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Abstract. Two basic Lie-invariant forms uniquely defining a generic (hyper) surface in
Lie sphere geometry are introduced. Particularly interesting classes of surfaces associated with
these invariants are considered. These are the diagonally cyclidic surfaces and the Lie-minimal
surfaces, the latter being the extremals of the simplest Lie-invariant functional generalizing the
Willmore functional in conformal geometry.

Equations of motion of a special Lie sphere frame are derived, providing a convenient
unified treatment of surfaces in Lie sphere geometry. In particular, for diagonally cyclidic sur-
faces this approach immediately implies the stationary modified Veselov-Novikov equation,
while the case of Lie-minimal surfaces reduces in a certain limit to the integrable coupled Tz-
itzeica system.

In the framework of the canonical correspondence between Hamiltonian systms of hy-
drodynamic type and hypersurfaces in Lie sphere geometry, it is pointed out that invariants
of Lie-geometric hypersurfaces coincide with the reciprocal invariants of hydrodynamic type
systems.

Integrable evolutions of surfaces in Lie sphere geometry are introduced. This provides an
interpretation of the simplest Lie-invariant functional as the first local conservation law of the
(2 + 1)-dimensional modified Veselov-Novikov hierarchy.

Parallels between Lie sphere geometry and projective differential geometry of surfaces
are drawn in the conclusion.

1. Introduction. Lie sphere geometry dates back to the dissertation of Lie in 1872

[27]. After that the subject was extensively developed by Blaschke and his coworkers and

resulted in publication in 1929 of Blaschke's "Vorlesungen uber Differentialgeometrie" [2],

entriely devoted to the Lie sphere geometry of curves and surfaces. The modern multidimen-

sional period of the theory was initiated by PinkalΓs classification of Dupin hypersurfaces

in E4 [30], [31]. We refer also to Cecil's book [7] with the review of the last results in this

direction. Since most of the recent research in Lie sphere geometry is concentrated around

Dupin hypersurfaces and Dupin submanifolds, the general theory of Lie-geometric hypersur-

faces seems not to be constructed so far. The aim of this paper is to shed some new light on

Lie sphere geometry of (hyper)surfaces and to reveal its remarkable interrelations with the

modern theory of integrable systems.

Lie M2 C E3 be a surface in the 3-dimensional Euclidean space E3 parametrized by the

coordinates Rι, R2 of the lines of curvature. Let kι, k2 and gn(dR1)2 + giiidR2)2 be the

principal curvatures and the induced metric of M2, respectively. In Section 2 we introduce
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two basic Lie sphere invariants of the surface M 2 , namely, the symmetric 2-form

(which can be viewed as the Lie-invariant metric of the Lorentzian signature) and the confor-

mal class of the cubic form

(2) dχkιgn{dRγγ + d2k
2g22(dR2)3 ,

3, = 3/3R'9 which define generic surface M1 uniquely up to Lie sphere equivalence. We

recall that the group of Lie sphere transformations in En+ι is a contact group, generated by

conformal transformations and normal shifts, translating each point of the surface to a fixed

distance a = const along the normal direction. Conformal transformations and normal shifts

generate in En+X a finite-dimensional Lie group isomorphic to SO(n + 2, 2). Lie sphere

transformations can be equivalently characterized as those contact transformations, which

map spheres into spheres and preserve their oriented contact. In an implicit form the objects

(1) and (2) have been introduced already in [2]. Particular classes of surfaces in Lie sphere

geometry can be specified by certain restrictions on (1), (2).

In Section 3 we discuss diagonally cyclidic surfaces (diagonalzyklidische flachen in

the terminology of [2, p. 406]), which can be characterized as the surfaces M2 possessing

parametrization R1, R2 by the coordinates of lines of curvature such that

3\kιgn = d2k
2g22,

so that the cubic form (2) becomes proportional to (dR1)3 + (dR2)3. This class of surfaces

is a straightforward generalization of isothermic surfaces in conformal differential geometry

(characterized by the condition g\\ = g22).

Quadratic form (1) gives rise to the Lie-invariant functional

II
whose extremals are known as minimal surfaces in Lie sphere geometry (AΓ-minimalflachen in

the terminology of [2, §94]). Some of the most important geometric properties of Lie-minimal

surfaces are reviewed in Section 4.

In Section 5 a Lie sphere frame associated with a surface M2 is constructed. Up to certain

normalizations this construction follows that proposed by Blaschke in [2]. However, our final

formulae prove to be more appropriate for the purposes of the theory of integrable systems.

In particular, they immediately imply that in the case of diagonally cyclidic surfaces the Lie

sphere density p defined by

2_ dxk
ιd2k

2

P ~ (kι - k2)2

satisfies the stationary modified Veselov-Novikov (mVN) equation

d\p - IVdip - pd\ V = d^p - 2Wd2p - pd2W ,

3! W = -(3/2)d2(p2), d2V = -(3/2)3!(p2).
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The Euler-Lagrange equations of the functional (3) governing Lie-minimal surfaces are writ-

ten down explicitly. It is demonstrated that in a certain limit they reduce to the integrable

coupled Tzitzeica system

= pq + I//?, d\d2\nq = pq + l/q ,

which is a special reduction of periodic Toda lattice of period 6 (geometric meaning of

V, W, /?, q is clarified in Section 5).

In Section 6 we introduce Lie sphere invariants of multidimensional hypersurfaces Mn c

En+ι, namely, the symmetric 2-form

and the conformal class of the cubic form

(5) Σ*jί»,V)3,
i

which define "generic" hypersurface uniquely up to Lie sphere equivalence. Here kι are

principal curvatures, ωι are principal covectors, Σ 9a (ω1)2 *s t n e first fundamental form and

the coefficients k\ are defined by the expansions dkι = kι ω^ (we emphasize that hypersurface

Mn of dimension n > 3 does not necessarily possess parametrization by the coordinates of

curvature lines). Objects (4) and (5) are the Lie-geometric analogs of the second fundamental

form and the Darboux cubic form in projective differential geometry of hypersurfaces.

In Sections 7-10 the interrelations between Lie sphere invariants and reciprocal invari-

ants of hydrodynamic type systems

(6)

are discussed. We recall that reciprocal transformations are transformations from JC, t to the

new independent variables X, T defined by the formulae

dX = B(u)dx + A(u)dt, dT = N(u)dx + M(μ)dt,

where Bdx + Adt and Ndx + Mdt are two integrals of the system (6). Reciprocal trans-

formations originated from gas dynamics and have been extensively investigated in [32],

[33]. In [10], [11] we introduced reciprocal invariants, defining a hydrodynamic type sys-

tem uniquely up to reciprocal equivalence. The summary of these results in the 2-component

case is given in Section 7. In Sections 8-9 we recall the necessary information about Hamil-

tonian systems of hydrodynamic type and describe the general construction of [14], [12],

relating Hamiltonian systems (6) and hypersurfaces in £ " + 1 . The main property of this cor-

respondence is the "equivariance" in the sense that Lie sphere transformations of hypersur-

faces correspond to "canonical" reciprocal transformations, that is, reciprocal transformations

preserving the Hamiltonian structure. In this approach Lie sphere invariants of hypersur-

faces correspond to reciprocal invariants of hydrodynamic type systems, providing thus their

differential-geometric interpretation.
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Integrable evolutions of surfaces in Lie sphere geometry are introduced in Section 10.

This construction provides a simple interpretation of the Lie-invariant functional (3) as the

first conservation law of the integrable (2 + l)-dimensional mVN hierarchy.

In Section 11 we write down reciprocal invariants of n -component systems for arbitrary

n > 3, since they differ from those in the case n = 2.

Parallels between Lie sphere geometry and projective differential geometry are drawn

in the Appendix. Projective duals of diagonally cyclidic and Lie-minimal surfaces are dis-

cussed: these are the so-called isothermally asymptotic and projectively minimal surfaces,

respectively. It is demonstrated that isothermally asymptotic surfaces are also described by

the stationary mVN equation (however, with a different real reduction). The case of projec-

tively minimal surfaces is even more surprising: this class is described by exactly the same

integrable system as the Lie-minimal surfaces. These analogies can be viewed as an analytic

manifestation of Lie's famous line-sphere correspondence.

