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Abstract. We develop a general theory of martingale transform operators with
operator-valued multiplying sequences. Applications are given to classical operators such as
Doob’s maximal function and the square function. Some geometric properties of the underly-
ing Banach spaces are also considered.

Introduction. Let (£2, F, P) be a probability space and {F,},>1 a nondecreasing se-
quence of sub-o-fields of F such that ¥ = VF,. A martingale relative to {F,},>1 is
a sequence f = {fn}n>1 of integrable variables such that each f, is F,-measurable and
E(fut11Fn) = fu, in particular, f, = Y ;_, dk, where dj are the “increments” of the martin-
gale f,ie.,dy = fi — fr-1.

Given a uniformly bounded sequence of F,-predictable random variables v = {v,}n>1
(i.e., v, is F,—-measurable), the martingale given by (Tf), = ZZ:I vrdy 1s called the
martingale transform of f by the multiplying sequence v.

Martingale transform operators were introduced by Burkholder in [8]. Two objects
were fundamental in this theory, namely “Doob’s maximal function” defined by f*(w) =
sup, | f»(w)| and the “square function” Sf = (3 %2, |dk|*)!/?. Their boundedness and the
relation among them have been extensively studied, see (1], [8], [10], [14], [16], [19], [24].

The interplay between probability and harmonic analysis has been very successful, see
for example [10], [11], [2], [4], [3] and [S]. There exists a large amount of objects in both
fields that play a parallel role, namely “good A” inequalities, maximal and square functions,
Hardy and BMO spaces, etc. The well-known Calderén-Zygmund decomposition (see [12]),
in Harmonic Analysis, of an integrable function has, in Probability, a counterpart due to
Gundy, see [19].

In writing this paper we have been especially influenced by works of Benedek, Calderén
and Panzone ([6]), Burkholder ([9]) and Rubio de Francia ([23]).

Our paper has two major aims. Firstly, we develop a general theory of martingale trans-
form operators with operator-valued multiplying sequences, and secondly (we think this is the
main contribution of this paper) we give several applications.

The first point is developed in Section 2, see Theorems 1 and 2. The philosophy be-
hind these theorems is that the knowledge of the boundedness of the martingale transform
operator in some fixed level, say, strong p with p > 1, weak (1, 1), or even a conver-
gence condition for martingales in L', is sufficient to assure the boundedness at the rest
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of the levels. Some related results in this direction are in a work by Burkholder, see [9].
He studied the class of Banach spaces B for which there exists a real number ¢, such that
llerdy + - -+ + endy ||L§ < cplldi +---+ dnl|L§ for all B-valued martingale difference se-
quences (d;, da, . ..), all numbers ¢}, &7, ... in {—1, 1}, and all n > 1. Burkholder called this
class “UMD” (unconditionality property for martingale differences). The technical proofs of
these general results are given in Section 4. We follow some ideas developed by Burkholder,
and also use a vector-valued version of Gundy’s decomposition.

Our applications arise from considering Doob’s maximal operator (Section 3.1) and the
square function (Section 3.2) essentially as martingale transform operators given, respectively,
by £®-valued and ¢2-valued multiplying sequences. In particular, this allows us to get all
known results about the square function as easy corollaries of the obvious L? boundedness.
Particular relevance has an easy and straightforward proof of the equivalence, due to Davis
(see [14D), 1 ¥l ~ ISl 11 (see (5) and (9) in Section 3.2). Moreover, some new £7-valued
extensions are obtained, see Corollary 1. From the fact that the square function is essentially
a martingale transform operator, we obtain some new characterizations of Hilbert spaces and
UMD Banach lattices in terms of the existence of the square function; see Theorems 4, 5, 6.
For example, we get the following results:

(1) A Banach space B is isomorphic to a Hilbert space if and only if there exists a
constant ¢ > 0 such that ¢~ NN < WSl < el f*I 1, where Sf stands for the square
function of f, i.e., Sf = (X_pe; ldi %)/

(2) Let X be a Kothe lattice with Fatou property. Then X is UMD if and only if for every
X-valued martingale f, it holds that, defining Sx f = (3_52, |dx|*)'/?,

”f”L}( <00 = SxfeXae, and Sx f € L}( = f converges a.e.

The organization of the paper is as follows. Notation and known results are collected
in Section 1. Section 2 is devoted to a general setting of martingale transform operators
with operator valued multiplying sequences. We give in Section 3 several applications. The
technical proofs are collected in Section 4.

