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Abstract. We develop a general theory of martingale transform operators with
operator-valued multiplying sequences. Applications are given to classical operators such as
Doob's maximal function and the square function. Some geometric properties of the underly-
ing Banach spaces are also considered.

Introduction. Let (ί2, T, P) be a probability space and {Tn}n>ι a nondecreasing se-

quence of sub-σ-fields of T such that T = VFn A martingale relative to {F^n^λ is

a sequence / = {fn}n>\ of integrable variables such that each /„ is ^-measurable and

E(fn+\ \Tn) = fn, in particular, fn = Σl=\ dk> where dk are the "increments" of the martin-

gale / , i.e., dk = fk - Λ-i

Given a uniformly bounded sequence of ^-predictable random variables v — {vn}n>\

(i.e., vn is Tn-\-measurable), the martingale given by (Tf)n = Σ/Li υkdk is called the

martingale transform of / by the multiplying sequence v.

Martingale transform operators were introduced by Burkholder in [8]. Two objects

were fundamental in this theory, namely "Doob's maximal function" defined by /*(ω) =

supn \fn(co)\ and the "square function" Sf = (Y^L\ \dk\2)1^2. Their boundedness and the

relation among them have been extensively studied, see [1], [8], [10], [14], [16], [19], [24].

The interplay between probability and harmonic analysis has been very successful, see

for example [10], [11], [2], [4], [3] and [5]. There exists a large amount of objects in both

fields that play a parallel role, namely "good λ" inequalities, maximal and square functions,

Hardy and BMO spaces, etc. The well-known Calderόn-Zygmund decomposition (see [12]),

in Harmonic Analysis, of an integrable function has, in Probability, a counterpart due to

Gundy, see [19].

In writing this paper we have been especially influenced by works of Benedek, Calderόn

and Panzone ([6]), Burkholder ([9]) and Rubio de Francia ([23]).

Our paper has two major aims. Firstly, we develop a general theory of martingale trans-

form operators with operator-valued multiplying sequences, and secondly (we think this is the

main contribution of this paper) we give several applications.

The first point is developed in Section 2, see Theorems 1 and 2. The philosophy be-

hind these theorems is that the knowledge of the boundedness of the martingale transform

operator in some fixed level, say, strong p with p > 1, weak (1, 1), or even a conver-

gence condition for martingales in L1, is sufficient to assure the boundedness at the rest
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of the levels. Some related results in this direction are in a work by Burkholder, see [9].

He studied the class of Banach spaces B for which there exists a real number cp such that

\\ε\d\ + + εndn\\Lp < cp\\d\ + + dn\\LP for all β-valued martingale difference se-
B B

quences (d\, βfe,...), all numbers ε\, £2, in {—1, 1}, and all n > 1. Burkholder called this

class "UMD" (unconditionality property for martingale differences). The technical proofs of

these general results are given in Section 4. We follow some ideas developed by Burkholder,

and also use a vector-valued version of Gundy's decomposition.

Our applications arise from considering Doob's maximal operator (Section 3.1) and the

square function (Section 3.2) essentially as martingale transform operators given, respectively,

by €°°-valued and ^2-valued multiplying sequences. In particular, this allows us to get all
known results about the square function as easy corollaries of the obvious L2 boundedness.
Particular relevance has an easy and straightforward proof of the equivalence, due to Davis
(see [14]), ||/*||Li ~ \\Sf\\Lι (see (5) and (9) in Section 3.2). Moreover, some new ^-valued

extensions are obtained, see Corollary 1. From the fact that the square function is essentially

a martingale transform operator, we obtain some new characterizations of Hubert spaces and

UMD Banach lattices in terms of the existence of the square function; see Theorems 4, 5, 6.

For example, we get the following results:

(1) A Banach space B is isomorphic to a Hubert space if and only if there exists a

constantc > 0 such that c~ι\\f*\\L\ < \\Sf\\Lι < c | | /* | | L i , where Sf stands for the square

function off i.e., Sf = (£,?=! ll*ll |)1 / 2-

(2) Let Xbe a Kδthe lattice with Fatou property. Then X is UMD if and only if for every

X-valued martingale f it holds that, defining Sxf = (Σ™=1 \dk\
2)λ/2,

| | / | | L i < oo =» Sxf e X a.e., and Sxf e Lι

x =>> / converges a.e.

The organization of the paper is as follows. Notation and known results are collected

in Section 1. Section 2 is devoted to a general setting of martingale transform operators

with operator valued multiplying sequences. We give in Section 3 several applications. The

technical proofs are collected in Section 4.

We would like to thank R. Gundy for many enlightening conversations and comments on

some topics discussed in the paper.

1. Preliminaries. Let (Ω, J7, P) be a probability space and {Tn }«>l a nondecreasing

sequence of sub-σ-fields of T such that T = VγTn. Given a Banach space B, by a ^-valued

martingale relative to [T^n^i we mean a sequence / = {fn)n>\ of 5-valued variables such

that fn is ^-measurable, E(\\fn | |#) < oo and E(fn+\ \Tn) = fn for every n > 1.

For any Banach space B and any ̂ -valued random variable / defined on (ί?, T, P), for

/?, 1 < p < oo, let

be its L^-norm, and in the case p = oo, set

=esssup | |/ | | 5
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The space LP

B is the space of functions with finite L^-norm. When the Banach space B in the

definitions above is the scalar field, the subindex B will be dropped.

For every martingale / = [fn}n>\ we shall denote by <4/, or simply dk, the "incre-

ments" of the martingale / , defined by dk = dkf = fk — Λ- i In particular, a β-martingale

relative to {^Fn}n>\ can be always expressed as fn = Σj[=i dk, where dk is ^-measurable,

||<4||Li is finite and E(dk+\ \Fk) = 0, k > 1. For a background on ^-valued martingales, see

[15].

Given a β-valued martingale / , we say that the martingale is LP

B-bounded, 1 < p < oo,

if Il/H// = s uPn H/rcllz/ i s finite Doob's maximal function of / is defined by /*(ω) =

supn \\Mω)\\B, f*(ω)suplskSn \\fk(ω)\\B

In what follows, C will denote an absolute constant. When C depends on some parame-

ter, it will appear as a subindex. In both cases, the constants denoted by the same expression

are not necessarily the same from one occurrence to another.

REMARK 1. For every Banach space B the sequence {|| fn || B }n> 1 is a real-valued sub-

martingale. Thus, we have, see [16],

λP(/;>λ) <c f

which implies λP(f* > λ) < C| |/ B | | L i and | | / B * | | t , < Cp || /„ || LP , for all p, 1 < p < c».
B B

REMARK 2. Given a β-valued martingale / such that / * e Lp, we can decompose

it in two martingales g and h such that fn = gn + hn for all n > 1, and with the following

properties:
n

(1) hn — y^αfc verifies
k=\ LP

(2) For gn = ΣΊ=\ βk> there exists an adapted, positive, increasing process {λn} such

that \\gn\\B < λn_i and | |λ*| |L, < (13 + 4p)\\f*\\LP.

