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ON THE SOLUTIONS OF THUE EQUATIONS
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Abstract. Silverman's estimate for the number of integral points of the so-called
Thue equation is improved in a certain special case. A sufficient condition for the
non-existence of rational solutions is also given.

Introduction. Let k/Q be a finite extension, p(X, Y)ek[X, Y~] a homogeneous
polynomial of degree n>3 with non-zero discriminant, and aekx = k\{0}. Then the
equation

which we call a Thue equation, defines a regular curve Ca in Pk, which we call a Thue
curve. Let Ja be the Jacobian variety of Ca.

First assume that a and the coefficients of p(X, Y) are in the ring ok of integers
in k.

Let d=[k\ Q] and Ra = mnkJa(k). Silverman [9] proved the following among
others:

THEOREM 0.1 (Silverman [9]). There is a constant G = G(k,p(X, Y)) such that if
aeok \{0} satisfies \ Nk

Qa \ > G and | 1 + pn(a) \ < 9/4, then

/>(;c, y) = a}<n2n\l2n3d)R°,

where pn(a) is a number which measures the defect in a of the n-th power freeness and

differs from e{a) in Theorem 0.2 below by addition of the multiple of l/log| iV^α | by a

constant depending only on k and n.

He mapped Ca(k) to Ja(k) and estimated the number of lattice points which lie in
aballof/α(A;)®z/?.

On the other hand, Mumford [7] had asserted that the heights of rational points
on the Jacobian which come from a curve under a certain map grow exponentially if
the genus is greater than 1.

We here try to count the integral points by the technique of Silverman and the
method of Mumford and to improve the result of Silverman. Consider the prime ideal
decomposition of aok. Collecting the factors appropriately, we get a unique factorization
of the form aok = abn, where α is an integral ideal not divisible by the n-th power of any
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prime ideal and b is a fractional ideal.

THEOREM 0.2. Let e(ά) = nlog\N$b\/log\N%a\. Ifn>3,p(X, Y) has a linear factor
in k[X, F], 11 + e(a) | <2, and \ N^a] is sufficiently large, then we have

In Theorem 5.4, we obtain the S-integer version of this theorem.
The following result is also relevant to what we consider in this paper:

THEOREM 0.3 (Bombieri and Schmidt [2]). Assume that a and the coefficients of
p(X, Y) are in Z and that p(X, Y) is irreducible in Z\X, Y\ Then the number of primitive
solutions {i.e., solutions in coprime integers in Z) of the equation \p(x,y)\=a does not
exceed c1'n

1+t, where c1 is an absolute constant and t is the number of prime factors of
a. When n is greater than an absolute constant c2, the number of primitive solutions (with
(x, y) and ( —x, —y) regarded as the same) does not exceed 215 τz1+ί.

As for rational points, we find the following property:
From now on, a and the coefficients of p(X, Y) are in k and may not be in ok. Let

μn be the set of n-th roots of unity in an algebraic closure of k. For P = (x: y: 1) e Ca(k)
and ζeμnnk\{\}, we let QeC\k) be the point (x:y:ζ)eCa(k). Then we have (cf.
Proposition 6.4):

PROPOSITION 0.4. Assume that n> 3 and that p(X, Y) has a linear factor in k[X, Y~\.
The angle that P and Q make in Ja(k) ®ZR under a certain map and by a certain metric
iscos-\-l/(n-\)).

The proof depends on the calculation of the pull-back of an invertible sheaf and
uses the global Neron pairing.

THEOREM 0.5. Assume that n>3 and that p(X, Y) has a linear factor in k\X, Y~\.
Then, except for a finite number of a mod(fc x )", the assumption rank Ja(k) < min{#(μM n k),
n — 1} implies

{(x,y)ek2\p(x,y) = a} = 0.

In fact this is an example to which [11, Theorem 1] is applicable. We show Theorem
0.5 directly. (The essence of the proof is the same as that in [11, Theorem 1].)

TERMINOLOGY AND NOTATION. Basically we use the terminology of [3].
Let k/Q be a finite extension, d\ = [k\ Q], kx : = &\{0}, NQ the norm function

of numbers or ideals, k an algebraic closure of k, and μn the set of n-th roots of unity
in k.