We would like to thank R. Gundy for many enlightening conversations and comments on
some topics discussed in the paper.

1. Preliminaries. Let (§2, F, P) be a probability space and {F,},>1 a nondecreasing
sequence of sub-o-fields of F such that 7 = V F,,. Given a Banach space B, by a B-valued
martingale relative to {F,},>1 we mean a sequence f = {f,},>1 of B-valued variables such
that f, is F,-measurable, E(|| f,|B) < oo and E(fy+1|Fn) = fn forevery n > 1.

For any Banach space B and any B-valued random variable f defined on (£2, F, P), for
p,1 < p<oolet

£y = LEQFIRNP

be its Lg-norm, and in the case p = oo, set

Il fllzge =esssup || flis -
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The space L% is the space of functions with finite L% -norm. When the Banach space B in the
definitions above is the scalar field, the subindex B will be dropped.

For every martingale f = {f,},>1 we shall denote by dy f, or simply di, the “incre-
ments” of the martingale f, defined by dy = di f = fk — fx—1. In particular, a B-martingale
relative to {F,},>1 can be always expressed as f, = 2'1::1 dy, where di is Fi-measurable,
[kl L is finite and E(dg+1|Fk) = 0, k > 1. For a background on B-valued martingales, see
[15].

Given a B-valued martingale f, we say that the martingale is L’;-bounded, 1 <p<oo,
if || £l Ly = sup,, |l fnll Lt is finite. Doob’s maximal function of f is defined by f*(w) =
sup, || fu(@)ll B, fi (@) sup;<x<p Il fi (@)l B

In what follows, C will denote an absolute constant. When C depends on some parame-
ter, it will appear as a subindex. In both cases, the constants denoted by the same expression
are not necessarily the same from one occurrence to another.

REMARK 1. Forevery Banach space B the sequence {|| f, || 8}»>1 is a real-valued sub-
martingale. Thus, we have, see [16],

wP(f; >0 =C [ ifulaap,
{fi=>4)
which implies AP (f,;f > X) < C"f"”L}; and || fllLr < C,,]]f,,]]Lg, forall p,1 < p < o0.

REMARK 2. Given a B-valued martingale f such that f* € LP, we can decompose
it in two martingales g and & such that f, = g, + h, for all n > 1, and with the following

properties:
o0
> llewlis
k=1 Lp

n
1 h, = ZO‘" verifies
k=1
(2) For gn = Y j_, Bk, there exists an adapted, positive, increasing process {A,} such
that ||gxllp < An—1 and A%, < (13 +4p)[ f*llLr-
This decomposition is due to Davis, see [14]. The proof of the decomposition for scalar-
valued martingales also holds in the vector-valued case, if we define

<@ +4p)lfiilee.

ap =dixfrsapr ) — EWixigrsa 5 (1 Fk-1)
Br = dixifr<afy ) — Eldxigr<ape 11 Fi-1) -
REMARK 3 (Gundy’s decomposition [19]). Let f = {f,}»>1 be a martingale bounded

in L}; and A a strictly positive number. Then there exist martingales a, b and e such that
(1) fa=an+b,+e,foraln=>1.
n

(2) a,= ) apwith IIHIIL;9 < CIIfIILg, and )\P({:UPHQkHB # 0}) < CIIfIIL;,-
k=1 =1

(3) by =) P suchthat fg > IBkllsdP < Clifly-
k=1 k=1
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n

n
4) e, = Z(Sk verifying sup Z
k=1

n>1 k=1

Sk

< Ch,and|lefl,1 < CllfllL-
B

2. Martingale transforms.

2.1. Main theorems and some observations.

DEFINITION 1 (Martingale transform operator). Let B; and B, be two Banach spaces,
{Fn}n>1 an increasing sequence of o-algebras in a probability space (2, F, P), f = {fa}n=1
a Bj-valued martingale relative to {F},>1. Define v = {v,}n>1 a sequence such that

(1) {vn}a>1 is Fp-predictable, i.e., v, is F,—-measurable, for n > 2 and v; is Fi-
measurable,

(2) each v, is L(B;, B)-valued,

(3) v is a uniformly bounded sequence, with sup,,; [|va | L5, .8, <l
Such a sequence v = {v,},>1 will be called a multiplying sequence. The martingale given by

(Tf)n =) vid
k=1

is called the martingale transform of f by the multiplying sequence v, where dy = fx — fk—1
are the martingale differences of f. T will denote the martingale transform operator.