This decomposition is due to Davis, see [14]. The proof of the decomposition for scalar-

valued martingales also holds in the vector-valued case, if we define

<*k =

βk =

REMARK 3 (Gundy's decomposition [19]). Let / = {fn}n>\ be a martingale bounded

in Lι

B and λ a strictly positive number. Then there exist martingales a, b and e such that

(1) fn=an+bn+ en for all n > 1.

(2) flπ = y | | / | | L
B B k>\

/. oo

/ T
jΩkΞ[

(3) bn = Tβk such that / T\\βk\\BdP < C\\f\\Lι .
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(4) en = ^2δk verifying sup
k=\ n>\ =\ B

<Cλ,and|M|Li <
B

2. Martingale transforms.

2.1. Main theorems and some observations.

DEFINITION 1 (Martingale transform operator). Let B\ and Z?2 be two Banach spaces,

{^n}n>\ an increasing sequence of σ-algebras in a probability space (Ω, T, P), f = [fn}n>l

a 2?i-valued martingale relative to [FrAn^x- Define v = {vn}n>\ a sequence such that

(1) [vn}n>\ is ^-predictable, i.e., vn is Tn-\-measurable, for n > 2 and v\ is T\-

measurable,

(2) each υn is C{BX, 52)-valued,

(3) v is a uniformly bounded sequence, with supw > 1 \\vn\\L™β β < 1.

Such a sequence v = {vn}n>\ will be called a multiplying sequence. The martingale given by

k=\

is called the martingale transform of / by the multiplying sequence υ, where dk = fk — fk-\

are the martingale differences of / . T will denote the martingale transform operator.

Observe that the following theorems will also hold for general uniformly bounded mul-

tiplying sequences, by just changing the operators {vn}n>\ with {υn/M}n>\, where M =

THEOREM 1. Let B\ and B2 be Banach spaces and Ta martingale transform operator

as above. Then the following statements are equivalent'.

(i) There exists C > 0 such that λP{(Tf)* > λ} < C| | / | | L i for any λ > 0.

(ii) There exists C > 0 such thatλP{(Tf)* > λ} < C\\f*\\L\ for any λ > 0.

(iii) Givenanyp, 1 < p < 00, there exists Cp > 0 such that \\(Tf)*\\LP < C P | | / *HL/>.

(iv) Given anyp, 1 < p < 00, there exists Cp > 0 such that \\(Tf)*\\LP < Cp\\f\\LP .

(v) There exist /?o, 1 < po < 00, and a constant Co such that | | ( Γ / ) * | | ^ / Ό <

Coll/llj/o.

If B2 has the Radon-Nikodym property, then any of these conditions implies

(*) II/IIL1 < 00 =Φ Tf convergesa.s.
B\

COROLLARY 1. Let B\ and B2 be Banach spaces and T be a martingale transform

operator satisfying any of the statements (i)-(v) of Theorem 1 and F = [Fn}n>\ a lq(B\)-

valued martingale, Fn = {fi!}j>u where 1 < q < σo. We define the operator f such

that {f F)n = {(TfJ)n}Jti' Then T is a martingale transform operator and satisfies the

following:

(i) There exists C a > 0 such that λP{(f F)* > λ} < Ca\\F\\r\ for any λ > 0.

(ii) There exists Cq > 0 such that λP{(f F)* > λ} < Cq \\ F* | |Li for any λ > 0.
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(iii) Given any p, 1 < p < oo, there exists Cp,q > 0 such that

MfF)*\\LP<Cp,q\\F*\\LP.

(iv) Given any p, 1 < p < oo, there exists CPjq > 0 such that

\\(fF)*\\Lp<Cp%q\\F\\LP .

(v) There exist po, 1 < po < oo, α/id α constant Co,q such that

\\(fF)*\\LPo <Co%q\\F\\LPo .

DEFINITION 2. Let B\, B2 be Banach spaces and Γ be a martingale transform operator

with multiplying sequence {vk}k>\ C £(Bi, ^2). We say that T is a translation invariant

martingale transform operator if for any ko € N, the sequence {uk°}k>\, uk° = Vko+k, defines

an operator 7i0, (Tkof)n = Σ^=i vk+kQdk, such that for any martingale / bounded in L ^ ,

REMARK 4 (Examples of translation invariant martingale transform operators).

(1) Given a scalar-valued martingale fn — Y^=\ ^» w ^ consider the martingale trans-

form from scalar-valued martingales into i°°-valued martingales with multiplying sequence

{wk}k>\ C £(JΪ, i°°) = ί°° given by wk = (0, ^ T P , 0, 1, 1, 1 ). Then

= ldudι+d2... ,
\

= (0,

k=\ k=\

, 0, d!, dι + d2 ' Σ *' ) '
k=\ k=\ I

k=l

(Tkof)n = X_

and we have

\\(Tf)n(ω)\\ιoo = sup
\<k<n

(2) Given a scalar-valued martingale fn = Σ2=i dk, we consider the martingale trans-

form from scalar-valued martingales into I2 -valued martingales with multiplying sequence

{vk}k>\ C £(iϊ, i2) = I2 given by vk = (0, (*τP, 0, 1, 0, 0 ). Then

(Tf)n =

and, as above, we have

\\(Tf)n(ω)\\e2 =

= (di, έfe, . , dπ, 0, . . . ) ,

= (0, ^P-I), 0, du d 2 , . . . , dπ, 0 , . . . ) ,

1 / 2

= \\{Tkΰf)n(ω)\\e2.

Now we give a converse of Theorem 1.
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THEOREM 2. Let B\ and B2 be Banach spaces and T a translation invariant martin-

gale transform operator such that each element Vk of the multiplying sequence is a constant

operator from B\ into #2- Then the condition

(*) ll/*Hz,i < 00 => Tf converges a.s.

implies any of conditions (i) to (v) of Theorem 1.

3. Applications.

3.1. Maximal functions. Given a Z?-vaΓued martingale fn = Y%=\ dk, we have al-

ready defined its Doob's maximal function by f*(ω) = supΛ \\fn(ω)\\B

Define a martingale transform operator T given by the multiplying sequence {wk}k>\ of

operators in C(B, t°°(B)) with wkb = (0, <*τP, 0, b, b, b ), b e B, by

(Tf)n=^wkdk =
k=\ k=\ k=\

Then

(1) ll(7'/)n | | ίoo(/ ϊ )(ω)= sup | |Λ(ω)| |B, and, (Tf)*{ω) = f*(ω).
\<k<n

It follows from Remark 1 that this martingale transform T satisfies (iv) and (i) in The-

orem 1, with B\ = B, B2 = i°°(B). In particular, f defined as in Corollary 1 satisfies

the hypothesis of this corollary. On the other hand, given F = {Fn}n>\ an

martingale, Fπ = {/« }y >i, by using (1) we have

(TF)* = sup \\(TF)n\\tnι°om = sup { V UTfJ)n\\«
n \ j J

II \q\ {^q I \ '^

Therefore, given q, 1 < q < oo, there exists Cq > 0 such that for any λ > 0

|Σ<
and given any p, 1 < p < oo, there exists CPtg > 0 such that

LP

In other words we obtain (in the case B = R) the martingale version of the well-known

theorem of Fefferman and Stein (see [17]) for the Hardy-Littlewood maximal operator.
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3.2. Square functions. Given B a Banach space and / = {fn}n>\ a β-valued martin-

gale, /„ = Σn

k=\ dk, the martingale square function of / is defined as

/ o o X 1 / 2 In \l/2

V = (ΣII*IIB) , snf = [ΣwdkWl] .