Let P£ be the p-dimensional projective space over k. For a scheme X over k,
X: = Xxkk, X(k): = Hom(Speck, X\ and X(k): = Homk(Speck, X). We do not dis-
tinguish an element of X(k) and X(k) from the corresponding closed point of X and X.

For a regular integral projective scheme V over k, we denote by Div V the group
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of Weil divisors on V and by Pic V the Picard group of V. For such a scheme V, the
divisor class group and Pic V can be identified, so, sometimes we use the term
correspondence to mean a certain type of invertible sheaf. For a non-zero function /
on V, let div(/) be the divisor attached to /. For D e Div V, we denote by ££{D) the
invertible sheaf associated with D. When dim K=l, Pic0 V denotes the subgroup of
Pic V of degree 0. We often identify an invertible sheaf with its isomorphism class and
use such an expression as S£(B) ε Pic V. We use similar notation for regular integral
projective schemes over k. For a morphism / of schemes, let / * be the pull-back
functor of invertible sheaves.

Let Mk be the set of absolute values on k such that for an Archimedean v e Mk,
the absolute value | \v is the usual one if restricted to Q\ for a non-Archimedean veMk,
\q\v= l/q for some prime qeQ. For a finite extension Koϊk, let ~κ be the equivalence
relation on Mk so that v~κw if and only if f|x = w| x , and Mκ the set of representa-
tives of Mk/~κ. Let Kυ be the completion of K at veMk and ε*\ = \_Kυ\ QJ/IK: Q].
The standard height h on Pξ(k) is defined by

Λ(Oo: *: xP))= Σ ε*logmax{| x0 \Ό,..., | xp \v}
veMκ

for a finite extension K of k and x0, . . . , xpeK. We also denote by h the height on k
defined by

h(x) = h((\:x))

for xek. Let M£° be the subset of Archimedean absolute values of Mk. For a finite

subset S of Mk containing M °̂, we denote by o s (resp. os

x) the ring of S-integers (resp.

the units of os).

1. Thue curves, twisting and the compatibility between heights. Let k/Qbea. finite

extension, p(X, Y) ε k\X, Y~\ a homogeneous polynomial of degree n > 3 with non-zero
discriminant and with a linear factor I in k\X, Y\ and aekx. Let Cα be the closed
subscheme of Pk defined by

Notice that the sheaf Ωca/k of (holomorphic) differential forms of Ca over k is invertible,
because C^ is a nonsingular curve (cf. [3, III. 10.2 and 10.0.2]). Let QaeCa{k) be the
point defined by l(X, Y) = Z=0. Let Da be the divisor Can{Z = 0} on Ca.

LEMMA 1.1 (cf. [9, Lemma 4(a)]). The divisor (n — 3)Da is a canonical divisor on

Ca.

Let Ja be the Jacobian variety of Ca. We embed Ca in Ja. We refer the reader to
[6] for details concerning relevant properties of the Jacobian varieties.

Let JίaeY\c(Ca x kJ
a) be the universal divisorial correspondence between (Cα, Qa)
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and Ja. Let Δa be the diagonal divisor on CaxkC
a and

g>a: = &(Aa-{Qa}xkC
a-Caxk{Qa})eVic(CaxkC

a).

Since 5£a is a divisorial correspondence between (Ca, Qa) and itself, there exists a unique
morphism fa: Cα->/α such that fa(Qa) = 0 and JS?β^(lcβ xfa)*Jίa. We have a natural
group isomorphism

j\£) ~ Pic°(c^), jap ι-> (i c α x seγjr,

through which we identify these two groups. Then we have

f\Q) = (\ca xf\Q))*Jίa = {\cax Q)*<?a = JSf(β-Qa)ePic°(C~a)

for QeC\£)^ _
Let πα: CaxJa-^CaxkJ

a be the projection map. We also note that π*Ma is the
universal divisorial correspondence between (Cfl, Qa) and /α, and that Ja is the Jacobian
variety of C5.

