

‘|

‘a
a x1
i

_—

~
=
S

—
S

=

x

s
!

T

is commutative.

Let @,: J*x J*>J%x,J* be the projection map. From the above discussion, we
see easily that

XN =(D x D) *wFN! .
Therefore, by the functoriality of heights and the uniqueness of the canonical height,
we have
B(Z, M)=B\(P(Z), D(M))

for &, M e Jk).

2. Relations among heights and a basic inequality. Choose a height 4, on C°
corresponding to £(Q%) € Pic(C?), where Q° is the k-rational point on C* defined by
I(X, Y)=Z=0 (cf. §1). For Qe C*k), we denote by A(Q) the height induced by the
natural embedding C?c P?. Since D*=C*n{Z=0} is a hyperplane section, h cor-
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responds to £(D?).
LEMMA 2.1. We have h,(Q)=n"'h(Q)+ O(1) for Qe C*k), where n=degp(X, Y).

Proof. Since div(/(X, Y)/Z)=n-Q%— D*e Div(C?), we see that £(nQ“)~ ¥ (D*),
which leads to the above relation between the heights 4, and 4. q.e.d.

LEMMA 2.2. We have B,(f*Q, f°Q)=m—1)(n—2)n"*h(Q)+0() for Qe Ck),
where B, is the height on J® x,J° given in § 1 and f*: C*—J* the map as in §1.

Proor. Let j: C*>C*x,C* be the diagonal map. Note that in general, for a
non-singular curve C over k, the pull-back of the diagonal divisor on C x, C by the

diagonal map is the inverse of a canonical divisor. Since £ ((n—3)D*) is the canonical
sheaf (cf. Lemma 1.1), we see that j*£(4%) ~%(—(n—3)D®). Hence we have

JL=j* LA = {0} x, C*—= C* x, {QN= L (—(n—3)D*—-2Q% .
On the other hand, we know that %~ ((f*x 1,)* 4~ (cf. [6, 6.11] or [7, §2]) and
Ll (1ca X fO*M* (cf. §1). Therefore we have

FHEXFVN = A a X SO X Vo) ¥ N ¥ (Lea X fO*(MD 7!

~jH LY 1P (n—3)D 420 .
Since the height B,(f°Q, f°Q) for Qe C%k) corresponds to j*(f*xf*)*4* by the
functoriality of heights while 4 corresponds to £ (D), we obtain
B, (f*Q, Q)= (n—3)h(Q) +2h,(Q)+ O(1)
for Qe C%k). By Lemma 2.1, we have the desired equation. q.e.d.
Let X* be the R-vector space J%(k) ®z R and (-, -) the bilinear form on X*“ x X

induced by B,. Let || - || be the associated norm and *: C?(k)— X*“ the map defined by
0—f0Q1.

From Lemma 2.2, we obtain a relation between the norm | - || on X* and the
standard height 4 on PZ(k) for Q e C*(k):

PROPOSITION 2.3. There exist non-negative constants m=m(C') and M= M(C")
such that

(n—1)(n-2)
n

—m<|YQl* hPQ)<M

for Qe C(k), where n=degp(X, Y) and ¢: C*~C" is the twisting in § 1.
Proor. By Lemma 2.2, there exist non-negative constants m=m(C') and
M= M(C?') such that

—m<By(f'P, f'P)—

n=D0=2, py ey
n
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for Pe C!(k). Take P=¢Q for Qe C*k). Using the commutativity f1o¢=do f* and
the compatibility B,(®-, ®+)=B,(+, *) (cf. §1), we have

(n—1)(n—-2)
n

—m<B,(f*Q, [*Q)— h(@Q)<M,

which are equivalent to the above inequalities. g.e.d.

The next lemma is the inequality of Mumford in our case, and follows from Lemmas
2.1 and 2.2 as well as the results in [7, §3].

LEMMA 2.4. There exists a positive constant L= L(C") such that

B(/'P, le)s% (B,(/'P, f'P)+ B,(/'0. 'O} + L

for P, Qe C*(k) with P#Q, where g=(n—1)(n—2)/2.
As a consequence, we obtain:

LemMma 2.5. For P, Qe C%k) with P#£Q, we have

1
yep, llf"Q)Sz(lll//“PII“ ly“QI>+L,

where L is the constant in Lemma 2 4.