In the case when / is a scalar-valued martingale, by orthogonality of the differences dk it is

clear that

n 2

(2) \\Snf\\2

L2=
k=l L1 Σ*

L1
= 11/1.112,2-

Various results have been known for this function. The aim of this section is to show

that these results can be obtained as easy corollaries of Theorem 1 and the straightforward

ίΛbound (2).

Given the scalar-valued martingale / , we consider the martingale transform Q whose

multiplying sequence is {υ*}*>i C C(R, I2) = I2 with vk = (0, ( *τP, 0, 1, 0 , . . . ) . These

functions are ^ - i " m e a s u r a b l e (since they are constants) and uniformly bounded by 1 (since

Hυ*ll£(jR,£2) = 11̂ 11̂ 2 = 1). They define a martingale transform operator from scalar-valued

martingales to i2-valued martingales by

' dn, 0, . . . ) .(Qf)n = 2^Vkdk =

Observe that

( β / ) * = sup| |(β/) π | |€2 = s u p Π

1/2 1/2

U=i U=i

and

(3) \dk(ω)\2
= \\(Qf)n(ω) - {Qf)m(ω)\\t2.

k=m+\

Therefore, by using (2), we have that this martingale transform satisfies (v) in Theorem

1 with po = 2, B\ = R, Bi = I2. Observe that i2 satisfies the Radon-Nikodym property.

Then, applying Theorem 1, we have

(4) P(Sf > λ) = P((QfT > λ) < γ | | / | | L i ,

(5) \\Sf\\LP = | |(β/)ΊlLP < Cp\\f*\\LP , 1 < p < oo,

(6) II/IIL1 < °° => Qf converges a.s., i.e., Sf < oo a.e.

Now we consider the €2-valued martingale F = {Fn}n>\, with Fn = 5Z^=1 Dk, Dk =

{DJ
k}j>\. Each Dk is JF*-measurable and E(Dk\Fk-\) = 0 (in I2). Therefore Dk and D\ are
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orthogonal (in L2

2) for k φ I and then we have

= ί £||D*||*2rf/> = f Σ
jΩk=ι JΩ k=

d P =(Ό £ f
jΩk=ι JΩ k=\

Moreover, for each j the component DJ

k is J7*-measurable and E(DJ

k \Fk-i) = 0 (in if),

and hence DJ

k and DJ

t are orthogonal (in L2) for kφl.Wε consider the martingale transform

operator R from I2 -valued martingales into scalar-valued martingales given by the sequence

{h)k>\ C C(l2, R) = I2, vkx = {x, (0, (k~l\ 0, 1, 0, . . . ) > = xk, x e I2. T h e n

and therefore applying (2)

n

(RF)n=Σϋk,
k=\

and (7), we have

\\(RF)n\\2=\\Sn(RF)\\2= f
L L

 JΩ ^

-s
JΩ

In other words, R satisfies

n

(v) of Theorem 1

Dk = D\ 4

n

k=\

~- \\SnF\\2

Ll

. Then

= \\Fn\\\l2

URF)*\\LP<CP\\F*\\LP , 1 <p<oo,
i2

\\F\\r\ < oo =» RF converges a.s.
ί1

Now, given the scalar-valued martingale / = {fn}n>u fn = Σ 2 = i ^» w ^ consider the

€2-valued martingale F = {Fn}n>\, Fn = ]P£=i Dk, where Dk
k = dk and DJ

k = 0, j' φ k.

Then \\F\\ti = Sf, (RF)n = Σΐ=ι ϋ^Dk = dx + +dn = fn and (RF)* = /*. Therefore

we have

(8) P ( Γ λ ) \

( 9 ) \\f*\\LP<Cp\\Sf\\LP, 1 < / 7 < O O ,

(10) Sf e L1 => / converges a.s.

Inequalities (4) and (8) are due to Burkholder, as well as (5) and (9) in the case p > 1

(see [8]). The case p = 1 in (5) and (9) was proved by Davis, see [14]. Result (6) is due to

Austin [1].

3.3. Hubert spaces. Let {rn}n>\ be the Rademacher system defined by

rn{t) = si

for t G [0, 1]. The following result is due to Kwapien, see [20]. Given a Banach space B, the

following conditions are equivalent:
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(1) B is isomorphic to a Hubert space.

(2) There exists C > 1 such that for any sequence {*/}"=1, n = 1, 2, . . . in B,

l l £
" y = l " β 7 = 1

Averaging over ί2, Kwapien's result can be formulated as follows.

THEOREM 3. Given a Banach space B, the following conditions are equivalent.

(1) B is isomorphic to a Hubert space.

(2) There exists C > 1 such that for any B-valued martingale sequence f = {/rt}w>i,

we have

C-ι\\fn\\L2 <\\Snf\\L2<C\\fn\\L2, n = l , 2 , . . . .
B B

Given a β-valued martingale / , we define, analogously as in the last section, the 12(B)-

valued martingale transform Qf = {(Qf)n]n>\ with

n

{Qf)n = ] Γ υkdk = {dx, d2,.. , dn, 0 , . . . ) ,
k=\

where vk = (0, ( ^τP, 0, IB, 0 , . . . ) . Observe that

(11) \\(Qf)n\\iHB) = Snf and

Given F = {Fn}n>\ a €2(θ)-valued martingale with Fn = Σn

k=ι Dk, Dk = {DJ

k}j>u

we define the £2(£2(B))-valued martingale QF = {(QF)n}n>\ by

n

(QF)n = Σ ^ D ^ = ( D l ' D 2 , . . , £ > * , 0, . . . ) ,
i k = l

where Vk = (0, ( ^τP, 0, /£2 ( β ), 0 , . . . ) , and the θ-valued martingale RF = {(RF)n}n>ι by

n n

where vkx = JC^ for all c = {JC^7>I G 12(B).

LEMMA 1. Let B be a Banach space, and F = {Fn}n>\9 Fn = Σ"k=ι Dk, a i2(B)-

valued martingale. Then we have

Sn(RF)<SnF.

PROOF. sn(RF)2 = ΣLill^ll l < ΣLi Σ ~ i II^Hl = Σ L . ll^ll' =
SnF

2.

THEOREM 4. Given a Banach space B, the following conditions are equivalent:

(1) B is isomorphic to a Hilbert space.
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(2) There exists C > 0 such that for any λ > 0 we have

P{f* > λ } < £ | | S / | | L i and P{Sf>λ}<^\\f\\Lι

(3) There exists a constant C > 0 such that C-ι\\f*\\Li < \\Sf\\Lι < C||/*| |Li.

(4) There exist p, 1 < p < oo, and a constant Cp such that

Cpl\\f\\Lp<\\Sf\\LP <Cp\\f\\LPB.