2. Invariants of surfaces in Lie sphere geometry. In [2, p. 392] Blaschke intro-

duced the Lie-invariant differentials ω 1 , ω2 (in Blaschke's notation, dψ, dψ) which assume

the following form in the coordinates Rι, R2 of the lines of curvature:

1/6

(7)
2 _

ω ~ k2-kι

REMARK 1. In order to check the Lie sphere invariance of the differentials ωι, ω2 it is

sufficient to check their invariance under the inversions and normal shifts, which can be done

by direct calculation. Moreover, forms (7) do not change if the principal curvatures kι and

the metric coefficients ga are replaced by the radii of principal curvature wι = \/kι and the

coefficients of the third fundamental form Gu = (kι)2ga, respectively.

REMARK 2. Similar invariant differentials arise in Mδbius (conformal) geometry:

The conformally invariant metric

(kι - k2)2(gu(dR1)2 + g22(dR2)2)

is an analog of the Lie invariant form (1).

As long as ωι and ω2 are invariant under Lie sphere transformations, so are the quadratic
form
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and the cubic form

(8) (ω1)3 - (ω2)3 = , 3 l * β 2 * =(dιk
{gn(dRιγ + d2k

2g22(dR2)3),

which give rise to (1) and (2), respectively. The reason for introducing these objects is their

simple representation in terms of the familiar Euclidean invariants as well as their additional

symmetry under the interchange of indices 1 and 2.

It was proved in [2, §85] that up to certain exeptional cases a generic surface in 3-space

is determined by the invariant differentials ω 1, ω2 uniquely up to Lie sphere transformations.

Since ωx, ω2 can be reconstructed from the quadratic form (1) and the conformal class of the

cubic form (2) (the multiple in (8) is not essential), we can formulate the following:

THEOREM 1. A generic surface M2 c E3 is defined by the quadratic form

and the conformal class of the cubic form

dxk
ιgn(dR1)3 + d2k

2g22(dR2)3

uniquely up to Lie sphere transformations.

The vanishing of the cubic form is equivalent to the conditions d\kι = d2k
2 = 0 which

specify the so-called eyelids of Dupin. We recall that the vanishing of the Darboux cubic

form in protective differential geometry specifies quadrics, which are thus projective duals of

eyelids of Dupin.

Principal directions of the surface M2 can be characterized as the zero directions of

quadratic form (1). On the other hand, they are exactly those directions, where cubic form

(2) reduces to the sum of pure cubes (without mixed terms). It should be pointed out that

any cubic form on the plane can be reduced to the sum of cubes, and the directions where it

assumes the desired form are defined uniquely (in the nondegenerate case).

In the next sections we discuss two particularly interesting Lie-invariant classes of sur-

faces which are naturally defined in terms of the invariants (1) and (2).

3. Diagonally cyclidic surfaces. With any surface M2 we can associate a 3-web (that

is, three one-parameter families of curves) formed by the lines of curvature and cyclidic curves

(zyklidische kurven in the terminology of Blaschke [2, §86]) which are the zero directions of

cubic form (2) and hence are obviously Lie-invariant. In view of (8) the curves of this 3-web

can be defined as follows:

(9) ωι = 0, ω2 = 0, ωι - ω2 = 0.

Geometric meaning of cyclidic curves has been clarified in [2, §86]. Cyclidic curves are the

natural Lie sphere analogs of the Darboux curves in projective differential geometry. Let

us compute the connection form of the 3-web (9), that is, the 1-form ω which is uniquely
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determined by the equations

dω1 = ω A ωι, dω = ω Λ ω ,

(see [3], [4] for the introduction in web geometry). A direct computation results in

( k 2 dxk
ι \ lίdιd2k

ι d2k
2 \

+ldln

lίdιd2k
ι d2k

2

Since both ω 1, ω 2 are invariant under Lie sphere transformations, so is the connection 1-form

ω. From (10) it immediately follows that the curvature form dω of the 3-web (9) is given by

dω = -dΩ,

where

As we will see in Section 6, an object analogous to (11) arises in the theory of reciprocal

invariants of hydrodynamic type systems.

The class of diagonally cyclidic surfaces [2, p. 406] is specified by the requirement, that

the 3-web (9) is hexagonal or, equivalently, has zero curvature:

dω = 0.

In this case there exist coordinates Rι, R2 along the lines of curvature (note that we have a

reparametrization freedom Rι -> φι (R1)), where ωι, ω2 assume the form

ωι = pdR1 , ω2 = -pdR2

with nonzero common multiple p. In these coordinates the cubic form (ω 1 ) 3 — (ω2)3 becomes

proportional to (dR1)3 + (dR2)3.

Another important geometric property of diagonally cyclidic surfaces is the existence

of Ribaucour transformations, which preserve the cyclidic curves. In fact, this provides an

explicit Backlund transformation for diagonally cyclidic surfaces with all familiar features of

Backlund transformations like the existence of spectral parameters, permutability theorem,

etc.

From the point of view of Euclidean differential geometry the class of diagonally cyclidic

surfaces is specified by the requirement

31*^11 =d2k2g22,

which, upon substitution in the Gauss-Codazzi equations, results in a nonlinear system for

the Euclidean invariants kι, k2, g\\, #22, which we do not write down here because of its

complexity (see [17] where this system was investigated directly). Instead of this, in Section

5 we derive equations of motion of a special Lie sphere frame, which provides a convenient
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unified treatment of Lie-geometric surfaces. In particular, for diagonally cyclidic surfaces this

approach immediately implies the stationary mVN equation.

4. Minimal surfaces in Lie sphere geometry. Lie-minimal surfaces are defined as

the extremals of the functional (3)

(fcl_fc2)2"" » " '

which is a natural Lie sphere analog of the conformally invariant Willmore functional

Lie-minimal surfaces arise also in the theory of Lie eyelids of the surface M 2 . For brevity, we

only recall the necessary definitions. The details can be found in [2]. Thus, let us consider a

point p° on the surface M2 and the /^-curvature line passing through p°. Let us take three

additional points p\i = 1, 2, 3 on this curvature line close to p° and consider three in-

curvature lines γι passing through pι. The three curvature spheres of γι through the points

pι uniquely define a eyelid of Dupin Q containing them as the generators. As pι tend to

p°, the eyelid Q tends to a limiting eyelid, the so-called Lie eyelid of the surface M2 at the

point p°. Even though this construction depends on the initial choice of either the Z?1- or the

jR2-curvature line through p°, the resulting eyelid Q is independent of that choice. Thus, we

arrive at a two-parameter family of eyelids of Dupin associated with the surface M 2 . Now,

in a neighbourhood of a generic point /?° on M2, the envelopes of the family of Lie eyelids

consist of the surface M2 itself and four, in general, distinct sheets. The case of Lie-minimal

surfaces is characterized by the additional property that the curvature lines on all these sheets

correspond to the curvature lines of the surface M2 itself. Moreovere, for Lie-minimal surface

all four sheets of the envelope will be Lie-minimal as well. In a sense, it is natural to call the

family of Lie eyelids with this property a Ribaucour congruence of eyelids of Dupin.

Particular Lie-minimal surfaces are characterized by the degenerate case of two distinct

sheets (the sheets coincide pairwise; this class of surfaces is a straightforward analog of the

Godeaux-Rozet surfaces in projective differential geometry—see the Appendix) or even one

sheet (all four sheets coincide; this class is an analog of the surfaces of Demoulin).

The analytic treatment of all these cases is given in Section 5.

5. Lie sphere frame. Let M2 be a surface in E3 parametrized by the coordinates

Rι, R2 of the curvature lines. The radius-vector r and the unit normal n of the surface M2

satisfy the Weingarten equations

(12) d\r=wxd\n, a 2r = u; 2a 2n,

where w{, w2 are the radii of principal curvature.

Let us recall the definition of the Lie sphere map. With any sphere S(R, r) of radius

R and center r = (rι,r2,r3) this map associates a 6-vector {yo, yi, y2, V3, y4, V5} with the
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coordinates y; defined by

These coordinates satisfy the equation

(13) -yo + yΐ + yϊ + yϊ + yl- yl = °
defining the so-called Lie quadric. Thus with any sphere S(R, r) in E3 we associate a point

lying on the Lie quadric (13). The reader may consult [2], [7] for the properties of this

construction.

Applyhing Lie sphere map to the curvature sphres S(wι, r — wιή), S(w2, r — w2ή) of

the surface M 2, we obtrain a pair of two-dimensional submanifolds of the Lie quadric with

the radius-vectors

ττ \l+r2-2wι(r,ή) I - r2+ 2wι(r,n) χ Λ
= I 2 ' 2 ' Γ ~ I '

ί l+r 2 -2u; 2 (r ,n) 1 - r 2 + 2u;2(r,n) 2 2 |

= j j ' 2 ' Γ " ' I '
respectively. It can be verified that

(14) (t/,£/) = (t/,V) = ( V , V ) = 0 ,

where the scalar product of 6-vectors is defined by the indefinite quadratic form (13). In

what follows we use the same notation (,) for both the scalar product defined by (13) and

the standard Euclidean scalar product in E3; however, the dimension of vectors will clearly

indicate which one has to be chosen.