Proor. By Lemma 2.4 applied to ¢ P and ¢Q for P, Q € C%(k) with P+# Q, we have

B,(f1(o(P)), [1($(Q)) S% {B.(S1(@(P)), [1(@(P)+B,(f($(Q)), f1($Q@N}+L.

From the equalities B,(+, *)=B,(®-, ®*) and @ f*=f'0 ¢, we see that
B,(f*P, f*Q)=B((f(P)), (/D))

szlg {B/(O(/(P)), O(f*(P)) + B,(2(/*(Q)), 2/ (O} +L

=2f‘g (BS(P), f(P)+ B f*(Q), fQ)} + L.

By the definitions of (-, -> and || - ||, we are done. g.e.d.

Lemma 2.5 implies the following, where we let cos(v, w)= v, w)/|v]|w| for
v, we X%

ProOPOSITION 2.6. Let P, Qe C%k) be distinct points such that |y °P| <Y *Q|. If
Iy eP|2 > 20(1—2)"2L
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for the constant L in Lemma 2.4 and

" “ 21
oS P Q)20

then we have
a 9 a
Q12 s Pl

In other words, if a rational point Pe C*(k) with large norm appears in a cone V of X*
such that cos(v, w) >21/(20(n—2)''?) for v, we V, then another rational point Q€ C*(k)
with the next smallest norm which appears in V, if any, has the norm at least
g/(n—2)""2-times the norm of P.

PrOOF. By the above lemma, we see that

1 ap la PP, yeQy 1 <|W“PI| ||'//“Q|]> L

o i SCOSW P, Y0)= < + + .
20022 =V PO = ap1weoi =20 \wear o) Tweriiveal
From the assumptions ||y °Q|?>> ||y *P||?> > 20(n—2)*/2L, we have

21 _ 1|yl 1
<— + .
20(1—2)"2" g [p°P| " 20(n1—2)'"2

q.e.d.

3. Estimates for the heights of integral or rational points. Fix a number 4 such |
that 2<A<n=degp(X, Y), where p(X, Y) is the homogeneous polynomial defining C*
(cf. §1). Recall that we have defined # as the standard height on a projective space or
as the height function on k.

LEMMA 3.1 (cf. [9, Theorem 1]). When the coefficients of p(X, Y) are in og, there
exists a constant c=c(k, S, p(X, Y), A) such that

1
h((x:y:1))<——h(p(x, y))+c¢
n—Aa

for x, y€eng.
The next lemma is the S-integer version of [9, Proposition 2(b)]. The proof is
similar to the original one.

LEMMA 3.2. There exists a constant c, depending only on k and satisfying the
following property: for any acog\ {0}, there exists ucog such that

1
h(au"y<|—log| Ngal+ Y &Floglal,|+ccn,
d veS\ M
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where d=[k: Q] and e¥=[k,: Q,]/[k: O].

We will use these two lemmas to bound the heights of integral points from above.
A version of [10, Theorem 2] which fits our aim is as follows, and can be proved
similarly.

LEMMA 3.3. For a closed point Qe P, let K=k(Q) be the field of definition for Q,
i.e., the residue field of the local ring at Q, and D¥ the discriminant ideal. Then, if
0=[K:k]>1, we have

11
h(Q)2—°—<i log| NgD;¢ | —log 5) ,

2 6—1\dd
where h is the standard height on P{ and d=[k: Q].

We use this lemma to estimate the heights of rational points from below.

4. Estimates from below. Recall that n is the degree of the homogeneous poly-
nomial p(X, Y) defining C*(cf. § 1). Let ao, =] |, p” be the prime ideal decomposition of
the fractional ideal ao,. If b=r+gn for r, qe Z with 0 <r<n, then we can so arrange
that ao, =[], p"(J],»?)" Put a=[] p"and b=]] p? Then ao,=ab" and a is integral
n-th power-free. We see easily that such a decomposition is unique.