(5) If\\f\\Lι < oo, then Sf < oo a.s., andifSf e L1, thenf converges a.s.
B

PROOF. Assume (1). As B is isomorphic to a Hubert space, we know that \\Snf\\L2 <
C||/ΠIIL2 Then by using (11) we have that the martingale transform operator Q satisfies
(v) in Theorem 1 with vk = (0, (*τP, 0, IB, 0...) e C(B, 12(B)) = I2 ® B, B{ = B,
B2 = 12(B), po = 2. In this way we obtain the inequalities appearing in (2), (3), (4) with S
on the left. On the other hand, ί2(B) is a Hubert space and in particular satisfies the Radon-
Nikodym property. Then by Theorem 1 we get, for martingales such that | |/ | |Li < 00, the
a.s. convergence (in 12(B)) of the martingale Qf, which in particular implies Sf < 00, a.e.

On the other hand, again by Kwapien's Theorem, we have || fn || Li < C || Sn f || Li. Using
Lemma 1 and the fact that i2(B) is also isomorphic to a Hubert space, we have

URF)nf2 < C||SΠ(*F)||22 < C||SΠF||22 < C'\\Fn\\2

2 .
L L L L

In other words, the martingale transform operator R satisfies (v) of Theorem 1 with ί* e
C(ί2(B), B) = t2 0 B, vkx = xk for all x = {xj}j>\ e t2(B), B{ = 12(B), B2 = B,
po = 2. Now given the 5-valued martingale / = {/«}«>i, fn = YTk=\ ^> w e c a n consider
the £2(£)-valued martingale Fn = Σn

k=ι Dk, with Dk

k = dk, D
j

k = 0 otherwise. Then

(12) (RF)n = fn, (RF)* = r , \\Fn\\ίHB) = Snf, (F)* = Sf,

and we get the rest of (2), (3), (4) and (5).
Assume (2). By equation (11) we get that the martingale transform operator Q satisfies

λP{(β/)* > λ} < C| |/*| |Li, that is, (ii) in Theorem 1. Therefore we get \\(Qf)*\\Lp =
\\Sf\\Lp < Cp\\f*\\Lp9 1 < pB< 00, and in particular | | S / | | L 2 < C||/| |L2.

Applying Corollary 1, we have that the martingale transform (QF)n = {(Qfi)n}j>\
satisfies (v) of this Corollary 1 with B\ — B, B2 = £2(B), q = 2, po = 2. In particular,
if F = {Fn}n>ι is a €2(£)-valued martingale with Fn = Σn

k=ι Dk, Dk = {D{}J>U for
1 < p < 00, then

\\SF\\LP = | | S U P ^ F | = | s u p | | ( β F ) , | | ^ 2 W ) | = | | (βF)* | | L , < C\\F*\\LP .
II n I I L " II n I I L P

Then by our hypothesis (2) and Lemma 1, we get

P{(RF)* > λ} < £\\S(RF)\\Lι < ̂ - ^
A A
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which shows that R satisfies (ii) in Theorem 1. Now given fn = ^ = 1 dk, we choose as

before Fn = £ £ = 1 Dk, with Dk

k = dk, D{ = 0 otherwise. Then we get | | /* | | L i < C| |5/ | | L i ,

and also \\/*\\LP < Cp\\Sf\\LP9 for 1 < p < oo. So we have proved (2)=^ (1), (3) and (4).

Using the operators Q and R, (3) => (2) and (4) =» (2) can be proved in a similar way.

Finally we shall prove that (5)=> (1). By using (3) (in the Z?-valued setting) we have

that | | / | | L i < oo => Sf < oo implies that the martingale transform operator Q satisfies the

hypothesis in Theorem 2. By (11) we get | |S/||L2 < C| |/ | | L 2.

Again, by using Corollary 1, we have | | 5F | | L i < C | |F* | | L i . Given the operators ϋj e

C(12(B), B) = t2 ® B, VjX = xj for all x = {xj} e 12(B), consider an arbitrary sequence

v = {vy^f^i of this operators and the corresponding martingale transform operator given

by

(RvF)n =

As in Lemma 1, one can see that every sequence υ satisfies Sn(RvF) < SnF. Then by the

part already proved, we get

\\S(RυF)\\Lι <\\SF\\Lι < C | | F * | | L i .

Using the hypothesis (5), we conclude that for any sequence v and any £2(#)-valued

martingale F such that F* e L1, the martingale RVF converges a.s. (in B). Therefore, by

Remark 7 after the proof of Theorem 2, we have that any martingale transform RVF satisfies

the conditions in Theorem 1. Now given fn = Σ/Li ^ > w e choose as before Fn = Σ/Li ^ »

with OX = dk, D3

k = 0, and vv(k) = vie and obtain | | / | | L P < Cp\\Sf\\LpΛ < p < oo.

3.4. UMD Banach lattices.

DEFINITION 3. A Banach space X is said to be UMD (unconditionality property for

martingale differences) if given /?, 1 < p < oo there exists a positive real number Cp such

that

\\ειdχ + - . + εndn\\LPχ < Cp\\dχ + + dn\\Lpχ

for all X-valued martingale difference sequences (d\, d2,...), all numbers ε\, 62,... in

{-l,l},andalln > 1.

This definition is due to Burkholder, see [9]. It is known that the existence of one po

satisfying the inequality is enough to assure the existence of the rest of /?'s, 1 < p < 00, see

[22].

By a Banach lattice we mean a Banach space X over the field of the real numbers,

together with an order relation < on X, satisfying the following properties:

(i) x < y implies x + z < y + z for every JC, y, z € X.

(ii) ax > 0 for every x > 0 in X and every a > 0 in R.
(iii) For every x, y e X, there exists the least upper bound (say, sup{x, v}) and also the

greatest lower bound (say, inff c, y}).
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(iv) If |* | is defined as |JC| = sup{x, —x}, then the order relation |* | < \y\ implies the

inequality between the norms ||JC|| < \\y\\.

DEFINITION 4. Let X be a Banach lattice. X is said to be /7-convex, 1 < p < oo, if

the following inequality holds:

7 = 1

1/p

and X is said to be g-concave, 1 < q < oo, if the following inequality holds:

7 = 1 7 = 1

where in both inequalities, the constants are independent of m.

Note that the Banach lattice Lp is p-convex and /7-concave.

When X is a lattice of functions or, more generally, when X is order continuous, the

concrete representation of the lattice allows us to define (Σ7=i 1*7 \PΫ^P in the obvious way.

However, for a general lattice, these expressions need some technicalities to be defined, see

[21].

REMARK 5. The following generalization of the classical inequality of Khintchine

holds, see [21]. Let X be a ̂ -concave Banach lattice for some q < oo. Then there exists a

constant C < oo such that, for every sequence {xj}™=γ of elements of X, we have

1/2

c-1

DEFINITION 5. Let X be a Banach lattice and / = {fn}n>\ a X-valued martingale,

fn = YΛ=\ dk- For each positive integer N, we define the operators

, N v

Sχ,Nf(ω) = (Σ\dk(ω)\2)
1/2

Then ||5χjv/llx can be seen as the norm of the element (d\,... , d^) in the Banach

space
1/2

< oo

jy is also a Banach lattice with the coordinate-wise order when X is a Banach lattice.

We can prove the following characterization of UMD Banach lattices.