A direct computation gives

1 W — W

d2U = d2w
λ {-(r, n), (r, n), -n, 1} + —{(d2r, r), -(fcr, r), d2r, 0},

(15)

3iV = 3iu;2{-(r, n), (r, n), -n, 1} + W ~.W {{dλr, r), -Oir, r), 9 l Γ, 0},

wι

32y = a2w
2{-(r, n), (r, n), -n, 1},

implyhing

(16) θit/ = r Ϊ < V V ) , d2V = A

Differentiating (14) and taking into account (15), (16), we conclude that the only nonzero

scalar products among the vectors £/, V, d\U, fyU, d\ V, diV are the following:

, d2U) = (w1 - w2)2G22 , (3i V, diV) = (wι - w2)2Gu .
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Here G\\ = (3in, 3in), G22 = (^n, 8211) are the components of the third fundamental form

of the surface M2. Differentiating the zero scalar products among U, V, d\ (/, 82U, d\ V, 82V

and keeping in mind (16), one can show that the triple U, 82U, d2U is orthogonal to the triple

V, 3i V, d2V. In order to complete the vectors U, V to a frame with the simplest possible table

of scalar products we will choose appropriate combinations among the triples £/, 82U, d2U

and V, 9i V, 9jV, separately. Up to certain normalization the choice described below coin-

cides with that from [2]. However, our final formulae prove to be more appropriate for the

purposes of the theory of integrable systems.

Let us introduce the normalized vectors

U V

This normalization is convenient for several reasons: first of all, the equations (16) reduce to

the Dirac equation

(18) d\U

with the coefficients p and q given by

_
P ~ -w2 VG22 ' q ~ w2-wι

It is important that both p and q are Lie-invariant (we emphasize that coefficients in (16) are

not Lie-invariant). The reparametrization of coordinates

induces the transformation of p and q as follows:

(19) P* = PSfKf')2, q*=qf'ttsf)2.

In terms of /?, q the invariant differentials (7) assume the form

ωι = (qpψ3dRι, ω2 = (pq2γPdR2 ,

so that the invariant forms (1) and (2) can be rewritten as

-pqdRιdR2

and

(20) p(dRl)3-q(dR2)\

respectively (note that only the conformal class of the cubic form does make an invariant

sense).

There exists one more important property of the normalized vector U (resp. V). It turns

out that the action of the Lie sphere group in E3 induces linear transformations of the coordi-

nates of U (resp. V). Since this linear action should necessarily preserve the Lie quadric (13),

we arrive at the well-known isomorphism of the Lie sphere group and S 0(4, 2). To prove

the above statement it is sufficient to consider separately the two building blocks of the Lie

sphere group, namely
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1. Normal shifts

r -• r + en, n -* n, wι -> wι + c, Gu -> G, , , c = const

2. Conformal transformations: in fact, it suffices to consider the standard inversion

n^n2^r,
(r, r) (r, r)

„ _ ((r,r)-2iϋ''(r,n))2

( r , r ) - 2 w ' ( r , n ) (r, r ) 2

It can be checked directly that both these transformations induce linear transformations of U

(resp. V). Since conformal transformations and normal shifts span the full Lie sphere group,

the statement follows.

REMARK. For the unnormalized vector U (resp. V) the linearization result is no longer

valid: in the transformation formulae for U (resp. V) there always arises a nonconstant factor,

which breaks the linearity. Thus the normalization (17) linearizes the action of the Lie sphere

group.

Using the known scalar products among the vectors ί/, V, d\U, d2U, d\V, 82V, we

immediately see that the only nonzero scalar products among the normalized vectors U, V,

, d2U, d\ V, d2V are the following:

Obviously, the normalized triples U, d2U, d^lA and V, 3i V, 32V remain mutually orthogonal.

Let us introduce the following vectors A, V from the first triple:

A = d2U - —U, V = d2A - aU,
P

which we require to have the following nonzero scalar products:

(A,A) = U (U,V) = -l.

This uniquely specifies

a = --(d2A,d2A)

(in principle it is possible to derive an explicit formula for a in terms of the Euclidean invari-

ant; however this is not necessary for what follows). Similarly, we can choose

B = dιV - —V, Q = dιB-bV

with the nonzero scalar products

which fixes

b = ~
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Vectors U, A, V and V, B, Q constitute the Lie sphere frame with the following simple table

of scalar products

(21) (Λ,Λ) = U (U,V) = -U (β,B) = l , (V,β) = - 1 ,

(all other scalar products are zero) which is of the desired signature (4, 2).

Our next aim is to derive equations of motion of the Lie sphere frame. What we have at

the moment are the following equations:

equations for U:

(22) d\U = pV, d2U = —U + A
P

equations for V:

(23) dχV=— V + 5, d2V = qU\
q

equations for A, B:

(24) d2A = aU + V, d\B = bV+Q.

It turns out that (21) and (22), (23), (24) completely determine the missing equations of

motion. Cross-differentiating, for instance, the equations (22), we obtain

8χA= (pq -d\d2lnp)U.

Introducing k by the formula d\d2 In p = pq — k, we obtain d\A = kU. Similarly, d2B — IV,

where / is introduced by the formula d2d2 In q = pq — I. Thus, equations of motion of A and

B assume the form

equations for A:

equations for B:

(26) dιB = bV+Q, d2B = IV.

Let us demonstrate, for instance, how to find 3\V. Representing d\V in the form

and consequently differentiating the relations

(ZY, p ) = —l, (A,V) = 0, CP,V) = Q, (V, V) = 0, (B,V) = 0,

we arrive at

y = 0 , β = k, α = 0 , v = 0, μ = 0,

respectively (in these calculations we always keep in mind (21), (22), (23), (25), (26)). Thus,

d\V = kA H- 8V, where the coefficient 8 is yet undetermined. It can be fixed by cross-

differentiating (25): 8 = —pa. Moreover, cross-differentiation of (25) produces the compati-

bility condition
d2p

d\a = d2k H k .
P
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Proceeding in this way we find the missing equations of motion ofV,Q:

= kΛ- paV, = aA-— V + qbV-qQ,
P

dl4 π

Equations of motion of the Lie sphere frame can be conveniently represented in the matrix

form

(27)

(u\
A
V
V
B

/ 0 0
k 0
0 k
0 0
0 0

W \pa 0

fu\ thp/p
A
V
V

B

KQ

a
0

0
I -qb

0
0
0
0
0

-p

1
0
a
0
0
0

0
-pa

d\q/q
b
0

0
1

-hplp
0
0
0

0
0
0
1
0
b

0
0

qb
0
/

0

0
0
0
0
0
/

\

/

A
V
V
β

0 \
0

-q
0
0
0 1

u\
A
V
V

B

(28) dia = d2k + — J
P

d2b = σ\l H /

The compatibility conditions of (27) produce the equations

d\d2Inp — pq — k , d\d2lnq = pq — I,

/?32<z + 2ad2p + g3i& + 2bd\q = 0,

which can be viewed as the Gauss-Codazzi equations in Lie sphere geometry. Another (equiv-

alent) form of the equations (28) can be obtained by introducing V and W by the formulae

1
V =

which, upon the substitution in (28), imply

W = a + θflnp + - ( a 2 l n p ) 2 ,

(29)
- 2Wd2p - pd2W + d\q - 2Vdχq - qd\ V = 0,

d\W = 2qd2p + pd2q, d2V = 2pd\q+qd\p.