There is a lower bound for the norms of k-rational points on C*:
PropoSITION 4.1.  For Q € C%k) such that the Z-coordinate is not zero, we have

log2 (n— 1)(n—2)_m
2 n

1 n-2
—"log|Nka|—
2dn* n—1 gl Noal

where || - || is the norm on X*=J%k) ®zR in §2, y°: Ck)—> X" is the map given by
O f*Q® 1, d=[k: Q), and m is the constant in Proposition 2.3.

ly°Ql?=>

b

ProoF. We see from Proposition 2.3 that

ez (B—=1)(n—=2)
ly*Qll Zf

h(¢Q)—m .

Since the Z-coordinate of Q is not zero and ¢: C°—»C! was defined as (x:y:z)—
(x:y:az) (cf. §1), we have k(¢pQ)=k(a), where k(¢ Q) is the field of definition for ¢Q.
Then, if 6="[k(a): k]> 1, we find from Lemma 3.3 and the fact 2<d <n that

W,,Q||22(n—l)(n—2)l logé (n—l)(n—2)_m
2(6—1)ddn 26—1) n

n—2 log?2 (n—1)(n—2)
>— " log|NkD}® | — —m
2dn* giNeDi ™| 2 n

og| NsDE® | —
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The right hand side of the last inequality is negative if k(x) =k, because we then have
| N§DE® | = 1. Hence this inequality is valid also when & = 1. If we look at the ramification
in k(a)/k, then we find a|(Df®)"~*. Thus | N§D{®@|"~* >| N§al. q.ed.

This means in particular that if | Nya | is sufficiently large, then f“Q is not a torsion

point on J°(k) for Qe C*k)\{Z=0}.

5. Distribution of integral points. In this section, we assume that a and the
coefficients of p(X, Y) are in og.
Let I$:={(x, y)e o} | p(x, y)=a}, ao,=ab" the ideal decomposition as in §4, and
_nlog|Ngb|+dY, ¢
log| N§al|

k
MP &y 10g| a lv

e(a):

)

where n=degp(X, Y) and d=[k: Q]. We regard I§ as a subset of C%k).

Choose a number 4 such that 2 <1<n. We have defined a map y*: C%k)—>X“=
Jk)®zRand anorm | + || on X in §2. We now bound the norms of S-integral points
from above. This means in particular that I¢ is a finite set, which can already be seen
from Lemma 3.1.

LemMa 5.1. If Qelic C%k), then the Z-coordinate of Q is not zero and

amiz _[(a—=1D(n—2) (n——l)(n—2)>|l+e(a)| .
uan<< S ol Nl
+<(n—1)(n~2)+(n—1)(”*2)>Ck+(n—1)("—2).C+M’
n n—A4 n

where ¢,, c=c(k, S, p(X, Y), A) and M are the constants in Lemmas 3.2 and 3.1 as well
as Proposition 2.3, respectively.

Proor. Note first that for ve My and x, y, z, a €k, we have
max{| x|y | ¥ lp> |2z |,} <max{| 1], [a"[,} " max{| x|y | ¥l |Z],} -

If we use this for Q=(x:y:z) and « in §1 and take the logarithms of both sides, then
we see that

1
M h(¢Q) S;h(a) +h(Q) .
To the second inequality

h¢Q)+M

w2 (2= D(=2)
ool <"

of Proposition 2.3 we apply the inequality (1) and Lemma 3.1, and we obtain
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(n—l)(n—2)+(n—1)(n—2)

a 2
ly“Qll << 2 P +M.

>h(a)+(n_—l_)(n—_2).c
n

Now, for an arbitrary ueog, let y: C*—C*" be given by (x:y:z)(x:y:u”'z). Then

we see that y(I8)=1I2"". In the same way as in the case of ¢: C°—>C?, we have
2P| = By(f*P, f*P)= Bor(f*" 1P, f*"xP)= Y *" 2P|

for Pe C%k), hence

(n— 1)(2n—2)+(n— l)(n—2))
n

P inf h(au")+-———(n_1)(n—2)-c
n—A)n

ueog n

+M.

IIl//“QIIZS<

By Lemma 3.2, we see that

n—1Dn-2) (n— 1)(n-—2)) 1
0% < + —log| Nka |+ k] v
ly“Qll < e (= 7 og| Noal| vesgws ogla|
+<(n—1)(n—2)+(n—1)(n—2)>ck+(n—1)(n—2).C+M.
n n—2 n
By the definition of e, we are done. q.e.d.