Let f̂ be the genus of Cfl, which is equal to (n — \){n — 2)/2, and Θa the prime divisor
on Ja obtained by the (g— l)-fold addition of Cα, i.e.,

Let sa,pa,qa:J
axkJ

a-^Ja be the sum, the projections onto the first and the second

factors, respectively,

Jίa:=s*^(Θa) ®p*3?(Θayγ (x) q2<£{Θa)~1eY\c{Ja xkJ
a),

and Ba:J
a(£)xJa(k)-*R the canonical height on JaxkJ

a attached to Jfa. Ba is a
symmetric bilinear form on J\k) x Ja(fc) and positive definite on Ja(Ic) modulo torsion
(cf. [7, Proposition 1]).

Let α be an element of fc such that α" = α, and φ\Ca-+Cγ the isomorphism given
by (x:y:z)\-+(x:y:otz). We see that φ(Qa) = Q1.

Since ( φ " 1 x \jτi)*π*JίaeY>ic(Cί x Ja) is a divisorial correspondence between
( C S β 1 ) a n d «/α, by the universality of π f^ 1 , there exists a unique isomorphism
Φ.l^^J1 such that Φ(0) = 0 and

Figure shows the relation among the maps. Because Φ(0) = 0, Φ is an isomorphism of
abelian varieties (cf. [5, 2.2]), i.e., the diagram

ΦX Φ I \Φ

is commutative. If we use the identification 7α(fc)^Pic°(Cfl), we see by Figure that
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Φ(sn

Speck Spec A:

FIGURE

for i?ePic o (C"). In particular, we have

Φ(Γ(Q)) = (Φ ~ Ύ&iQ -Qa) = &MQ) -Q1) =f\Φ(Q))

for any closed point QeCa(Ic). Since Ca and J1 are varieties, the morphisms are
completely determined by their effect on Ca(k). So we have Φ ° / Λ = / l o φ , i.e., the
diagram

is commutative.
Let τπa:J

axJa->JaxkJ
a be the projection map. From the above discussion, we

see easily that

Therefore, by the functoriality of heights and the uniqueness of the canonical height,
we have

Φ{Jf))

for &,JteJ\E).

2. Relations among heights and a basic inequality. Choose a height ha on Ca

corresponding to j£?((?α)ePic(Cfl), where Qa is the Λ -rational point on Ca defined by
l(X9 γ) = z = 0 (cf. §1). For QeCa(lc), we denote by h(Q) the height induced by the
natural embedding CaaP%. Since Da = Car\{Z=0} is a hyperplane section, h cor-
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responds to

LEMMA 2.1. We have ha(Q) = n-ίh(Q) + O(l) for QeCa{k\ where n = degp(X, Y).

PROOF. Since div(l(X, Y)/Z) = n-Qa-Dae Div(Cfl), we see that if (nQa) ~ JSf φ β ) ,
which leads to the above relation between the heights ha and h. q.e.d.

LEMMA 2.2. We have Ba(faQ, faQ) = (n-\)(n-2)n-ih(Q) + O(l) for QeC\k\
where Ba is the height on JaxkJ

a given in § 1 and fa: Ca-+Ja the map as in § 1.

PROOF. Let j : Ca-+CaxkC
a be the diagonal map. Note that in general, for a

non-singular curve C over k, the pull-back of the diagonal divisor on CxkC by the
diagonal map is the inverse of a canonical divisor. Since &({n-3)Da) is the canonical
sheaf (cf. Lemma 1.1), we see thaty*J^(Jα)~i?(-(«-3)/) f l). Hence we have

j*&a=j*&(Aa-{Qa}xkC
a-Caxk{Qa})~£>(-(n-3)Da-2Qa).

On the other hand, we know that Jίa^((fa x l ^ ) * ^ ) " 1 (cf. [6, 6.11] or [7, §2]) and
j ^ α - ( l c α xfa)*Jίa (cf. § 1). Therefore we have

7*(lc« x / T ( / α x l J α )*^^y*(l c « x / f l ) * ( ^ α ) " '

Since the height Ba(faQ,faQ) for ρeCα(fc) corresponds to j * ( / a x/ α )*J^ by the
functoriality of heights while h corresponds to £?(Da), we obtain

Ba(faQ, ΓQ) = (n- 3)A(β) + 2ha(

for geC f l(F). By Lemma 2.1, we have the desired equation. q.e.d.