As follows from (20),

diagonally cyclidic surfaces correspond to the choice p = —q, which, upon the substi-

tution in (29), results in the stationary mVN equation

d\p - 2Vdip - pd\ V = d^p - 2Wd2p - pd2W ,

BιW = -(3/2)d2(p2), d2V = -(3/2)d{(p2)

(we recall that the modified Veselov-Novikov equation has been introduced in [5]). It can be

derived from [2, §94], that
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Lie minimal surfaces are characterized by the equations

pd2a + 2ad2p = 0, qdφ+ 2bd\q =0,

(in view of (28)5 any one of these equations implies another). In this case one can introduce

parameters λ, μ in the frame equations (27) without violating their consistency:

(30)

9i

U\
A
V
V
B

( ^
k
0
0
0

\QJ \λpa

(U\ (d2p/p
A
V
V
B
Q)

a
0

0

V-qb/μ

0
0
k
0
0
0

1
0
a
0
0
0

0
0
0
0
0

-λ/ 7

0
1

μp
0

-μpc
hq/ϊ

b
0

-d2p/p
0
0
0

0
0

i 0
7 1

0

0
0

qb/λ
0
/

0

0 \
0
0
0
1

(I ΛA
V
V
B

-d\q/qj \Qj

0
0
0
0
0
/

0 \ (U\
0

-qlλ
0
0
0 /

A
V
V
B

I)
This implies, that the Gauss-Codazzi equations of Lie-minimal surfaces constitute an inte-

grable system (in view of the obvious symmetry p -+ cp,q -> (l/c)q of the equations

governing Lie-minimal surfaces, only one spectral parameter is really essential).

Setting

a =
φ(Rι)

b =
ψ{R2)

we have three cases to distinguish:

Case I (General case). Both φ(Rι) and ψ{R2) are nonzero. It corresponds to the case

when all four sheets of the envelope of the family of Lie eyelids are distinct (see Section 5).

Then, we can always normalize φ(Rι), ψ(R2) to ± 1 by means of the transformations (19).

Let us assume, for instance, that φ(Rι) = ψ(R2) = 1. With this normalization the equations

(28) assume the form

3l32In/? = pq -k, d\d2\nq = pq - I,

(31)

Case II (Degenerate case). Here φ = 0, and hence a = 0, while τ/τ is nonzero and may

be normalized to ± 1 . Assuming ψ = 1 (this corresponds to the case where four sheets of the

envelope coincide in pairs) and inserting this ansatz in (28) we obtain

, s(Rι)
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Hence, if s(Rι) is nonzero, it may be reduced to —1 by means of (19) so that the resulting

equations take the form

(32) dχd2\np = pq + -, d{d2\nq = pq - I, dχ(ql) + 2 ^ f = 0.
P q2

Case III. In this case, both φ and ψ are zero and hence a = b = 0, so that

k s(Rι) ^

P ' q

(geometrically, all four sheets of the envelope coincide). Once again, the analysis falls into

three subcases depending on whether s, t are zero or not. In the generic situation s Φ 0, t φ 0,

both s and t may be normalized to — 1 and the resulting equations assume the form

(33) dιd2lnp = pq + -, dιd2lnq = pq + - .
p q

The same system has been presented in [28] as a reduction of the two-dimensional Toda

lattice.

REMARK. The specialization p = q reduces (33) to the Tzitzeica equation

d\d2lnp = p2 + — ,
P

which governs affine spheres in affine differential geometry [40]. It is quite surprising that the

same equation has a precise geometric meaning in Lie sphere geometry as well: according

to our discussion, it describes surfaces which are simultaneously diagonally cyclidic and Lie-

minimal.

6. Invariants of multidimensional hypersurfaces. In this section we announce sev-

eral results on Lie sphere geometry on multidimensional hypersurfaces, postponing the de-

tailed proofs to a separate publication.

Let Mn be a hypersurface with principal curvatures kι and principal covectors ωι, so that

the ϊ-th principal direction of Mn is defined by the equations ωj = 0, j φ i. It should be

pointed out that a generic hypersurface of dimension > 3 does not possess parametrization

Rι by the lines of curvature. This is in contrast with the 2-dimensional case where such

parametrization is always possible. Differentiating covectors ωι and the principal curvatures

kι we arrive at the structure equations

(34) doJ = c)kω
j A ωk , dkl = k)ωj .

Let also

ds2 =

be the first fundamental form of a hypersurface Mn.
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THEOREM 2. A generic hypersurface Mn is defined by the quadratic form

and the conformal class of the cubic form

uniquely up to Lie sphere equivalence.

By being generic it is sufficient to understand a hypersurface with k\ Φ 0. This genericity

assumption is essential since, for instance, there do exist examples of Dupin hypersurfaces

(that is, hypersurfaces with k\ = 0) which are not Lie-equivalent. Theorem 2 is an analog of

the corresponding theorem in projective differential geometry stating that a hypersurface of

the projective space Pn of dimension n > 4 is uniquely determined by the conformal classes

of its second fundamental form and the Darboux cubic form (see [1] for the exact statements

and further references).

REMARK 1. In the case k\ φ 0, the cubic form (5) encodes all the information about

the lines of curvature of a hypersurface Mn. Indeed, the principal directions are uniquely

defined as those directions where the cubic form (5) reduces to the sum of pure cubes (without

mixed terms). Moreover, principal directions are the zero directions of quadratic form (4).

However, this last condition does not fix them uniquely as in the 2-dimensional situation.

REMARK 2. For n = 3 the invariant quadratic form (4) gives rise to the Lie-invariant

functional

( 3 5 )

the extremals of which should be called minimal hypersurfaces in Lie sphere geometry. It

does not look like that this functional has been investigated so far.

REMARK 3. In principle, for n > 3 there exist additional Lie sphere invariants besides

those mentioned in Theorem 2, namely:

1. The cross-ratios

(36)

of any four principal curvatures.

2. The differentials

(kn -kJ){kι -kι)

( 3 7 )
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For instance, in the case n = 3 we have three invariant differentials

•nl_ k{(k2-k3) ! ^ 2 _ ffifc3

" ( J t 1 J t 2 ) ( J f c > * 3 ) ω ' ~ ( * 2

3 _ fcfo-*) 3
~(*3-Jfcl)(* 3 -* 2 ) '

giving rise to the invariant quadratic form

whose volume functional

ΩιΩ2Ω3ill-
coincides with (35).

3. Conformal class of the quadratic form

(
\ 2/(π-2) / \2/(π-2)

Y\(kl - kl) J (ω1)2 + .'. + 9nn( Π ( * Π " *') ) ^ " ) 2

lφ\ I \lφn I
Lie-invariant class of hypersurfaces with conformally flat quadratic form (38) deserves a spe-

cial investigation. Note that (38) is an object from the second differential neighbourhood of

the surface Mn.

4. Differential dΩ of the 1-form

In the generic case k\ φ 0, the objects (36), (37), (38) and (39) can be expressed through

the forms (4) and (5). However, they are important in the nongeneric situations, when some

(or all) of k\ vanish so that (4) and (5) become identically zero. In particular, the cross-ratios

of principal curvatures play an essential role in the study of Dupin hypersurfaces [8], [29].

In this respect it seems interesting to understand the role of the conformal class (38) and the

2-form dΩ in the modern Lie-geometric approach to Dupin hypersurfaces.

For hypersurfaces with nonholonomic net of curvature lines Theorem 2 leads to a nice

geometric corollary, which we will discuss in the simplest nontrivial 3-dimensional case. Let

us consider the structure equations (34) of a 3-dimensional hypersurface M 3 . There are es-

sentially two possibilities to distinguish:

1. Holonomic case: all three coefficients c\v c\v c\2 are zero. Such hypersurfaces

possess parametrization by the coordinates of curvature lines.

2. Nonholonomic case: all three coefficients c\v c\v c\2 are nonzero.

It immediately follows from the Gauss-Codazzi equations, that for n = 3 intermediate

cases are forbidden. In the nonholonomic case we can normalize covectors ωι, ω2, ω3 in such

a way that the structure equations assume the form

dωι = aωι A ω2 + bωι A a? + ω2 A a? ,
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(40) dω2 = pω2 A ωι + qω2 A ω3 + a? A ωι ,

dω3 = rω3 A ωι + sω3 Aω2 + ωλ Aω2.

This normalization fixes ωι uniquely. As follows from the results of [15], in the 3-dimensional

nonholonomic situation the Gauss-Codazzi equations completely determine the quadratic

form (4) and the cubic form (5) through the coefficients a, b, p, q, r, s in the structure equa-

tions (40). Hence we can formulate the following result.

THEOREM 3. A nonholonomic ^-dimensional hypersurface M3 is defined by its struc-

ture equations (40) uniquely up to Lie sphere equivalence.

We can reformulate this result as follows: two 3-dimensional nonholonomic hypersur-

faces are Lie-equivalent if and only if there exists a point correspondence between them,

mapping the lines of curvature of one of them onto the lines of curvature of the other. Hence

3-dimensional nonholonomic hypersurface is uniquely determined by geometry of its curva-

ture lines.

This theorem should remain valid for multidimensional hypersurfaces if we generalize

the notion of being nonholonomic in a proper way (e.g., cι

 k φ 0 for all i φ j φ k, which

probably can be weakend).