Let V be a cone of X? such that cos(v, w) >21/(20(n—2)'/?) for v, we V.

LemMMA 5.2. Let t=#Iin(Y*) 'V)—1 and assume t=>0. If |N50| is sufficiently
large, then we have

(ﬂM)a(l +]1+e(a) |)<1 +—'L>(n— 1)2.
4 n—Aa

PrROOF. Let IZn(y®) '¥V={Q®, 0V, ..., 0®} and [y°Q|<|y*QV|< -
<[¥*Q®||. When

—1/1 —1)(n—2
log|N5a|22dn2n 1<0g2(n Din=2)
2\ 2 n

+m+20(n—2)‘/2L> ,

we see by Proposition 4.1 that ||y?Q?|?>20(n—2)'/2L for any i. So, by Proposition
2.6, we have

gz t gz t—1
< )-II¢“Q‘°’IIZS<—> QWP < - <yeQ?)? .

n—2 n—2

Applying Lemma 5.1 to the extreme right-hand side and again Proposition 4.1 to the
extreme left-hand side, we find

( g’ >'<[<(n—1)(2n—2)+(n—1)("—2)>| LD ) Ngal
n—2 n (n—2)n d
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+<(n—1)(71—2)+(n—1)(n—2)>ck+(n—1)('1-2)0+M]
n

n n—2a
1 n-2 log2 (n—1)(n—2) ]'1
| —— """ 1og|NEa| - “m| .
[Zdnzn—l oglNgal 2 n "
Further if
—1)n—=2) (—1)n— —1)n—2
loglNﬁalZmax{[(m D )+(n l)(’z 2))ck+(n ) )c+M]
n n— n

.|:<(”—1)('1—2)+("— 1)("—2)>L:|_1
n? n=Mn )d ’

[log2(n—1)(n—2) :l[ 1 n——Z:l_l}
+m 5
2 n 4dn’ n—1

then, substituting (n—1)(n—2)/2 for g and estimating the right hand side of the above
inequality, we obtain

((n— l)z(n—2)>'<<(n— l)(n—2)+(n— 1)(n—2)>| l1+e(a)|+1 .
4 n? (n—Mn

4dn2n—1
d n—2

(n—1)%n
n—A

=4((n—1)2+ )(|1+e(a)|+1>.
q.e.d.

Silverman [9] estimated the number of lattice points in a ball of X*=J%k) ®z R
centered at the origin. Here, using Lemma 5.2, we bound the number of points in a
cone of X* which come from S-integral points.

LEMMA 5.3. Let V be a cone as above. If |1 +e(a)|<2 and | N§a| is sufficiently
large, then

1 for n>194

for n>7
(12 NP < =
Usnw ™)< 3 for n>5
4 for n>4.
ProOF. In Lemma 5.2, take 1=2n/3 when n>5; A=5/2, n=4. q.e.d.

Summing up, we have:
THEOREM 5.4. If |1+e(a)|<2 and | N,"Zal is sufficiently large, then
$IE<4-TRa |
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where R,=rank J%(k).

Proor. Notice that 21/(20(n—2)!/2)<3/4, because n>3. We know that R” can
be covered by 77 cones V such that cos(v, w)>3/4 for v, we V (cf. [1, § 10]), hence, by
Lemma 5.3, we obtain the result. q.e.d.

6. The angle made by two rational points in a special relation. Let u,=
{t;=1,(,,...,{,} be the set of n-th roots of unity in k, where n=degp(X, Y) (cf. §1).
For P=(x:y:z)e C*k) and ;e p,, we denote by P, the point (x:y:{;z)e C*(k). These
points turn out to be linearly dependent:

PrROPOSITION 6.1. When pu,<k, we have for Pe C%(k)

Y yP=0eX*=J%k)®,R,

1<i<n
where Y ¢: C%(k)— X* is the map given by Q—f°0Q ® 1 (cf. §2).
PrOOF. For P=(x:y:z)e C%k) with x, y, zek, we have div(yX—xY)/I(X, Y))=

Y. P,—nQ“eDiv(C?). Hence, if we use the identification J%(k) ~Pic®(C*), we see (cf. §1)
that

Y f°Pi= @ L(P— Q%) =L(Y. Pi—nQ")=0eJk) .