Let Xa be the jR-vector space Ja(k) ®ZR and < , •> the bilinear form on Xa x Xa

induced by Ba. Let || || be the associated norm and φa: Ca(k)^Xa the map defined by

From Lemma 2.2, we obtain a relation between the norm || || on Xa and the
standard height h on Pk\k) for QeCa(k):

PROPOSITION 2.3. There exist non-negative constants m = m(C1) and M=M(CX)
such that

-m<\\rQ\\2-{n~l)(n~2) KφQ)<M
n

for QeCa(k), where n = degp(X, Y) and φ: <?-•(? is the twisting in § 1.

PROOF. By Lemma 2.2, there exist non-negative constants m = m(C1) and
M=M(C1) such that
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for PeC\k). Take P=φQ for QeCa(k). Using the commutativity f1 oφ = φofa and
the compatibility Bx(Φ ,Φ-) = Ba(-, •) (cf. §1), we have

-rn<Ba(faQ,faQ)-(n~l)(n~2)h(φQ)<M,
n

which are equivalent to the above inequalities. q.e.d.

The next lemma is the inequality of Mumford in our case, and follows from Lemmas
2.1 and 2.2 as well as the results in [7, §3].

LEMMA 2.4. There exists a positive constant L = L(C1) such that

^ 1{f'Q, f'Qft+L

for P, QeC\k) with PΦQ, where g = (n-l)(n-2)/2.

As a consequence, we obtain:

LEMMA 2.5. For P, QeCa(k) with PφQ,we have

where L is the constant in Lemma 2.4.

PROOF. By Lemma 2.4 applied to φP and φQ for P, Q e Ca(k) with P Φ Q, we have

BtWHΦiP)), f\Φ(Q)))<^-{B,{f\φ(P)\ / W ) ) ) +tfitfHWG)), f\<KQ)))} + L

From the equalities Ba(-, -) = B1(Φ-, Φ ) and φofa=f1oφ, we see that

Ba(faP, faQ) = Bx{Φ<J\P))9 Φ(fa(Q)))

{B{f\Pl f(P)) + Ba{f\Q\ fXQ))} + L .

By the definitions of < , •> and || ||, we are done. q.e.d.

Lemma 2.5 implies the following, where we let cos(t;, w) = (v, w}/\\v\\ \\w\\ for

PROPOSITION 2.6. Let P9 QeCa(k) be distinct points such that \\φaP\\ < \\ψaQ\\ If

\\φaP\\2>20(n-2)1/2L
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for the constant L in Lemma 2.4 and

cos(ψaP, φaQ)>

then we have

In other words, if a rational point PeCa(k) with large norm appears in a cone V of Xa

such that COS(D, w)>2\/(20(n — 2)112) for v,weV, then another rational point QeCa(k)
with the next smallest norm which appears in V, if any, has the norm at least
g/(n — 2)1/2-times the norm of P.

PROOF. By the above lemma, we see that

\\φaP\\\\φaQ\\ 2g\\\φaQ\\ \\φaP\\

From the assumptions \\φaQ\\2> \\φaP\\2>20(n-2)1/2L, we have

21 < 1 WφaQ\\ { 1

20(n-2)1/2~ g \\φaP\\ 20(n-2)112'

q.e.d.

3. Estimates for the heights of integral or rational points. Fix a number λ such
that 2<λ<n = degp(X, Y), wherep(X, Y) is the homogeneous polynomial defining Ca

(cf. § 1). Recall that we have defined h as the standard height on a projective space or
as the height function on k.

LEMMA 3.1 (cf. [9, Theorem 1]). When the coefficients of p(X, Y) are in os, there
exists a constant c = c(k, S,p(X, Y), λ) such that

n-λ

for x, yeos.

The next lemma is the S-integer version of [9, Proposition 2(b)]. The proof is
similar to the original one.