7. Systems of hydrodynamic type. Reciprocal transformations and reciprocal in-

variants. In this section we consider 2-component systems of hydrodynamic type

(41) u\ = v)(u)uJ

x , i , j = 1 , 2 ,

which naturally arise in polytropic gas dynamics, chromatography, plasticity, etc. and describe

wide variety of models of continuous media. The main advantage of the 2-component case

is the existence of the so-called Riemann invariants: coordinates, where the equations (41)

assume the diagonal form

(42) R} = λ1 (R)Rι

x , R2 = λ2(R)Rl,

considerably simplifying their investigation. And system (42) possesses infinitely many con-

servation laws

(43) h(R)dx + g(R)dt

with the densities h(R) and the fluxes g(R) governed by the equations

(44) dig = λιdih, ι = l , 2 ,

di = d/dRι , which are completely equivalent to the condition ht = gx, manifesting the

closedness of the 1-form (43). Cross-differentiaiton of (44) results in the second-order equa-

tion

(45) d\d2h = —2 γd\h H—j 2^2^

for the conserved densities of system (42). Thus, conservation laws of the system (42) depend

on two arbitrary functions of one variable. Let us choose two particular conservation laws
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B(R)dx + A(R)dt, N(R)dx + M(R)dt and introduce new independent variables X, T by the

formulae

(46) dX = Bdx + Adt, dT = Ndx + Mdt,

which are correct since the right hand sides are closed. Changing from JC, t to X, T in (42),

we arrive at the transformed system

(47) Rι

τ = Λι(R)Rι

x , R\ = Λ2(R)R2

X ,

where the new characteristic velocities A1 are given by the formulae

REMARK. In principle one can apply the transformation (46) directly to the system

(41) without rewriting it in Riemannian invariants. In this case the transformed equations

assume the form

u\ = V){u)uj

χ

with the new matrix V given by

V = (Bv - AE)(ME - NvΓ1, E = id.

Transformations of the type (46) are known as reciprocal and have been extensively

investigated in [32], [33] (see also [36] and [10]-[12] for further discussion). Following [10],

[11] we introduce the reciprocal invariants:

the symmetric 2-form

and the differential

(50) dΩ

of the 1-form

o (dιd2λ2 i 9 l λ > Yjgi i (did2λl

(Ω itself is not reciprocally invariant). Note that both objects (49) and (50) do not change

under the reparametrization of Riemannian invariants Rι -> φι(Rι), R2 -• φ2(R2).

REMARK. In order to check the invariance of (49) and (50) under arbitrary reciprocal

transformations it is sufficient to check their invariance under the following elementary ones:

dX = Bdx + Adt, dT = dt,

which change only x and preserve t (under this transformation λι goes to A[ = λ' B — A) and

dX = dt, dT = dx,
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which transforms λι into A1 = l/λι. The invariance of (49) and (50) under these elementary

transformations can be checked by direct calculation. Since any reciprocal transformation is

a composite of elementary ones, we arrive at the required invariance.

It is quite remarkable that the invariants (49) and (50) form a complete set in the follow-

ing sense: if the invariants of one system can be mapped onto the invariants of the other one

by an appropriate change of coordinates Rι, then both systems are reciprocally related and the

corresponding reciprocal transformation (46) can be constructed effectively (see [10], [11] for

the discussion).

8. Hamiltonian systems. The system (41) is called Hamiltonian if it can be repre-

sented in the form

U t = ε ~dx

with the Hamiltonian operator ειδιJd/dx and the Hamiltonian H = J h(u)dx. In this case

the matrix vι is just the Hessian of the density h (for definiteness, we choose ει = 1), so that

the system (41) assumes the form

/in h\2

Here hij means d2h/duιduK For the systems (42) in Riemannian invariants a necessary and

sufficient condition for the existence of the Hamiltonian representation (52) is given by the

following:

LEMMA [39]. The system (42) is Hamiltonian if and only if there exists aflat diagonal

metric ds2 = gu(dR1)2 + guidR2)2 such that

3 Ί 1 ίi l 2

(53) 32 In y ^ T = χ2 λχ ' 91 l n y/922 = χ l λ 2

Introducing the Lame coefficients H\ = y/gι {, H2 = y/g22
 a n c * ^ e Γ 0 t a t i ° n coefficients

2> βi\ by the formulae

(54)

we can rewrite the flatness condition of the metric ds2 in a simple form

(55)

Coordinates w1, u2 in (52) are just flat coordinates of the metric ds2, where it assumes the

standard Euclidean form (du1)2 + (du2)2.

REMARK. One can easily check that the quantities H\ = λιH\, H2 = λ2H2 also

satisfy (54). Thus, the characteristic velocities of any Hamiltonian system are the ratios of

two different solutions of the Dirac equation (54).
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Under reciprocal transformations (46) the metric coefficients gu transform according to

the formulae

(56) gu —> gu « , i = 1, 2
(BM — AN)2

(see [36], [13]), so that the transformed metric coefficients and the transformed characteristic

velocities A1 satisfy the same equations (53). It is important to emphasize that reciprocal

transformations do not preserve in general the flatness condition of the metric ds2 and hence

destroy the Hamiltonian structure. However, for any Hamiltonian system there always exist

sufficiently many canonical reciprocal transformations preserving the flatness condition [12],

[13].
Let us introduce the cubic form

(57) dιλιgn(dR1)3 + d2λ
2g22(dR2)3 .

Using the formulae (48) and (56) one can immediately check that this cubic form is confor-

mally invariant under reciprocal trnasformations: it acquires the multiple l/(BM — AN), so

that the zero curves of (57) are reciprocally invariant. Hence, with any Hamiltonian system we

can associate, besides the invariants (49) and (50), the reciprocally invariant 3-web of curves

formed by coordinate lines Rι = const, R2 = const and the zero curves of the cubic form

(57) which are defined by the equation

(dιλιgn)
ιβdRι + {d2λ

2g22γ'3dR2 = 0.

A calculation similar to that in Section 4 shows that the invariant (50) is just the curvature

form of this 3-web.

REMARK. It will be interesting to obtain explicit formulae for the reciprocal invariants

(49), (50) and (57) in the flat coordinates uι in terms of the Hamiltonian density h.

As we already know, the objects similar to (49), (50) and (57) arise in Lie sphere ge-

ometry. To clarify this point we recall the construction of [14], [12] relating Hamiltonian

systems and surfaces in the Euclidean space. For definiteness, we restrict ourselves to the

2-component case.

9. Hamiltonian systems and surfaces in E3. Let us consider a 2-component Hamil-

tonian system (52)

and apply the reciprocal transformation

dX = Bdx + Adt, dT = dt,

where

B = , A = h\u + h2u — h
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(this is indeed an integral of (52)). The transformed system assumes the form

(uι\ _(huB-A hχiB \(uι

To reveal geometric meaning of system (58) we introduce a surface M2 in the Euclidean space

E3 (x', x2, JC3) with the radius-vector

/xι\ (hx-uλA/B\
(59) r = I JC2 I = I A2 - u2A/B .

VV V -A/B )
As one can verify by straightforward calculation, the unit normal of the surface M2 is given

by
/ uι/B

n = I u2/B I

Let us define the matrix w', by the formula

dr

Geometrically, wι is just the inverse of the Weingarten operator (shape operator) of the surface

M2. Using the formulae for r and n we arrive at the following expression for the matrix wι :

(hnB-A hnB \
\ hB hB - A) '
(
\ hX2B

which coincides with that in (58). Hence the matrix of the system (58) is just the inverse of

the Weingarten operator of the associated surface M2. The characteristic velocities wι of the

system (58) are related to that of the system (52) by the formula

(60) wi=λiB-A,

and have geometric meaning of the radii of principal curvature of the surface M2. Moreover,

the Riemannian invariants of both systems (52) and (58) coincide and play the role of pa-

rameters of the lines of curvature. The equations (58) can be equivalently represented in the

conservative from

nτ =rx.

Some further properties of the correspondense (59) (in the general n-component case)

have been discussed in [14], [12], in particular:

— commuting Hamiltonian systems correspond to surfaces with the same spherical im-

age of the lines of curvature;

— multi-Hamiltonian systems correspond to surfaces, possessing nontrivial deforma-

tions preserving the Weingarten operator;

— canonical reciprocal transformations, preserving the Hamiltonian structure, corre-

spond to Lie sphere transformations of the associated surfaces;
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— the flat metric ds2 defining Hamiltonian structure (see the lemma in Section 8) corre-

sponds to the third fundamental form of the associated surface.