THEOREM 5. Given a Banach lattice X, the following statements are equivalent:

(1) X satisfies the UMD property.

(2) There exists C > 0 such that for any λ > Owe have

and P{\\Sχ,Nf\\x>λ}<£\\f\\Lι .
A X
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(3) There exists a constant C > 0 such that C~ι\\f*\\L\ < sup^ \\Sχ^f\\Lι <

ΊILI
(4) There exist p, 1 < p < oo, and a constant Cp such that

C-χ\\f\\LP < svp\\Sχ,Nf\\Lr < Cp\\f\\LP .
M

PROOF. The proof follows the argument on the proof of Theorem 4 with some technical

modifications.

(1) <& (4). This is due to Bourgain and Rubio de Francia, see [7] and [23]. It can be

obtained by using Remark 5 and the fact that any lattice with the UMD property is g-concave

for some q < oo.

In order to see that (4) => (2) and (3), we consider the martingale transform operator

Qx,NΪ = {(βχ,tf/)*}π>i, defined by

(Qx,Nf)n = ,0),
k=l

where vk = (0, ( *τP, 0, Ix, 0, . . . , 0) e C(X, X(ί2

N)), vkx = (0, ( *τP, 0, x, 0, . . . , 0) for

x e X, when k < N and vk = 0 otherwise. Then | | (QX,N/)/IIIX^2 } = | |Sχ t Π Λ^/llx and,

therefore, QX,N satisfies (v) of Theorem 1 since for all n

\\(Qx,Nf)n\\Lp < C | | / | | L P , forsome/7, 1 < p < oo.

Let us consider now the extension of βχ,/v, which we will call QX,N, defined for X(ί2

N)-

valued martingales by

(QX,NF)H = = (DU .. , Dn, 0, . . . , 0) G X{l2

N)(l2

N)

where
1/2

< OO

and Vk = (0, (*7.1}, 0, 7 χ ( €2} , 0 , . . . , 0) for k < N, Vk = 0 if k > N. This transform verifies

for a X(^)-valued martingale F such that Fn = (F*,... , F?):

1 / 2"

1/2 l/2

1/2 1/2

*(φ

1/2
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Using Krivine's Theorem, see [21, page 93], we have that for 1

N

< p < oo

l/2

1/2

<CKG\\F\\LP

where KG is the universal Grothendieck constant. This says that the martingale transform

operator QX,N also satisfies (iv) of Theorem 1.

On the other hand, given the X(i2

N)-valued martingale F = {Fn}n>\, Fn = ΣiίUi Afc>

Dk = {DJ

k }^=1, we define a martingale transform operator /?χ,yv as

ΠΛN

where ΰjx = x 7, x = {xj} e X(l2

N), for j < N and £>y = 0 otherwise.

Then, using the hypothesis and the fact about QX,N> we have

\\(Rχ,NF)n\\LP < Csup\\SXM(Rχ,NF)\\LP < C
x M xM

Ϋ\2
Jk\

k=\

1/2

jP

( TV I\

/'—I lr—\

<C

<C\\FN\\LP <

1/2

= C\\(QX,NF)N\\LP

This says that Rχ,κ satisfies (iv) of Theorem 1. Now we have the same ingredients as in the

proof of Theorem 4 and we leave the details of the remaining part of the proof to the reader.

3.5. UMD Kothe Banach lattices. For a general lattice X, size conditions over Sχ^f

state whether or not X is UMD. In the special case when the lattice is a Kothe function lattice

with Fatou property, convergence conditions also characterize those that are UMD.

Let (Σ, A, μ) be a σ-finite measure space. A Banach space X consisting of equivalence

classes, modulo equality almost everywhere (a.e.), of real-valued, locally integrable functions

defined on Σ, is called a Kothe function space if the following hold:

(1) If | / 0 ) | < \g(s)\ a.e. on Σ with / measurable and g e X, then / e X and

ll/llx < \\g\\χ.

(2) For every E e A with μ(E) < oo, the characteristic function XE of E belongs to

X.

Every Kothe function space is a Banach lattice with the obvious order (/ > 0 if and only

i f / 0 ) >0a.e.).

A Kothe function space is said to have the Fatou property (see [21]) if for any sequence

of functions {fn} in X such that fn>0 a.e., fn(s) f /CO a.e. and supπ | |/Λ | |χ < oo, then
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For such a function space we have the following

THEOREM 6. Let X be a Kόthe lattice with the Fatou property. The following state-

ments are equivalent:

(1) X is UMD.

(2) For every X-valued martingale/, it holds that, defining Sxf =

Sxf e X a.e., and Sxf e Lι

xi < σc f converges a.e.

PROOF. Following the ideas in the proof of previous theorems, we try to regard Sxf

as the maximal of a martingale transform operator valued in certain Banach space. Define

1/2

< 00

If X has the Fatou property, then X(ί2) is a Banach space. It is also a Banach lattice with

the obvious order ({JC{ } < {y,} if and only if x; < y, for all /). Moreover, if X is UMD, X(I2)

is also UMD (see [23]).

Suppose X is UMD. By Theorem 5, this is equivalent to the condition

Since Lp

χ has the Fatou property if X has, for any / bounded in Lχ, 1 < p < oo, we

can define Sxf = sup^ SχiNf in Lp

χ. Also, we have | |Sχ/ | | L p = sup^ \\Sχ,Nf\\LPχ.

Consider the martingale transform Qx such that, for a X-valued martingale f,fn =

Σ L i * S i v e s t h e X(^2)-valued martingale (Qχf)n = Σk=\ vkdk = (di, . . .,</„, 0 , . . . ) .

Then, since X is UMD and \\(Qχf)n\\χ(P) = \\Sχ,nf\\x, Qx verifies statement (iv) in

Theorem 1 with B\ = X and B2 — X(ί2). Moreover, X is superreflexive (see [9]) and

therefore it has the Radon-Nikodym property. Then, by (*) in Theorem 1, we get that / being

bounded in Lι

χ implies that Qf converges a.e. in X{i2). But this is equivalent to Sxf e X

a.e., and hence we obtain the first part of (2).

Define now the martingale transform Rx for X(€2)-valued martingales Fn = $Z£=1 Afc
by (RχF)n = ΣΊ=\ VkDjt = Σn

k=\ Dk

k, where the operators ϋk are defined to be ΰjX = JC;,

for any x = {xj}j>\ e X(l2). We have for 1 < p < 00.

sup\\(RχF)n\\LP < Csup\\Sχ,n(RχF)\\LP = C s u p
n x n x n

( n

Σ
k=\

\Dk

k\
2

< Csup
n

<Csup\\Fn\\LP

1/2

Lp

j P

χa2)

X(ίι)

where the first and last inequalities are due to the fact that X(t2) is a lattice and X and X(ί2)

are UMD.
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Then, Rx verifies (iv) in Theorem 1 with B\ = X(l2) and B2 = X. For any X-valued

martingale / , fn = Σk=\ d^ t a k i n g F s u c n t h a t Dk = (0, {k~}\ 0, <&, 0 , . . . ) , we obtain the

second statement in (2).