LEMMA 3.2. There exists a constant ck depending only on k and satisfying the
following property, for any #eo s \{0}, there exists ueo£ such that

h(aun)<
1

log|JV£*|+ + ck n,
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where d= [k: Q] and εk

v = [kv: βj/[fc: Q].

We will use these two lemmas to bound the heights of integral points from above.

A version of [10, Theorem 2] which fits our aim is as follows, and can be proved

similarly.

LEMMA 3.3. For a closed point QeP£, let K=k(Q) be the field of definition for g,

i.e., the residue field of the local ring at Q, and Dk the discriminant ideal. Then, if

δ = [K: k]> 1, we have

2 δ — 1 \ δ

where h is the standard height on P£ and d= [_k. Q\.

We use this lemma to estimate the heights of rational points from below.

4. Estimates from below. Recall that n is the degree of the homogeneous poly-

nomial p(X, Y) defining Ca (cf. § 1). Let aok = Y\ pb be the prime ideal decomposition of

the fractional ideal aok. If b = r-\-qn for r, qeZ with 0<r<n, then we can so arrange

that aok = Y\ p Γ (Π p VqT- Put α = Π P P
r a n ( ^ ^ = Π » Pq Then aok = αb" and α is integral

n-th power-free. We see easily that such a decomposition is unique.

There is a lower bound for the norms of ^-rational points on Cα:

PROPOSITION 4.1. For QeCa(k) such that the Z-coordinate is not zero, we have

, ™ * W . I £ . , ,
2dn2 n—\ 2 n

where || || is the norm on Xa = Ja{k)®zR in §2, ψa: Ca(k)-+Xa is the map given by

Qγ-+faQ ® 1> d=\_k\ Q], and m is the constant in Proposition 2.3.

PROOF. We see from Proposition 2.3 that

Since the Z-coordinate of Q is not zero and φ: C - ^ C 1 was defined as (x:y:z)\->

(x:y:ocz) (cf. § 1), we have k(φQ) = k(oc), where k(φQ) is the field of definition for φQ.

Then, if δ = [k(oc): k] > 1, we find from Lemma 3.3 and the fact 2<δ<n that

log2(H-iχ»-2)
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The right hand side of the last inequality is negative if k(oc) = k, because we then have

I NQD£{Λ) | = 1. Hence this inequality is valid also when δ = 1. If we look at the ramification

in fc(α)/fc, then we find α | (D^f1. Thus | Nk

QDfa) \n~ι >| Nk

Q a |. q.e.d.

This means in particular that if | NQCL | is sufficiently large, then faQ is not a torsion

point on J\k) for QeCa(k)\{Z=0}.

5. Distribution of integral points. In this section, we assume that a and the

coefficients of p(X, Y) are in o s.

Let Is : = {(x, y) e oj |p(x, y) = a}, aok = ab" the ideal decomposition as in §4, and

e(a). =

logical

where n = degp(X, Y) and d=[k: Q\. We regard /^ as a subset of Ca(k).

Choose a number λ such that 2<λ<n. We have defined a map ι̂ α: C f l ( ^ ) ^ Z α =

/α(/τ) ®z R
 a n ( 3 a norm || || on Xa in § 2. We now bound the norms of 5-integral points

from above. This means in particular that 1% is a finite set, which can already be seen

from Lemma 3.1.

LEMMA 5.1. If QeIs^Ca(k), then the Z-coordίnate of Q is not zero and

J(n-\){n-2)(n-\)(n-2)\ (n-\)(n-2)
+ + )ck +

\ n n — λ J n

where ck, c = c(k, S,p(X, Y), λ) and M are the constants in Lemmas 3.2 and 3.1 as well

as Proposition 2.3, respectively.

PROOF. Note first that for veMk and x, y,z,αek, we have

max{\x\v, \y\09\uz\Ό}<cmax{\ 1 \V9\aH\O}1/H-max{\x\V9 \y\υ9 \z\v} .