Since the correspondence between the systems (52) and (58) is reciprocal, the invariants

(49), (50) and (57) coincide respectively with the symmetric 2-form

(Wl - W2

the skew-symmetric 2-form dΩ, where

and the conformal class of the cubic form

d\wxGn(dRxγ + d2w
2G22(dR2)3.

Here Rx, R2 are the parameters of curvature lines, wx, w2 are the radii of principal curvature

and Gii, G22 are the components of the third fundamental form of the associated surface M2.

Since these objects do not change their form if we rewrite them in terms of principal curva-

tures kι and the components of the metric </,-,•, they concide with the Lie sphere invariants of

the surface M2. This provides remarkable differential-geometric interpretation of reciprocal

invariants of hydrodynamic type systems.

10. Integrable evolutions of surfaces in Lie sphere geometry. Integrable evolu-

tions of surfaces govrned by (2 + 1)-dimensional integrable equations have been introduced

in [23]. The most interesting examples include evolution of surfaces in conformal geometry

based on the generalized Weierstrass representation and evolution in affine geometry based

on the Lelieuvre representation of surfaces in 3-space [23]-[25], [37]-[38]. The main idea is

that linear systems used to construct a surface (the 2-dimensional Dirac operator in the case

of Weierstrass representation and the Moutard equation in the Lelieuvre case) are viewed as

the Lax operators of the intergrable (2 + 1)-dimensional hierarchies so that the correspond-

ing time evolutions act on the induced surfaces. Here we sketch the construction of the third

integrable evolution which is relevant to Lie sphere geometry (see also [19]).

As follows from Section 8, any 2-component Hamiltonian system

R) = λι(R)Rι

x , R2 = λ2(R)R2

can be parametrized by a pair of solutions (H\, H2) and (AΓi, H2) of the Dirac equation

(61) 3i//2 = -d2φHι , d2Hχ = dχφH2 ,

where βi2 = —d2φ, β2\ — d\φ as a consequence of d\β\2 + d2β2\ = 0. Namely, one can put

Hi' H2
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Let us define the functions w1, u2 by the formulae

du1 =cosφ H\dRι + sin<p H2dR2 ,

du2 = - sin φ HχdRι + cos φ H2dR2 ,

which are compatible in view of (61). As follows from the identity

(du1)2 + (du2)2 = Hf(dR1)2 + H%(dR2)2 ,

the variables w1, U2 can be interpreted as the flat coordinates of the metric H2(dRx)2 +

H2(dR2)2. Similarly, w1, ύ2 defined by

dύι = cosφH\dR ι

? 2 h Z / / / ? 1 + cos φH2dR2

are the flat coordinates of the metric Hf(dR1)2 + H2(dR2)2. The variables u, ύ satisfy the

identities

and hence define conservative representation of the system (42):

1 1 2 2
ut = »x » M ί = M *

Moreover, since dux f\duγ + du2 A du2 = 0, we can introduce the function h by the formula

(64) dh = uldux +ύ2du2

(thus, M1 = h\, u2 = /12) so that the system under study assumes the Hamiltonian form

? , u2 = (h2)x.

With this Hamiltonian system we now associate a surface following the construction of Sec-

tion 9. Thus, any two solutions (H\, H2) and (H\, H2) of the Dirac equation (61) define a

surface in E3 via the formulae (62), (63), (64) and (59). According to Section 9, the Lie-

invariant functional of the corresponding surface coincides with

In view of the identities

1 9 1 9 / 9— ϊ•αl _ λ 2 ϊ 2 I λ 1

-3i(ln ff2)92(ln ίίi)^/?1 ΛdR2-d

λ1 - λ2 / '
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we conclude that for compact surfaces without umbilic points (for instance, immersed tori)

the Lie sphere functional coincides with

(65) ίί dιφd2φdRι AdR2.

The functional (65) can be interpreted as the first nontrivial conserved quantity of the mVN

hierarchy, associated with the Dirac operator (61). Indeed, imposing on H\, H2 the ί-evolution

dtHi = 33HX - 3(dxd2φ)d2H2 + 3p(dxφ)H2 ,

dtH2 = 33H2 + 3d2(pH2) - 3(d2φ)(d2φ)H2 ,

we arrive via the compatibility conditions of (66) with (61) at the following equation for φ:

(67) dtφ = d3φ - (d2φ)3 + 3pd2φ , dip = d2(dxφd2φ).

Similarly, the τ evolution

dτHi = d\Hχ + 3dx{qHx) - 3{d\φ){dxψ)Hλ ,
(60) o

dτH2 = d\H2 + 3(3id2φ)dχHx - 3q(d2φ)Hx

produces via the compatibility conditions with (61) the following equation:

(69) dτφ = d\ψ - {dxφγ + 3qdxφ , d2q = 81(81^32^).

Both these t- and τ-evolutions are compatible. Their linear combination

- (dxφ)3 - (32φ)3 + 3qdxφ + 3pd2φ ,

d = d2(dxφd2φ), d2q = dX(dxφd2φ)

is known as the (2 + 1)-dimensional potential mKdV equation, or the mVN equation [5].

Evolution of surfaces in E3 governed by (70) has been discussed also in [35].

All these evolutions preserve the integral

dxφd2φdRldR2 ,

which is the first conservation law in the mVN hierarchy.

The evolutions (66) and (68) induce geometric evolutions of surfaces, preserving the Lie-

invariant functional (3). The stationary points of these evolutions can be shown to coincide

with the diagonally cyclidic surfaces. We hope to report the details elsewhere.

11. Reciprocal transformations and reciprocal invariants of n-component systems.

Let us consider an n-component system (6) of hydrodynamic type

u\ = vlj(u)uJ

x , /, j = 1 , . . . , n

with the characteristic velocities λι and the corresponding left eigenvectors I1 = (/'.) which

satisfy the formulae
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Introducing the 1 -forms ωι = lι.du* (note that Γ andα/ are defined up to rescailing V -> pι\\

ωι -> pιωι\ we can rewrite the equations (6) in the equivalent exterior form

(71) cJ A (dx + λιdt) = 0, i = 1,... , n .

Differentiation of ωι and λι results in the structure equations of system (6):

dωι = c)^j A ωk , dλι = λijcoj .

Systems in Riemannian invariants are specified by the conditions cι

 k = 0 for any triple of

indices i / j φ k. Indeed, in this case the forms ωι satisfy the equations dωι Λω' = 0

for any i — 1,... , n and hence can be normalized so as to become just ωι = dRι. In the

coordinates Rι the equations (71) assume the familiar Riemannian invariant form

(72) R^λ^R)^, ί = l , . . . , n .

The exterior representation (71) is a natural analog of representation (72) which is applicable

in the nondiagonalizable case as well. We emphasize that for n > 3 Riemannian invariants do

not exist in general.

Applying to (6) the reciprocal transformation

dX = Bdx + Adt, dT = Ndx + Mdt,

we arrive at the transformed equations

with the new matrix V given by

V = (Bv - AE)(ME - NυΓ1, E = id

or, in the exterior form,

ωι AidX + AdT) = 0 ,

where

M-λιN

Thus, the forms ωι as well as the structure equations do not change, while λ1 transform as in

the 2-component case—see formula (48).

REMARK. In the n-component case the equations (43) for the densities and fluxes of

conservation laws ftdx + gdt assume the form

gi ==
 A ft/, i =z 1,... , ΪI ,

where gι and ft/ are defined by the expansions

dg = gtω
ι , dh = ft/a/ .

In [10], [11] we introduced the following reciprocally invariant objects:
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1. The symmetric 2-form

2. The skew-symmetric 2-form

(74) dΩ,

where

(ί2 itself is not reciprocally invariant). Note that both objects (73) and (74) do not change

if we reparametrize the 1-forms in the structure equations: ωι —> pιωι. The objects (73)

and (74) are natural analogs of the corresponding invariants (49) and (50) in the 2-component

case. However, for n > 3 the form Ω depends only on the first derivatives of the characteristic

velocities λι.

In principle, for n > 3 there exist additional reciprocal invariants, namely, the invariant

differentials

as well as the cross-ratios
* k -λι)

(λk -VXλ1 -λι)
of any four characteristic velocities.

However, as follows from [10], [11], the structure equations and the invariants (73), (74)

in fact define generic system of hydrodynamic type uniquely up to reciprocal equivalence (by

being generic it is sufficient to understand genuinely nonlinear system, that is, a system with

λj φθ for any ί).