Passing to X“, we obtain the above relation. q.e.d.

Note, however, that n—1 of them are independent. We see below the angle made
by two of them (cf. Prﬂ)osﬁon 6.4). For the proof, we need a lemma.

For {;ep,, let j;: C*~C*x C* be the map defined by

(x:y:z)>((x:y:8iz), (x:p:2))

and 4° the diagonal divisor on C*x C*.

LEMMA 6.2. For i#1, we have

J¥&(A)=2(D%),

where D*=C®n{Z=0} e Div(C?).
_ PrROOF. Let Xy, Yy, Z,, X;, Y,, Z, be the natural homogeneous coordinates in
C*x C N We _ﬁrst see that Z,/X,—Z,/X, is a generator of the prime ideal of the local
ring of_g xC*at(P, P)=((1:y:0),(1:y:0)ed*n{Z,=2Z,=0, X, X, #0} correspond-
ing to 4°. Indeed, the ring of sections of the structure sheaf over the affine open set
{X1X,#0} is

kLY (/X1 Z, /X, 0/(p(L, Y1 /X)) —a(Z,/X,)") ®ck[Y,/X,, Zz/.Xz]/(P(la Y,/X3)

—a*(Z,/X,)"),
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and the prime ideal of this ring corresponding to 4° is
(Y X, =Y, /X,, Z,/X,—Z,]X,) .
There exists a polynomial ¢(7,, T,)€k[T;, T,] such that
p(1, T)—p(l, Ty)=(Ty = Ty)q(Ty, T>) .

Differentiating both sides with respect to T; and evaluating at 7, =T, =y, we have
op
05‘é— 19 = s ’
6Y( =4y )

since p(X, Y) has non-zero di_sgrimgant (cf. §1). This means that g(Y,/X,, Y,/X,) is
invertible in the local ring of C*x C¢ at (P, P). On the other hand, in the above ring,
we have

(Y1/X1 =Y,/ X3)q(Y /Xy, Yo/ Xp)=a(Z, [ X)) —a(Z,/X5)"

=a(Z, /X, —Zo/ X )(Z, )X )" "1+ - +(Zo/ X)),
hence Z,/X,—Z,/X, is a generator of the prime ideal of the local ring of C*x C“ at
(P, P) corresponding to 4°. Similarly, Z,/Y,—Z,/Y, is a generator of the prime ideal
of the local ring of C*xC* at ((x:1:0),(x:1:0))e4°n{Z;=Z,=0, Y;Y,#0}
corresponding to A4°. Therefore the Cartier divisor corresponding to 4¢ is defined by
the rational functions

1 on C%x(C*\4°
Z,/X,—Z,/X, near the closed pointseA°n{Z,=2Z,=0, X,X,#0}
Z,]Y,—Z,]Y, near the closed pointse4°n{Z;=2,=0,Y,Y,#0}
some functions near the other closed pointse 4°.

Thgi, pulling them back, we see that the Cartier divisor corresponding to the pull-back
of 4° by j; is defined by the rational functions
1 on C*\{Z=0}
GZIX—Z|X=(;—1)Z/X near C°n{Z=0,X#0}
LZIY—Z|Y=((;—1Z]Y near C°n{Z=0, Y#0}.
SinE Z/X or Z|Y is a generator of the maximal ideal of the local ring of C* at a point
in C*n{Z=0}, we are done. q.e.d.

We denote by N(-, -) the global Néron pairings on the curve C¢ on the product
C?%x,C* as well as on the product of Jacobian varieties J* x,J* (cf. [8]). Since B, is
the canonical height on J%k) x J%k) attached to "€ Pic(J* x,J) (cf. §1), we have

Ba(g’ ‘//[);'_ _N('/Va’ (,‘f’ ‘//[)—(Os O))
for &, M e JKk).
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We note that

(©)) B(f*P;, f*P;)= B[P, f*P)

(cf. the proof of Lemma 5.1), where f“: C*—>J¢ is the map in §1.
LEMMA 6.3. When i#1, we have

B((f*P., f*P)= _anI /P, f°P)

for Pe Cik)\{Z=0} .