If we use this for Q = (x: y: z) and α in § 1 and take the logarithms of both sides, then

we see that

(1) KΦQ)^ —
n

To the second inequality

n

of Proposition 2.3 we apply the inequality (1) and Lemma 3.1, and we obtain
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n2 (n — λ)n

Now, for an arbitrary ueos

x, let χ: Ca^Caun be given by (x:y:z)ι->(x:y : M~ 1z). Then

we see that χ(Iξ) = /|"n. In the same way as in the case of φ : C α -^C 1 , we have

\\φ°p\\2 = Ba(fap, faP) = Baun(faunχP, faunχP)=\\ΦaunχP\\2

for PeCa(k\ hence

By Lemma 3.2, we see that

(n-l)(n-2) (n-\\n-2)

V2 + (n-λ)n

{n-\){n-2) ^n-l^n-lSχ χ{n-\){n-2)
+

n n — λ

By the definition of e, we are done. q.e.d.

Let V be a cone of JT such that cos(t;, w)>21/(20(«-2) 1 / 2) for v,xveV.

LEMMA 5.2. Let t = #(7|n(ι/^α)"xV)-1 W αsw/we t>0. If \N%a\ is sufficiently

large, then we have

PROOF. Let Ia

s<\(ψa)~1V={Q{0\ β ( 1 ) , . . . , Q(t)} and ||ιKβ ( 0 )ll < l

<\\ψaQ(t)\\. When

n-2\ I n

we see by Proposition 4.1 that | | ^ Λ β ( 0 | | 2 > 2 0 ( « - 2 ) 1 / 2 L for any /. So, by Proposition

2.6, we have

^ T ι ι ^ β ι ι f
n-2j \n-2

Applying Lemma 5.1 to the extreme right-hand side and again Proposition 4.1 to the

extreme left-hand side, we find

n-V W n2 {n-λ)n J d



534 M. FUJIMORI

n — λ

+(π-iχι,-2)c +

Γ 1 n-2 \og2(n-l)(n-2) Ί " 1

• -j- -logical m
\_2dnzn—l 2 n J

Further if

t fΓ/(»-iχ«-2) («-iχ»-2)\ (fi-iχιi-2) 1
log|Λβα|>max<Π - + - -1^+- -c + M

ILV n n-λ J n J
-iχB-2) (w-iχn-2)\l1" J

( λ ) j j
Γ / ( W - i χ B

LV « 2

[Iog2(n-iχ»-2)

L
then, substituting (w —1)(« — 2)/2 for g and estimating the right hand side of the above

inequality, we obtain

(n-λ)n ) d " n-2

q.e.d.

Silverman [9] estimated the number of lattice points in a ball of Xa = Ja(k) ®ZR

centered at the origin. Here, using Lemma 5.2, we bound the number of points in a

cone of Xa which come from 5-integral points.

LEMMA 5.3. Let V be a cone as above. If |1 +e(a)\<2 and \NQCL\ is sufficiently

large, then

1 for n>\9A

2 for n>l

3 for n>5

4 for n > 4 .

PROOF. In Lemma 5.2, take λ = 2n/3 when n>5; λ = 5/2, n — A. q.e.d.

Summing up, we have:

THEOREM 5.4. If \ 1 +e(ά)\<2 and \NQCL\ is sufficiently large, then
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where Ra = mnkJa(k).

PROOF. Notice that 21/(20(«-2)1/2)<3/4, because n>3. We know that Rp can
be covered by lp cones V such that cos(u, w)>3/4 for υ, we V (cf. [1, § 10]), hence, by
Lemma 5.3, we obtain the result. q.e.d.

6. The angle made by two rational points in a special relation. Let μn =

{ζ1 = 1, ζ2,..., ζn} be the set of n-th roots of unity in k, where « = deg/?(Ar, Γ) (cf. § 1).
For P = (x:y:z)eCa(Jc) and C eμ,,, we denote by Pt the point (x:y:ζfz)GCβ(£). These
points turn out to be linearly dependent:

PROPOSITION 6.1. When μn<^K we have for PeCa(k)

where φa: Ca(k)->Xa is the map given by Q^faQ <g> 1 (cf. §2).