12. Appendix. Surfaces in projective differential geometry. Based on [41] (see

also [17]), let us briefly recall the standard way of defining surfaces M2 in the projective

space P3 in terms of solutions of a linear system

rXχ=βry + -(y-βy)r,
(76) 2

*yy = yrx Λ--(W - γx)r,

where β, γ, V, W are functions of x and v. If we cross-differentiate (76) and assume r, r x , ry,

rxy to be independent, we arrive at the compatibility conditions [26, p. 120]

( 7 7 ) βyyy ~ 2βyW - βWy = γxxx - 2γxV - γVx ,

Wx = 2γβy + βγy , Vy = 2βγx + γβ
x
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For any fixed β, γ, V, W satisfying (77), the linear system (76) is compatible and possesses a

solution r = (r°, rι,r2, r3), where rι (x, v) are linearly independent. They can be regarded as

homogeneous coordinatres of a surface in the projective space P3. For our purposes, one may

think of M2 as a surface in a three-dimensional Euclidean space with position vector R =

(rι/r°, r2/r°, r3/r°). If we choose any other solution f = (f°, f1, r 2, r 3 ) of the same sys-

tem (76), then the corresponding surface M2 with position vector R = (rι/r°, r2/?0, r 3/r°)

constitutes a projective transform of M2 so that any fixed solution β, γ, V, W of the equa-

tions (77) defines a surface M2 uniquely up to projective equivalence. Moreover, a simple

calculation yields

Rxx=βRy+aRx,

Ryy = YRX + bRy

(a = —Ir^/r0, b = —2r^/r°), which implies that JC, y are asymptotic coordinates of the sur-

face M2. In what follows, we assume that our surfaces are hyperbolic and the corresponding

asymptotic coordinates JC, y are real. The elliptic case is dealt with in an analogous manner by

regarding JC, y as complex conjugates. Since the equations (77) specify a surface uniquely up

to projective equivalence, they can be viewed as the 'Gauss-CodazzΓ equations in projective

geometry.

Even though the coefficients β, γ, V, W define a surface M2 uniquely up to projective

equivalence via (76), it is not entirely correct to regard β, γ, V, W as projective invariants.

Indeed, the asymptotic coordinates JC, y are only defined up to an arbitrary reparametrization

of the form

(78) ** = / ( * ) , y* = g(y),

which induces a scaling of the surface vector according to

(79) r* = '

Thus by [6, p. 1], the form of the equations (76) is preserved by the above transformation with

the new coefficients β*9 γ*, V*, W* given by

β* = β<//(f)2, V*(/')2 = V + S(f),

K* = yf/isf)2 w*((/)2 = w + S(g),

where 5( ) is the usual Schwarzian derivative, that is,

2

The transformation formulae (80) imply that the symmetric 2-form

βγdxdy

and the conformal class of the cubic form

βdx3 + γdy3
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are absolute protective invariants. They are known as the projective metric and the Darboux

cubic form, respectively, and play an important role in projective differential geometry, since,

in particular, they define a 'generic' surface uniquely up to projective equivalence.

One can also define projectively invariant differentials

ωι = (yβ2)ι'3dx, ω2 = (βγ2)ι'3dy,

so that βγdxdy = ωιω2. With the help of ωι, ω2 one can define projectively invariant

differentiation. However, we will not take advantage of it in what follows.

Using (78)-(80), one can easily verify that the four points

r, n =rx - - — i
(81)

2β

are defined in an invariant way, that is, under the transformation formulae (78)-(89) they ac-

quire a nonzero multiple which does not change them as points in the projective space P 3 .

These points form the vertices of the so-called Wilczynski moving tetrahedral [6], Since the

lines passing through r, ri and r, Γ2 are tangential to the x- and y-asymptotic curves, respec-

tively, the three points r, r i, Γ2 span the tangent plane of the surface M2 at r. The line through

ri, Γ2 lying in the tangent plane is known as the directrix of Wilczynski of the second kind.

The line through r, η is transversal to M2 and is known as the directrix of Wilczynski of the

first kind. It plays the role of a projective 'normal'. We stress that in projective differential ge-

ometry there exists no unique choice of an invariant normal. This is in contrast with Euclidean

and affine geometries in which the normal is canonically defined. Some of the best-known

and most-investigated normals are those of Wilczynski, Fubini, Green, Darboux, Bompiani

and Sullivan [6, p. 35] with the directrix of Wilczynski being the most commonly used. It

is known that the directrix of Wilczynski intersects the tangent Lie quadric of the surface

M2 at exactly two points r and η so that both points lie on the Lie quadric and are canoni-

cally defined. The Wilczynski tetrahedral proves to be the most convenient tool in projective

differential geometry.

Using (76) and (81), we easily derive for r, ri, Γ2, η the linear equations [20, p. 42]

(82)

-βyββ
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where we introduced the notation

k = βγ-Qaβ)xy, I = βγ - (\nγ)xy ,

(83) a = W-(\nβ)yy-
X-{\nβ)2

y, b = V - Qay)xx - ^(lnγ)2

x .

Under the transformations (78)-(80) these quantities transform as follows

(84) k*=k/f'g', r=l/f'sf, a*=a/(g')2, b* = b/(f')2,

and give rise to the protectively invariant quadratic form

ady2 + bdx2

and the quartic form

aβ2dx4 + bγ2dy4.

The compatibility conditions of the equations (82) imply

Qnβ)xy =βy-k, Qny)xy = βγ - /,

(85) aχ=ky + ίhίk, by=ιχ+y^ι^
β y

βay + 2aβy = γbx + 2bγx ,

which is just the equivalent form of the projective Gauss-Codazzi equations (77).

Note that the Gauss-Codazzi equations (28) and (85) (as well as (29) and (77)) are related

by a complex change of variables

p = ίβ, q = -ίγ,

which is just the analytic manifestation of Lie's famous line-sphere correspondence.

Different types of surfaces can be defined by imposing additional constraints on β, γ,

V, W (respectively, β, γ, k, /, a, b) so that, in a sense, projective differential geometry is the

theory of (integrable) reductions of the underdetermined system (77) (respectively, (85)).

EXAMPLE 1. Isothermally asymptotic surfaces are specified by the condition β = γ,

in which case the equations (77) assume the form of the stationary modified Veselov-Novikov

(mVN) equation

βyyy ~ 2βyW ~ βWy = βXXX - 2βχV - βVχ ,

WX = ̂ (β2)y, Vy = ϊ(β2)x.

This fact has been pointed out in [16]. Isothermally asymptotic surfaces have a number of

important geometric properties, in particular:

— The 3-web, formed by asymptotic curves and Darboux's curves, is hexagonal. (Dar-

boux's curves are the zero curves of the Darboux cubic form βdx3 + γdy3).

— Isothermally asymptotic surfaces arise as the focal surfaces of special ^-congruences,

preserving Darboux's curves.

Examples of isothermally asymptotic surfaces include arbitrary quadrics and cubics,

quartics of Kummer, projective transforms of affine spheres and rotation surfaces. We re-

fer to [26], [6], [20], [21], [18] for further discussion.
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EXAMPLE 2. Projectively minimal surfaces are the extremals of the projective area

functional

(86) jj βγdxdy.

The Euler-Lagrange equations for the functional (86) adopt the form

βay + 2aβy = 0, γbx+ 2bγx = 0,

and may be obtained by equating to zero both sides of the equation (85)s. It is remarkable

that projective Gauss-Codazzi equations for projectively minimal surfaces identically coin-

cide with those governing Lie-minimal surfaces in Lie sphere geometry (see Section 5). In

particular, they possess the same Lax representation (30) with the spectral parameters λ, μ.

Evaluating (30) at λ = 1, μ = 1, we recover the Lie sphere frame for Lie-minimal surfaces.

Evaluating (30) a tλ = — 1, μ = 1, we recover projective Pliicker frame for projectively

minimal surfaces (construction of the projective Plucker frame is described below: see the

formula (91)). Thus, the inverse scattering transform allows simultaneous treatment of both

the Lie-minimal and projectively minimal surfaces.

Setting

φ(χ) , Ψ(y)

we have three cases to distinguish:

Case I (General case). Both φ(x) and ψ{y) are nonzero. In this case, we can always

normalize φ(x), ψ(y) to dbl by means of the transformations (80). Let us assume, for in-

stance, that φ(x) = ψ(y) = 1. With this normalization the equations (85) assume the form

(\nβ)xy = βγ-k, (lnγ)xy = βγ - I,

(87)

( j β * ) y + 2 p = 0 , (γl)x+2^=0.