To prove the converse, we do in the same way as in the proof of Theorem 5. It would

suffice to conclude from (2) that transforms Qx and Rx verify Theorem 1. Since Qx is

translation invariant, the first statement in (2) assures that it verifies the theorem, and we get

svφN\\Sχ,Nf\\LP < C | | / | | L £ .
Rx also verifies Theorem 1, since it can be seen, in the same way as in Theorem 5, that

F* € L{ implies that Sχ(Rχ,vF) is in Lι

χ for all transforms Rχ,υ. As it is usual, here v is

a choice of operators v^ in such a way that (Rχ,vF)n = Σ/Ui ^V ^ n e e χ t e n s i ° n of the

transform Qx that we need this time, Qx, is defined for X(£2)-valued martingales F as the

X(€2)(^2)-valued martingale (QχF)n = (D\,. . , Dn, 0 , . . . ) . From Krivine's theorem we

see that this transform verifies Theorem 1 if Qx does, and this yields the desired result, with

the same reasoning as in the proof of the former theorem.

3.6. The Hardy-Littlewood property. Given X a Banach lattice, J a finite subset of

positive rational numbers and / a Z-valued function defined in Rn, consider the maximal

operator

Mjf(x) = sup * ί \f(y)\dy.
reJ \&\x> r ) \ JB(x,r)

X is said to have the Hardy-Littlewood property if there exists po, 1 < po < oo such that Mj

are bounded in L J° uniformly in 7, see [18]. The definition depends neither on the dimension

nor on PQ. Moreover, it can be seen, see [18], that X has the Hardy-Littlewood property if

and only if Mj are uniformly bounded from Lλ

χ into weak —Lx

χ.

For a X-valued martingale / , we can define the maximal operator

Mχ,Nf= sup \fk\,
\<k<N

and we say that X has the probabilistic Hardy-Littlewood property if there exist a constant C

and a po, 1 < po < oo, such that sup^ ||Mχ,yv/llL^o < C | | / | | L P O . Using our method we

can prove the same kind of equivalent definitions of this property as in the Euclidean case.

Moreover, we can go further and prove the following characterization.

THEOREM 7. X has the probabilistic Hardy-Littlewood property if and only if

svφ\\Mx,Nf\\o <C\\f*\\υ.
N x

PROOF. Observe that for each N

Wx,Nf\\x = I max |Λ| | = f
II \<k<N IIX
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such that it gives for a X-valued martingaleConsider the martingale transform operator

/, the Z(£^)-valued martingale

n

(UNf)n = Y^wkdk = (d\,d\ +d2,... ,d\ -\ \-dnAN,... ,d\ -\ \-dnAN)

where wkx = (0, (k~}\ 0, x,... , x) e X(i%) for all x e X and k < N, wk = 0 otherwise.

Then, if X has the probabilistic Hardy-Littlewood property, UN verifies (iv) in Theorem 1

with #i = X, #2 = X(l™), and the bounds are uniform in N. In particular, from statement

(iii) in Theorem 1, we get the second statement, also uniformly in N. The converse can be

obtained with the same reasoning.

REMARK 6. It is clear that the Hardy-Littlewood property implies the probabilistic

Hardy-Littlewood for dyadic martingales. The converse is also true due to the fact that Hardy-

Littlewood maximal operator is controled by an average of the dyadic maximal operator, see

[17].

4. Proof of the general results.

PROOF OF THEOREM 1. We shall prove (i)^(ii)=>(ϋi)=>(iv)=»(v)=»(i) and (iii)=K*).

That (iii)=Kiv) follows from Remark 1. (i)=^(ii) and (iv)=Kv) are obvious.

We begin with proving (ii)=Kiii). Consider a martingale / such that /* e Lp, 1 <

p < σo (in other case there is nothing to prove). We can decompose / , see Remark 2, as

fn = 9n + An, and then

\\{TfT\\LP <\\{TgT\\LP + \\{ThT\\LP .

By the fact that the sequence Vk is bounded in C(B\, B2), and the properties of the

martingale h, see Remark 2, we get

II(W| |LP = sup
n

n

n

sup
n \

\J\*ΛBX

B2

LP

LP

<

oo

Σ
k=\

k=\ LP

Define γn = 2λn. {γn} is an adapted, positive, increasing process such that H^llfii < Yn-\

and it also controls its martingale differences

WβnWβ, < \\9n\\Bl +\\9n-\\\Bl < K-\ + K-2 <2λn-X = γn-\ .

Let us fix λ > 0. For β, δ satisfying β > δ + 1, define the following stopping times:

μ = inf{n: \\(Tg)n\\B2 > λ},

v = M{n: \\(Tg)n\\B2 > βλ},

σ = inf{n : \\gn\\Bx > <$λ or γn > δλ}.
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These are clearly stopping times, as gnΛTg)n, and yn are ^-measurable and μ < v. Define

the functions un = χ{μ<n<vΛσ}, which are uniformly bounded by 1 and ^-predictables,

since {μ < n < v A σ} = {μ < n] Π {n < v A σ} = {μ < n — 1} Π {σ < n — \}c Π {v <

n- \}c eTn-\.

Consider the martingales an = Σn

k=\ ukβk and (Ta)n = Σn

k=χ vkukβk. These martin-

gales have the following properties:

(1) α* < 2δλ in the set {μ < oo} and a* = 0 in {μ = oo}. In particular, we have

||fl*||Li < 2δλP(μ < oo) = 2δλP((Tg)* > λ) .

(2) P((Tgr > βλ, y* < δλ) < P{(TaY > (β - δ - l)λ).

From these properties of a and Ta and hypothesis (ii) we get

P({TgT > βλ, y* < δλ) < P((Ta)* > (β - δ - l)λ)

β - δ - l

Also, this leads to the following inequality:

S~1 O

P«Tg)*>λ).

roo poo
ΊILP = P / λp-lP«Tg)* > λ)dλ = p / (βλ)p-ιP«Tgf > βλ)βdλ

Jo Jo
poo

= p / (βλ)P-ιP((TgT > βλ, y* < δλ)βdλ
Jo

poo
+ p / (βλ)p-χP((Tgγ > βλ, γ* > δλ)βdλ

Jo
poo / f̂ poo op

<p {βλ)P~ι P((Tg)*>λ)βdλ + p ^-tP~x P(γ* > t)dt
JO β -6 — 1 Jo oP

^^*11^ + l

Taking β, S such that (CSβP)/(β - δ - 1) = 1/2, we obtain

With this the first part of the proof is complete, since for our martingale

\\(Tf)*\\υ> < UTgrUr + \\{Th)*\\LI> < C{\\λ*\\LP + \\f*\\LP) < C\\f*\\LP .

In order to prove (v)=>-(i), we shall use Gundy decomposition. Fix λ > 0 and decompose

/ , following Remark 3, as / = a + b + e. Then

P((Tf)* > λ) < P((Ta)* > λ/3) + P((Tb)* > λ/3) + P((Te)* > λ/3).
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We will denote by ak, βk, &k the martingale difference sequences for a,b, e, respectively. By

using the properties of the martingale α, we have

p((Ta)*> ^\ < P(Ta φ 0) < P(a ^ 0) = P (sup\\ak\\Bι φ θ\ <j

On the other hand, since the operators vk are of norm 1 and βk satisfy (3) in Remark 3, we

have

P ({Tbf >^\<\ j(Tb)*dP = I f sup \\(Tb)n\\B2dP

= - / s u p Tvkβk dP<- / Y\\βk\\B,dP<-\\f\\o .