PROOF. For P = (x: y: z) G C\k) with x,y,ze k, we have div((yX- x Y)/l(X, Y)) =
ΣPi-nQaeΌiv(Ca). Hence, if we use the identification Jα(fc)-Pic°(Cα), we see (cf. § 1)
that

Σ f°Pi = ® &(Pt~Qa) = &CLPi-nQa) = 0e J\k).
i

Passing to Xa, we obtain the above relation. q.e.d.

Note, however, that n— 1 of them are independent. We see below the angle made
by two of them (cf. Proposition 6.4). For the proof, we need a lemma.

For ζteμn9 let j t : ̂ Γa-*Cά x C 5 be the map defined by

and Δa the diagonal divisor on Ca x Cfl.

LEMMA 6.2. For iφ\, we have

where Wa = C^n{Z=

PROOF. Let Â ^ F l 5 Z 1 ? Jf2, Γ2? Z 2 be the natural homogeneous coordinates in
Ca x Cα. We first see that Z1/X1 — Z2/X2 is a generator of the prime ideal of the local
ring of C^xC^ at (P,i>) = ( ( l : ^ : 0 ) , ( l : y : 0 ) ) G ^ n { Z 1 = Z 2 = 0,^r1A

r

2^0} correspond-
ing to Δa. Indeed, the ring of sections of the structure sheaf over the affine open set

k[YJXl9 ZJXJ/(p(l, YJXJ-a iZJXJ") ®rflY2IX29 Z2/X2]/(/>(l, Y2/X2)

-a (Z2/X2Y),
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and the prime ideal of this ring corresponding to Δa is

(Y1/X1 - Y2/X2, ZJX1 -Z2/X2) .

There exists a polynomial q(Tl9 T2)ek[Tu Γ2] such that

p(l, Tx)-p{\9 Γ2) = (Γ1-Γ2) ίf(Γ1, T2).

Differentiating both sides with respect to T1 and evaluating at 7\ = T2 =y, we have

OΦj^Q, y) = q(y,y),

since p(X, Y) has non-zero discriminant (cf. §1). This means that q(Y1/Xu Y2/X2) is
invertible in the local ring of Ca x Ca at (P, P). On the other hand, in the above ring,
we have

X,, Y2/X2) = a(Zι/X1y-a(Z2/X2r

hence Z1/X1—Z2/X2 is a generator of the prime ideal of the local ring of Ca x Ca at
(P, P) corresponding to Δa. Similarly, Zί/Y1—Z2/Y2 is a generator of the prime ideal
of the local ring of ~Ca xC" at ((x: 1:0), (x: 1 : 0 ) ) G ^ Π { Z 1 = Z 2 = 0, 7 1 7 2 /0}
corresponding to Δa. Therefore the Cartier divisor corresponding to Δa is defined by
the rational functions

1 on C^ x C** \A°

Z1/X1 -Z2\X2 near the closed pointse~Δ~an{Zt = Z2 = 0, XtX2φ0}

Z1/Y1- Z2\ Y2 near the closed points e ~Δ* n {Zj = Z 2 = 0, Fx r 2 Φ 0}

some functions near the other closed points e Δ a .

Thus, pulling them back, we see that the Cartier divisor corresponding to the pull-back
of Δa by ji is defined by the rational functions

1 on

ζiZ/X-Z/X=(ζi-l)Z/X near C**n{Z=0,

ζiZ/Y-Z/Y=(ζi-l)Z/Y near C*n{Z=0, YφO} .

Since Z/A" or Z/ Γ is a generator of the maximal ideal of the local ring of Ca at a point
in Cαn{Z=0}, we are done. q.e.d.

We denote by N( , •) the global Neron pairings on the curve Cfl, on the product
CaxkC

a as well as on the product of Jacobian varieties JaxkJ
a (cf. [8]). Since Ba is

the canonical height on J\k) x J\k) attached to Jfae¥\c(Ja xkJ
a) (cf. § 1), we have

α, (if, ^ ) - ( 0 , 0))

for £e,JίeJa(k).
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We note that

(2) Ba(faPi,f°Pi) = Ba(f°P,faP)

(cf. the proof of Lemma 5.1), where fa: Cα->/fl is the map in § 1.

LEMMA 6.3. When iφ\, we have

Ba{faPi, faP)= l-~Ba(faP, faP)
n—\

for PeCa(k)\{Z = 0} .