Observe that the following theorems will also hold for general uniformly bounded mul-
tiplying sequences, by just changing the operators {v,}n>1 with {v,/M},>|, where M =
supy, lonllLg s, 5,

THEOREM 1. Let By and B; be Banach spaces and T a martingale transform operator
as above. Then the following statements are equivalent:

(i) There exists C > O such that A\P{(Tf)* > A} < C||f|lL}g forany A > 0.
1

(ii) There exists C > 0 such that \P{(Tf)* > L} < C|| f*|l 11 for any A > 0.

(ili) Givenanyp,1 < p < 00, there exists Cp, > 0 such that (T f)*|[Lr < Cpll f*IlLr.

(iv) Givenanyp,1 < p < 0o, there exists Cp, > O such that |(Tf)*|lLr < C)p IlfllL;l; .

1

(v) There exist py, 1 < pg < 00, and a constant Cqy such that ||[(Tf)*|lpr0 <
Col f1,z0-
1
If By has the Radon-Nikodym property, then any of these conditions implies

(*) ”fIILllg] < oo = Tf converges a.s.

COROLLARY 1. Let By and By be Banach spaces and T be a martingale transform
operator satisfying any of the statements (i)—(v) of Theorem 1 and F = {F,},>1 a £4(B))-
valued martingale, F, = { f,,j }j>1, where 1 < q < oo. We define the operator T such
that (TF), = {(Tf/ ),,}7‘; - Then T is a martingale transform operator and satisfies the
following:

(i) There exists Cq > 0 such that AP{(TF)* > A} <Cy IIFIIL;q(Bl)for any A > 0.

(ii)  There exists C4 > 0 such thatAP{(f’F)* > A} < Cyll F*|I 1 forany A > 0.
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(iii) Givenanyp,1 < p < 00, there exists Cp 4 > 0 such that
ITF)*lie < Cpgl F¥liLs-
(iv) Givenanyp,1 < p < o0, there exists Cp 4 > O such that

ITF)*llLr < CpgllFllpr

4(By)

(v) There exist pg, 1 < pp < 00, and a constant Cy 4 such that
IKTF)*|lgro < CogllFli o -
fq(Bl)

DEFINITION 2. Let Bj, By be Banach spaces and T be a martingale transform operator
with multiplying sequence {vi}x>1 C L(Bi, B2). We say that T is a translation invariant
martingale transform operator if for any ko € N, the sequence {u’,ﬁ"}kzl, u';" = Vgy+k, defines
an operator Tx,, (Tiy fln = ZZ:l Uk+kodk, such that for any martingale f bounded in Lll-’h R
(T f)nllB, = 1(Tho fnll B, a-e.

REMARK 4 (Examples of translation invariant martingale transform operators).

(1) Given a scalar-valued martingale f, = Y ;_, dk, we consider the martingale trans-
form from scalar-valued martingales into £°°-valued martingales with multiplying sequence
{wikks1 C LR, £°) = £ given by wy = (0, ¥7D,0,1, 1, 1.....). Then

n

n n
(Tfhn =Y wids = (dl,dl tdr... ,de,de,...> :
k=1 k=1

k=1

n n n
(Tig n = Y Wigrkdk = (o, *o=D,0,d1,dy +dy, ..., Y di, de,...) :
k=1 k=1 k=1

and we have

(T fIn(@)llee = sup

1<k<n

k
Zd,-(w)» = 1| (Tip HIn (@) e -
j=1

(2) Given a scalar-valued martingale f, = Y y_, dk, we consider the martingale trans-
form from scalar-valued martingales into £2-valued martingales with multiplying sequence
{vkJk=1 C L(R, £2) = £% given by v, = (0, ¥7D,0,1,0,0.....). Then

n
(Tf)n =) wdi = (d1,ds, ... ,dn,0,...),
k=1
n
(Tig fln = ) vhgride = (0, X70,0,d),dy, ... ,dn,0,...),
k=1
and, as above, we have

J

n 1/2
T Fn(@)l2 = < |dj<w>|2> = | (Tio Hn(@) g2 -
=1

Now we give a converse of Theorem 1.
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THEOREM 2. Let By and By be Banach spaces and T a translation invariant martin-
gale transform operator such that each element vy of the multiplying sequence is a constant
operator from By into B;. Then the condition

() | f*Il1 < o0 = Tf converges a.s.
implies any of conditions (i) to (v) of Theorem 1.