Case II (Surfaces of Godeaux-Rozet [6, p. 318]). In this case, φ = 0, and hence a = 0,

while ψ is nonzero and may be normalized to ±1. Here we assume that ψ = 1. On inserting

this ansatz in (85), we obtain

Hence, if s(x) is nonzero, it may be reduced to —1 by means of (80) so that the resulting

equations take the form

(88) Qnβ)xy = βγ + -, ( I n γ ) x y = βγ - I, v, ,,Λ , _ 2

Cαje III (Surfaces of Demoulin). In this case, both φ and ψ are zero and hence a =

b — 0, so that

/ϊ ' Y "
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Once again, the analysis falls into three subcases depending on whether s, t are zero or not.

In the generic situations s Φ 0, t φ 0 both s and t may be normalized to — 1 and the resulting

equaitons assume the form

(89) (\nβ)xy = βγ + \ , {\κγ)xy = βγ + -
p y

In this form, the equations governing Demoulin surfaces have been set down in [20, p. 51].

The same system has been presented in [28] as a reduction of the two-dimensional Toda

lattice.

In [9] Demoulin established in a purely geometric manner the existence of Backlund

transformations for Godeaux-Rozet and Demoulin surfaces and proved the corresponding per-

mutability theorems. Apparently, Demoulin did not formulate his results in terms of analytic

expressions. In [17], a Toda lattice connection is used to derive explicitly a Backlund trans-

formation for Demoulin surfaces.

REMARK. The specialization β = γ reduces (89) to the Tzitzeica equation

(\nβ)xy = β2 + ]-,
P

which governs affine spheres in affine differential geometry [40]. Geometrically this means

that affine spheres lie in the intersection of two different integrable classes of projective sur-

faces, namely isothermally asymptotic and projectively minimal surfaces.

Projectively minimal, Godeaux-Rozet and Demoulin surfaces also arise in the theory of

envelopes of Lie quadrics associated with the surface M 2 . For brevity, we only recall the

necessary definitions. The details can be found in [6], [20], [26], etc. Thus, let us consider

a point p° on the surface M2 and the x -asymptotic line passing through p°. Let us take

three additional points pι, ί = 1, 2, 3 on this asymptotic line close to /?° and draw three

v-asymptotic lines γι passing through pι. The three straight lines which are tangential to

γι and pass through the points pι uniquely define a quadric Q containing them as rectilinear

generators. As pι tend to /?°, the quadric Q tends to a limiting quadric, the so-called Lie

quadric of the surface M2 at the point p°. Even though this construction depends on the

initial choice of either the x- or the y-asymptotic line through p°, the resulting quadric Q is

independent of that choice. Thus, we arrive at a two-parameter family of quadrics associated

with the surface M 2 . In terms of the Wilczynski tetrahedral, the parametric equation for Q is

of the form [6, p. 311]

Q = η + μr\ + vr2 + μvr,

where μ, v are parameters.

The case of projectively minimal surfaces is characterized by the additional requirement

that the asymptotic lines on all these sheets correspond to the asymptotic lines of the surface

M2 itself. Moreover, for projectively minimal surface all four sheets of the envelope will be

projectively minimal as well. In a sense, it is natural to call the family of Lie quadrics with

this property a W-congruence of quadrics.
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Now, in a neighbourhood of a generic point p° on M2, the envelopes of the family

of Lie quadrics consist of the surface M2 itself and four (in general) distinct sheets. Sur-

faces of Godeaux-Rozet are characterized by the degenerate case of two distinct sheets, while

Demoulin surfaces are present if all four sheets coincide. Surfaces of Godeaux-Rozet and

Demoulin have been investigated extensively in [9], [22], [34], see also [17].

The similarity between projective and Lie sphere geometries becomes ever more trans-

parent if we rewrite the equations of motion of the Wilczynski tetrahedral (82) in the Plucker

coordinates.

For convenience of the reader we briefly recall this construction. Let us consider a line

/ in P3 passing through the points a and b with the homogeneous coordinates a = (a0 : a1 :

a2 : a3) and b = (b° : bι : b2 : b3). With the line / we associate a point a Λ b in the projective

space P5 with the homogeneous coordinates

a Λ b = (/?oi : P02 : P03 : P23 : P3\ - Pn),

where

The coordinates pij satisfy the well-known quadratic Plucker relation

(90) P01P23 + P02P31 + P03P12 = 0 .

Instead of a and b we may consider arbitrary linear combinations thereof without changing

a Λ b as a point in P5. Hence, we arrive at the well-defined Plucker correspondence /(a, b) -•

a Λ b between lines in P3 and points on the Plucker quadric in P5. If a, b, c are points in P3

and A: is a scalar, the following properties hold:

a Λ b = — b Λ a, a Λ a = 0, /c(a Λ b) = (/ca) Λ b = a Λ (/cb),

(a + c)Λb = a Λ b + c Λ b , (a Λ b)' = a' Λ b + a Λ b ' .

The Plucker correspondence plays an important role in the projective differential geom-

etry of surfaces and often sheds some new light on those properties of surfaces which are not

'visible' in P3 but acquire a precise geometric meaning only in P5. Thus, let us consider a

surface M2 c P3 with the Wilczynski tetrahedral r, ri, Γ2, η satisfying the equations (82).

Since the two pairs of points r, ri and r, Γ2 generate two lines in P3 which are tangential to

the x- and y -asymptotic curves, respectively, the formulae

W = Γ Λ Γ i , V = ΓΛΓ2

define the images of these lines under the Plucker embedding. Hence, with any surface M2 c

P3 there are canonically associated two surfaces U(x,y) and V(x,y) in P5 lying on the

Plucker quadric (90). In view of the formulae

we conclude that the line in P5 passing through a pair of points (U, V) can also be generated

by the pair of points (U, Ux) (and hence is tangential to the x-coordinate line on the surface U)

or by a pair of points (V, V )̂ (and hence is tangential to the v-coordinate line on the surface
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V). Consequently, the surfaces U and V are two focal surfaces of the congruence of straight

lines (U, V) or, equivalently, V is the Laplace transform of U with respect to x and U is the

Laplace transform of V with respect to y. We emphasize that the x- and y-coordinate lines on

the surfaces U and V are not asymptotic but conjugate. Continuation of the Laplace sequence

in both directions, that is, taking the c-transform of V, the y-transform of U, etc., leads, in

the generic case, to an infinite Laplace sequence in P5 known as the Godeaux sequence of

a surface M2 [6, p. 344]. The surfaces of the Godeaux sequence carry important geometric

information about the surface M2 itself.

The case of a closed, that is, periodic Godeaux sequence is particularly interesting. It

turns out that the only surfaces M2 c P3 for which the Godeaux sequence is of period 6 (the

value 6 turns out to be the least possible) are the surfaces of Demoulin [6, p. 360]. This result

may be regarded as an equivalent geometric description of Demoulin surfaces.

Introducing

V = 2r2 Λ η , Q = 2ri Λ η ,

we arrive at the following equations for the Plucker coordinates:

A
V
V
B

(91)

(u\
A
V
V
B

/

=

V V

0
k
0
0
0

-βa

βy/β
a
0

Y
0

-γb

0
0
k
0
0
0

1
0
a
0
0
0

β
0

-βa

b
0

0
1

-βy/β
0
0
0

0
0
0
1
0
b

0
0

-γb
0

0

0 \
0
0
0
1

-YXIY)

u\
Λ
V
V
B

o\
0
Y
0
0
0

ίu\
Λ
V
V
B

The equations (91) are consistent with the following table of scalar products:

(W, V) = - 1 , ( A Λ) = U (V, fi) = 1, (β, B) = - 1 ,

all other scalar products being equal to zero. We emphasize that up to (essential) changes of

signs, the formulae (91) coincide with (27).

13. Concluding remarks. In our discussion of the Lie invariants of surfaces (recip-

rocal invariants of hydrodynamic type systems) the choice of coordinatres Rι plays a crucial

role. In the case of surfaces these are coordinates of the lines of curvature (Riemannian in-

variants in the case of hydrodynamic type systems). This choice is not accidental, since the

lines of curvature are preserved by the Lie sphere group, while Riemannian invariants are

preserved under reciprocal transformations. In fact, only in these special coordinates our in-

variants assume particularly symmetric and simple form. However, from the point of view
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of applications it is desirable to have a kind of invariant tensor formula, which will allow

computation of these objects in an arbitrary coordinate system, for instance, in conformal

parametrization in the case of surfaces or in the flat coordinates in the case of Hamiltonian

systems.
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