Hence, by using the hypothesis and the properties of e, we get

< £ ; sup

P = j\\e\\Ll <

Finally, we will prove that condition (iii) with p = 1 implies (*).

Fix λ > 0 and define the stopping time μ = inf{n : || fn || BX > λ} and the scalar functions

un = χ{μ>n} = X{f*_ <λ} These functions un are Tn-predictable and uniformly bounded by

1. We consider the following martingales:

k=\ k=\ k=\ k=\

Observe that if n > μ, Fn = Y?k=l χ{μ>k}dk = / μ , then | | F π | | β l = | | / μ | | β r On the other

hand, if n < μ, Fn = fn. Therefore, if n > μ,

F* = max \\Fk\\B{ < max \\Fk\\Bι + max \\Fk\\Bι

\<k<n \<k<β-\ μ<k<n
= max | |/* | | j , , + max \\fμ\\Bϊ < λ + | | / μ | | β l ,

\<k<μ-\ β<k<n
and in case n < μ, F,* = maxi<^<« \\Fk\\Bι = maxi<^<« IIAII^! < λ. Consequently,

| | F ; | | L , < λ + | | / Π Λ μ l l L l = λ +

έ ί i \\fn\\BιdP
k=l J{μ=k) J{μ

ί \\fn\\Bι
J{μ>n}

\\fn\\βιdP+[ ||/π

where in the last inequality we have used the martingale properties of / .

Applying (iii) to the martingale Γ F , we have that there exists a constant C such that

l|(TF)*HLi < C| |F* | | L i < C(λ + | | / | | L i ) . Then F* and (ΓF)* are in L1 and, since B2
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has the Radon-Nikodym property by assumption, (TF)n converges almost surely, see [13].

Now Tf = TF in the set where uk = 1 for all k, that is, in {/* < λ}. In other words, Tf

converges almost surely in the set {/* < λ}, with λ any positive number. If we choose a

sequence λn f oo, Tf converges a.s. in {/* < λn] for all n and therefore Tf converges a.s.

in {/* < oo} = U^Liί/* - λn}- But using Doob's inequality, we have

P{/* < oo} = lim P{/* < λn} > 1 - lim £ - 1.

PROOF OF COROLLARY 1. Let υk e C(B\, B2) be the multiplying sequence of the

martingale T. Given Fn = Σ!ί=ι At = (Σ*=i < f e i = </'>£= l w e h a v e

U=l
= Σ VkDk'

k=\

where Vk = {vk, υk, υk,...} € i°°(C(Bu B2)) C £(lq(Bι),lq(B2)), and ||V*|| < \\υk\\.

Therefore, T is a martingale transform operator. On the other hand, given q, 1 < q <

oo, since T satisfies Theorem 1, we have, \\TfJ\\L, < \\(TfJ)*\\g < Cq\\fJ\\Lq and

therefore

Σ

= Cq\\F\\Li
< Cq SUp

By Remark 1 this means that f satisfies (v) of Theorem 1 with B\ replaced by iq(B\) and #2

by lq(B2). Then the corollary follows.

PROOF OF THEOREM 2. We will prove (ii) of Theorem 1. The proof follows the

argument for Theorem 1.1 in [9].

First, observe that we may assume f\ = d\ = 0. Given / = {fn}n> 1 a martingale,

with associated σ-algebra sequence {JΓ

n}n>\ and other σ-algebra Q, construct the σ-algebras

in the product space J:

rι=Jr

nκΩ,Q = ΩxQ. Consider a ^-measurable random variable

r with P(r = 1) = P(r = —1) = 1/2, and define r(ω\,ω2) = r(a>2). r is independent

with respect to the ^-martingale fn(ω\, ω^) = fn(co\) and the ^-multiplying sequence

vn(ω\,ω2) = vn(ω\).

We now define a martingale with the same behaviour as {fn}n> 1 and such that d\ = f\ =

0. Let

Λ\ ={0, Ω x Ω], Λ2 =σ(guFι),... ,

An =σ(guFn_ι) = σ{A x B : A e fn-u B G Q\

be another σ-algebra sequence. The sequence D — (D\, D2, D3,...) = (0, rd\,rd2,...)

is then a ^-martingale difference sequence. The martingale whose differences are D is
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F = [Fn}n>\ defined by

n-\

F i = 0 , Fn = ΣF<ίk=rfn-\, n>2.
k=\

Consider now the ^-multiplying sequence V = (/, v\, ι>2,...), where / is any operator

in C(B\9 B2). The martingale transform of F by V is TF = {(f F)n}9 with

n-\ n-\

{TF)X = 0 , {fF)n = Σvk(rdk) = ϊYjvkdk=ϊ{Tf)n-\(ωx), n>2.

k=\ k=\

Then we have \\Fn\\Bι = ll/π-ill*P \\(TF)n\\B2 = \\(Tf)n-ι\\B2 and that the set where

TF converges is the set {ωi : Tf converges} x Ω. Therefore the martingale / and its

corresponding martingale transform Tf verify the theorem if and only if F and fF do. The

rest of the proof is for F and fF, but we will avoid unnecessary notation by keeping the

names 7\ (v\, ι>2,...) and / for the martingale transform operator, its multiplying sequence

and the martingales that we will handle, respectively. As an intermediate step we shall prove

(**) There exists an absolute constant C > 0 such that, given any λ > 0.

( Γ / ) * > λ a . e . => | | /* | | L , > Cλ.

It suffices to show (**) for λ = 1. Suppose that (**) is not true, i.e., for every j > 0 there

exist a martingale f3 such that ( Γ / ; ) * > 1 a.s., but IK/7)*!!/,1 - 2~y'. Then we are going

to find a counterexample for (*), that is, a martingale F such that F* e L1 but T F does not

converge almost surely.

We may assume that for each j there exists an index rij such that

PiSJf% >\)>\.

Otherwise, we would have P((TfJ)*m > 1) < 1/2 for all m and then P((TfJ)* > 1) < 1/2,

while our hypothesis is (TfJ)* > 1 a.s.

Each f J is defined on a probability space (Ω i, T3, P}) and it is relative to an increas-

ing sequence of σ-algebras, {T]

n }n>i. Transfer all the martingales f} to the product space

(Ω, J7, P) = Y[JLι(Ω^> ^J'» ^ ; ) t 0 obtain independent martingales in the usual way, defin-

ing the σ-algebras

Pn = Ωι x x Ωj-{ x Pn x x

and the sequences

ft(ω\,ω2, . . . ) = fn(cύj), J ^ ( ω i , ω 2 , . . . ) = dJ

n(ωj).
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Define a new sequence of σ-algebras by

Λn]+n2+-+nk+h = σ{Pnι U j % U . . . y j

where Λ = 1,... , /i^+i The sequence given by

(13) D = (d\Jl...JlχJ\,...,d2

ni,d\,...)

is the ^-martingale difference sequence of the martingale F, that verifies

Fnι+...+nk+h = /π\ 4 / £ + + fk

nk + / Γ l ' * = 1, ,

Therefore, for Λ = 1,... , n^+i, we have

(14)

• + ••• + vΛl+...+ΠA+i J ^ H + υ Π l 4 - ^ + 1

= (Tfι)nι -f ( T ; , / 2 ) ^ 4 + (ΓΠl+...+Πjk_1/*)IIJk 4 (Tn{+...+nJ
k+x)h .