3. Applications.

3.1. Maximal functions. Given a B-valued martingale f, = Y ;_, dk, we have al-
ready defined its Doob’s maximal function by f*(w) = sup,, || f» (@) || 5.

Define a martingale transform operator 7 given by the multiplying sequence {wy }x>1 of
operators in £(B, £°(B)) with wyb = (0, *7D,0,b,b,b.....), b € B, by

n n n
(Tfln =) widy = (dl,dl tdy, .., Y di Y dr, ) :
k=1 k=1 k=1

Then

M (T Finllex)(@) = sup [fi(@)llg, and, (Tf)* ()= f"().

I<k<n

It follows from Remark 1 that this martingale transform T satisfies (iv) and (i) in The-
orem 1, with By = B, By = £*°(B). In particular, T defined as in Corollary 1 satisfies
the hypothesis of this corollary. On the other hand, given F = {F,},>; an £9(B)-valued
martingale, F, = {f,{ }>1, by using (1) we have

1/q
(TF)* = sup [|(T F)nllea ey = sup (Z T F7)n u;'m(m>
n n ]

q\ /9 1/q
= sup (Z( sup n<ff)k||3> ) = (Z((fj)*)") :
J

n j 1<k<n

Therefore, given g, 1 < g < o0, there exists C; > 0 such that for any A > 0
) 1/q
(Z If7 ||‘§)
Jj
and given any p, 1 < p < 00, there exists Cp, ; > 0 such that
) 1/q ) 1/q
” ( Z((f’)*)") (Z If7 n%)
J J

In other words we obtain (in the case B = R) the martingale version of the well-known
theorem of Fefferman and Stein (see [17]) for the Hardy-Littlewood maximal operator.

9

L!

g Y- xq] <

=Cpyq

Lr Lp
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3.2. Square functions. Given B a Banach space and f = {f,},> a B-valued martin-
gale, f, = Y y_, dk, the martingale square function of f is defined as

00 172 n
Sf = (Z mn%) . Suf = (Z ndku%)
k=1 k=1

In the case when f is a scalar-valued martingale, by orthogonality of the differences d it is
clear that

1/2

2
) 1Sn f1I72 =

n
fj ldi | Y
k=1 k=1

Various results have been known for this function. The aim of this section is to show
that these results can be obtained as easy corollaries of Theorem 1 and the straightforward
L2-bound (2).

Given the scalar-valued martingale f, we consider the martingale transform Q whose
multiplying sequence is {vi}k>1 C L(R, €2) = €2 with vy = (0,%7D,0,1,0,...). These
functions are Fy_-measurable (since they are constants) and uniformly bounded by 1 (since
lvkll g, e2) = llvkllgz = 1). They define a martingale transform operator from scalar-valued
martingales to £2-valued martingales by

2
=1l .
L! Ll

(Qfn =kadk=(d1,d2,... ,dn,0,...).
k=1

Observe that

. 172 oo 1/2
(Qf)* =sup |(Qf)nll2 = sup (Z ldk|2> = (Z |dk|2> = Sf,
n o \k=1 k=1

and

n 172
3) ( > |dk(w>|2> = 1(Q)n(@) = (QFIm(@)ll¢2 -
k=m+1
Therefore, by using (2), we have that this martingale transform satisfies (v) in Theorem
1 with po = 2, B; = R, B, = ¢2. Observe that £2 satisfies the Radon-Nikodym property.
Then, applying Theorem 1, we have

C
4) P(Sf > 1) =PUQf)" > A) < xllfllu,
(5) 1SfllLe = Q)Y e < Cpllf*liLr, 1<p<oo,
6) lfll;1 <oo = Qf convergesas., i.e., Sf < oo ae.

Now we consider the ¢2-valued martingale F = {F,}p>1, with F,, = ZZ:I Dy, Dy =
{D}}>1. Each Dy is Fy-measurable and E(Dk|Fi—1) = O (in £2). Therefore Dy and D are
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orthogonal (in ng) for k # [ and then we have

@ IS F I3, = f > IDN%dP = f
2= Q

Moreover, for each j the component D,{ is Fg-measurable and E (D,{ | Fk—1) =0 (in R),
and hence D,{ and DZ are orthogonal (in L?) for k # I. We consider the martingale transform
operator R from £2-valued martingales into scalar-valued martingales given by the sequence
{Dkhks1 C LU R) = 02, x = (x, (0,%7D,0,1,0,...)) = x*, x € £2. Then