PROOF. Let^ be the map defined immediately before Lemma 6.2, Δa the diagonal

divisor onC"xC", and ~D* = C" n {Z = 0} eDiv(C"). As described above, we have

a, (f°Pi9 faP)-(0, 0)).

Using the functoriality of the Neron pairing, we see that

Ba(faPi, faP)= -N((fa xfT^a, (Λ , P)-(Qa, Qa))

Since (fa xfa)*jra~y{{Qa} xkC
a + Ca xk{Qa}-Aa) (cf. the proof of Lemma 2.2^ we

obtain by Lemma 6.2 and the proof of Lemma 2.1 thaty7(/α xfa)*Jfa ~ ^(2Qa -Da)~

y(-(n-2)Qa). Hence we have

BaίΓPi, faP) = (n-2) N(Qa, P~Qa).

On the other hand, we have

Ba{faP, f°P)= ~N{^\ (faP, /"/>)-(0, 0))

fa χ / T ^ α , P-Qa)

andj*(Ja xfayjίa- J^(2βα + (n- 3)Da)- jgf((/i- \)(n-2)Qa) (cf. the proof of Lemma

2.2). Hence

Ba(faP, faP)= -(n-l)(n-2) N(Qa, P-Qa).

q.e.d.

In particular, we get the angle which Pt and P make:

PROPOSITION 6.4. For Ct eμ n n&\{l} andPeCa(k)\{Z=0} such that \\φaP\\ #0,

we have

n—\

where ψa: Ca(k)^>Xa = Ja(k) ®zRis the map given by Q\-^faQ <g> 1.
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PROOF. Divide both sides of the equation in Lemma 6.3 by \\ψaPi\\ \\ψaP\\ =
\\φaP\\2. By the definition given before Proposition 2.3, we have the desired result.

q.e.d.

As an application, we next consider the matrices of the quadratic form Ba defined

by faP,,. ,faPn for PeC\k).

LEMMA 6.5. // B^P, flP)>0 (PeC\Ic)), then we have

1

for r<n and distinct iί9..., ire {1,...,«}.

PROOF. For bεR such that - 1 /(r- 1)<b<0, we know that the r x r determinant

/I 6 ••• b \

det

\Z> ••• b 1 /

Hence we are done by Lemma 6.3 and the equality (2). q.e.d.

COROLLARY 6.6. Let r<n and let ζh,..., ζir e μπ n kbe distinct. For Pε Ca(k) such
that \\φaP\\ τ*0, the points φaPiί,..., φaPir are linearly independent, where φa: Ca(k)-*
Xa = J\k) ®zRis the map defined by Q>-+faQ ® 1.

PROOF. Note first that φ(Pis) = (φP)is, where φ is the twisting in §1. By the
definition given before Proposition 2.3, the determinant of the quadratic form < , •>
on Xa defined by φaPh, . . . , φaPir is

From the compatibility 2?Λ( , ) = 51(Φ , Φ ) between the heights, and the commuta-
tivity Φ o fa =fx o φ (cf. § 1), this equals

is)l f\Φ(Pit))))
= det(Bί(f\φP)is,f\φP)it)),

which is positive by Lemma 6.5. Hence φaPiχ9..., ψaPir are independent. q.e.d.

Recall that Ra = rank Ja(k) and that aok = άbn is the ideal decomposition with α
integral «-th power-free (cf. §4). Consequently, we have:

THEOREM 6.7. If Ra<mm{$(μnnk),n-l}, then |hAα^ll=O for PeCa(k). If
furthermore \ NQCL \ is sufficiently large, then p(x, y) = a has no k-rational solution.

PROOF. The former assertion is immediate by Corollary 6.6. As for the later, take
a so that
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n — 2\_ 2

Ί
+ m .

Then, by Proposition 4.1, we have \\ψaP\\ >0 for PeCa(k)\{Z=0}, a contradiction.
q.e.d.

REMARK 6.8. For any given constant H, the number of amod(kx)n satisfying
I NQOL I < H is finite because of the finiteness of the ideal class group of k.
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