ProoF. Let j; be the map defined immediately before Lemma 6.2, A° the diagonal
divisor on C%x C% and D*=C"n {Z=0} eDiv(C?). As described above, we have

B,(f*P;, f*P)=— NN, (f*P;, [*P)—(0,0)).
Using the functoriality of the Néron pairing, we see that
B,(f*P;, [*P)=—N((f* X [)* N, (P;, P)—(Q%, Q)
=—NQG*(S/*xf)*N* P=Q7).
Since (f* x fY* N~ L({Q%} %, C*+ C* x,{Q°} — 47 (cf. the proof of Lemma 2.2), we

obtain by Lemma 6.2 and the proof of Lemma 2.1 that j*(f* x f*)* 4 “~ % (2Q°— D% ~
L(—(n—2)Q%. Hence we have

B(f*P;, f*P)=(n—2)-N(Q*, P—Q%.
On the other hand, we have
Ba(faP’ faP)= _N(Wa, (faPa faP)_(O’ 0))
=—NQG*(f*x )N, P—QF

and j*(f* x fY* N~ L2Q°+ (n—3)D)~L((n— 1)(n—2)Q°) (cf. the proof of Lemma
2.2). Hence

B,(f°P, [*P)=—(n—1)(n—2)-N(Q*% P— Q).
q.e.d.
In particular, we get the angle which P; and P make:
PROPOSITION 6.4. For {;e u,nk\ {1} and Pe C*(k)\{Z =0} such that |y °P|| #0,

we have

1
cos(Y?P;, y4P)= ——1 ,

where ¢ : Ck)>X*=J%k) ® z R is the map given by Q— f*Q ® 1.
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Proor. Divide both sides of the equation in Lemma 6.3 by |¢y°P;| - ||y *P| =
ly*P|%. By the definition given before Proposition 2.3, we have the desired result.
g.e.d.

As an application, we next consider the matrices of the quadratic form B, defined
by f°P,, ..., f°P, for Pe C(k).

LemMA 6.5. If B,(f'P, f1P)>0 (PeC\(k)), then we have
det(Bl(flpi,’ flPit))s,t=l ,,,,, r>0
for r<n and distinct iy, ...,i,e{l,...,n}.

Proor. For be R such that —1/(r—1)<b <0, we know that the r x r determinant

b 1 -
det . Lo 0.
N EEEE N e
Hence we are done by Lemma 6.3 and the equality (2). q.ed.

COROLLARY 6.6. Letr<nandlet(;,...,(; €p,n kbedistinct. For Pe C%k) such
that |y *P| #0, the points Yy°P; , ...,y °P; are linearly independent, where y*: C*(k)—
X¢=J%k) ®z R is the map defined by Q+—f*Q ® 1.

ProOOF. Note first that ¢(P;)=(¢P),, where ¢ is the twisting in §1. By the

definition given before Proposition 2.3, the determinant of the quadratic form (-, )
on X* defined by Y*P;, ..., y°P, is

i1

det((!//api,a ‘/’aPi.>)s,:=1 ..... r=det(Ba(faPi,s faPi,))s,x= 1,er e
From the compatibility B,(*, +)=B,(®-, ®-) between the heights, and the commuta-
tivity @ o f*=f10 ¢ (cf. §1), this equals
det(B(P(f*(P,)), P(f*(P:)))=det(B,(f(#(P.)), /' ($(P:)))
=det(B,(f1(¢P), f1($P)))
which is positive by Lemma 6.5. Hence y“P; , ..., y“P; are independent. q.e.d.
Recall that R,=rank J%(k) and that ao,=ab” is the ideal decomposition with a
integral n-th power-free (cf. §4). Consequently, we have:

THEOREM 6.7. If R,<min{#(u,nk),n—1}, then |Yy°P||=0 for PeCk). If
furthermore | N§a| is sufficiently large, then p(x, y)=a has no k-rational solution.

Proor. The former assertion is immediate by Corollary 6.6. As for the later, take
a so that :
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—1{log2(n—1)(n—2
log|N5a|>2dn2" 2[ 0§ (n= 1) )+m:|.
n

Then, by Proposition 4.1, we have [[y*P|| >0 for Pe C%k)\{Z=0}, a contradiction.
q.e.d.

REMARK 6.8. For any given constant H, the number of amod(k™)" satisfying
| Nga| < H is finite because of the finiteness of the ideal class group of k.
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