Observe that F* is in L1. Since, for Λ = 1,... , nit+i, we have

| |FΠ l + . . .+ Π j k + Λ | | i ? I < ̂ l l / il^ 4 l l / Γ Ί l ^ <
ι = l

and then | |F; i + . . . + I I i k + Λ | | L i < ΣΪ=l 2"1" < 1. Thus, | | F * | | L , < 1.

Now we shall see that T F does not converge almost surely, that is, it does not verify (*).

It is clear that lim sup^ m {\\ (T F)n — (TF)m \\B2 > 1} is a subset of the set of points ω for which

there does not exist lim^cxXΓF)n(ω). Using the fact that TFnχ+...+nk+h — TFnχ+...+nk =

(Tnι+...+nJ
k+ι)h, the events

j
h=\

= \ max

are independent (since (Tnχ+...+nkf
k+{)h are independent in k) and verify, due to the choice

of the wfc's and the fact that T is translation invariant,

P(Ak) = P( max | | ( Γ I I I + . . . + Π i k / * ) Λ | | l , 2 > l) P«Tf%+] > 1) > \
\\<h<nk+\ J κ+ι 2

Then Borel-Cantelli lemma tells us that />(lim sup Ak) = 1, and therefore that there does

not exist lim^-^oo(TF)n in a set of probability 1.
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We shall prove now that (*) and (**) imply (ii) in Theorem 1. Choose a martingale /

such that | | /* ll̂ i = 1 and a fixed λ > 0. We can assume that there exists an index no such

that

Otherwise, since P((Tf)* > λ) = 0 for all n it leads to P((Tf)* > λ) = 0, and there would

be nothing to prove.

As in the preceding part of the proof, we can construct infinitely many independent

copies of the sequences (/, Tf), say (/ ; , Γ/ 7 ) , moving the variables to the infinite product

space, where / is now defined on a probability space (Ω, T, P) and it is relative to an increas-

ing sequence of σ-algebras, { ^ J ^ i Define then the σ-algebra sequence T3

n = Ωx

xΩ x Tn x Ω x , and the sequences fj, TfJ, as before.

Define now the functions UJ = XuTfjy <χγ Each UJ is ̂ 0 ~ m e a s u r a b l e > s m c e

i ω2, . . . ) \ \ B l

= max
\<k<no

and verifies for all j

E(uj) = P«TfXQ < λ) = P((Tf)*no <λ) = l-

Define a new sequence of σ -algebras by

Λ\ = J-γ, . . . , ΛΠQ = Sno ,

Λo+1 = σ( ξ!0 U f\),... , Λ2no = σ{Pno U T}l0)

where h = 1 , . . . , no. Now, the sequence given by

D ={d\Jl... , dι

nQ, ui

DknQ+h=uι...ukd
k

h

JtX , h = 1 , 2 , . . . , no

is a Λn -martingale difference sequence. The martingale whose differences are D is F, with
n

( 1 5 ) Fn = YjDk = f^ + u\f^ + - - + u\...ukfl
+{, n = k n o + h , Λ = l , . . . , « „ .

Observe that for n = kno + h, where h = 1,.. . , «o and & = 0, 1,. . ., it holds the

following

\\Fn\\Bl = \\fn0 + «l/?0 + • + «1 M*/Λ+ 1 IIB,

< IIΛΌIIB, + «il l/ n

2

0 l le, + + «i « t l l / ί + 1 lie,
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Then Ft < (fι)flQ + « i(/ 2 )* 0 + • + m . . . uk(fk+ι)*h. Using the fact that | | /* | | L , = 1 and

Uj is independent of f£ and u\ for all j' φ k, /, we have that

00 i

< 1 + (1 - p) + + (1 - p)k < 2 ( 1 - p)k = - .
k=o p

Therefore | |F* | | L i < \/p.

Let us consider now the martingale TF, which is, for n = kno + h, h = 1,... , no,

( 1 6 ) ( T F ) n = Σ v k D k = ( T f { ) n o + u { ( T n J 2 ) n o + ... + M l . . . u k ( T k n J M ) h .

Since (TF)n = (Tfι)n for 1 < n < no, we have {(Tfι)*Q > λ} C {(ΓF)* > λ/2}. Also

{(Tf% < λ} n {(TnJ
2rno > λ} c ί(ΓF)* > ̂  j ,

since in that set ux = 1, and (TF)no = (Tfι)no, (TF)no+h = (Tfι)no + (TnJ
2)h, for

h = 1,... , no- Therefore

λ<(TnJ
2f = max \\(TnJ

2)h\\B2= max | |(TF) n Q + h = (TF)no\\B2 < 2(ΓF)* .
U 1<Λ<Λ2O 1</Z<Λ2O

By the same reasoning, all the sets of the form

{(Tf% < λ} n n {(T(k-2)nof
k-% < λ} n {(τ(k-l)nJ

kyno > λ}

are subsets of {(TF)* > λ/2}. These sets are disjoint and ( Γ 0 _ i ) π o / ^ ) * 0 , (T{k-X)nJ
kYnQ are

independent for j φ k. Therefore, we have

P{(TFf > λ/2}

\k=\ no" wo no ~ I
oo

"" ^ < λ} n n {(Γ^_2)Λ0/
/:~1)*0 < λ} n {{T{k-X)nJ

k)*m > λ})

k=\

Then, (TF)* > λ/2 a.s. and applying (**) we have for some absolute constant C

Cλ < | | F * | | L , < - =» p = P{(Γ/): o > λ} < ^ .

Finally, we note that the index no was chosen to verify P((Tf)*Q > λ) > 0. As

(Tf)*o+k > (Γ/)* o for all & > 0, we could have chosen any other index no + k and have

reached for it the same conclusion P((Tf)*Q^k > λ) < C/λ for the same constant C. Taking

limits, we obtain P((Tf)* > λ) < c/λ and the proof is finished.
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REMARK 7. As far as we know, there does not exist a useful complete reciprocal to

Theorem 1. Nevertheless, Theorem 2 also holds under other assumptions, for instance, the

following condition

(*)' I I / Ί I L I < °° =* τaf converges a.s.

when it is verified for any martingale / and any Ta in the following class of martingale

transform operators. Consider the family {Ta}a(ΞΛ of martingale transform operators de-

fined by multiplying sequences {v%} such that each v® is a constant operator and for any

sequence {a(k)} C Λ, the multiplying sequence {v® } defines a martingale transform oper-

ator T@ e {Ta}aeΛ This property of the family of martingale transform operators allows us

to construct martingales F, TF in the same way we did in (13), (14), (15) and (16). Then, a

slight modification of the proof above for Theorem 2 yields that any T& e {Ta]aeA verifies

statements (i)-(v) in Theorem 1.
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