2

o,

k=1

n
2

dP = ||Fyll;> -

= 2 e

n
(RF)p =Y %Dy =D +---+Df,
k=1

and therefore applying (2) and (7), we have
n n .
IRF)ull}, = ISa(RF)I7, = fg Y IDfPPdP < /Q > (Zm;ﬁ) dp
k=1 k=1 \

n
= / IDI2.dP = ISy Fl|72 = IIFull?, .
2 k=1 l2

In other words, R satisfies (v) of Theorem 1. Then
C
P((RF)* > X) < —|Fl_,
A 2
I(RF)*|Lr < Cp”F*”LfZ , 1=p<oo,
||F||L12 < 00 = RF converges a.s.
I3

Now, given the scalar-valued martingale f = {fu}n>1, fn = D_j—; dk, We consider the
£2-valued martingale F = {Fy}n>1, Fp = 22:1 Dy, where D,’: = dj and D,{ =0,j #k.
Then [Fllpz = Sf,(RF)y =Y i, Dk =di +---+d, = fy and (RF)* = f*. Therefore
we have

C
(8) P(f*>1) < IlleHu,
©) If*llr < CplSfllLr, 1= p <o0,
(10) Sf e L' = f converges a.s.

Inequalities (4) and (8) are due to Burkholder, as well as (5) and (9) in the case p > 1
(see [8]). The case p = 1 in (5) and (9) was proved by Davis, see [14]. Result (6) is due to

Austin [1].
3.3. Hilbert spaces. Let {r,},> be the Rademacher system defined by

rn(t) = signsin2" 7t

for ¢ € [0, 1]. The following result is due to Kwapien, see [20]. Given a Banach space B, the
following conditions are equivalent:
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(1) B is isomorphic to a Hilbert space.
(2) There exists C > 1 such that for any sequence {x; }’}:l, n=12,...inB,

n 1 n
~1 2
'y lxjl s/ D xjri@
j=l1 0 =

Averaging over £2, Kwapien’s result can be formulated as follows.

2 n
2
dt <CY lxjlly-
B j=1

THEOREM 3. Given a Banach space B, the following conditions are equivalent:
(1) B is isomorphic to a Hilbert space.

(2) There exists C > 1 such that for any B-valued martingale sequence f = { fu}n>1,
we have

C_lllntIL§i SHSafll2 = Clifullz s, n=12,....

Given a B-valued martingale f, we define, analogously as in the last section, the £2(B)-
valued martingale transform Qf = {(Qf)n}n>1 With

n
(Qf)n = kadk =(d,day...,dn,0,...),
k=1
where vy = (0, 7D, 0, I, 0, ...). Observe that
(11 1(@F)nlle2py = Snf and (Qf)* =Sf.
Given F = {Fy}p>1 2 £2(B)-valued martingale with F, = S Dk, Dy = {D;{}jzl,
we define the £2(¢2(B))-valued martingale QF = {(QF),}»>1 by
n
(QF)n ZZVka = (Dy, Dy, ...,D,,0,...),
k=1

where Vi = (0, ®71, 0, I;25), 0, ...), and the B-valued martingale RF = {(RF)y}u>| by
n n
(RF), =Y D=y D,
k=1 k=1
where fx = x* for all x = {x/} ;> € £*(B).

LEMMA 1. Let B be a Banach space, and F = {Fy}n>1, Fy = Y 4_; Dk, a £2(B)-
valued martingale. Then we have

Sq.(RF) < S, F.
PROOF.  Sy(RF)* = iy IDG < Xhet X521 ID{IG = Yot 1Dkl =
SaF2.

THEOREM 4. Given a Banach space B, the following conditions are equivalent:
(1) B is isomorphic to a Hilbert space.
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(2) There exists C > 0 such that for any A > 0 we have
C C
P{f* >} < IIISfIILl and P{Sf > A} < IIIfIILk-

(3) There exists a constant C > 0 such that C~" NN < 0ISFl < Clf* -
(4) There existp, 1 < p < oo, and a constant Cp, such that

CoHIflly < USFlLr < Cpll il -

(5) If”f“L}, < 00, then Sf < 00 a.s., and if Sf € L', then f converges a.s.

PROOF. Assume (1). As B is isomorphic to a Hilbert space, we know that || S, f|l;2 <
Cllfall 2 Then by using (11) we have that the martingale transform operator Q satisfies
(v) in Theorem 1 with vy = (0, 71,0, 15,0...) € L(B,£*(B)) = (> ® B, B| = B,
By = £2(B), po = 2. In this way we obtain the inequalities appearing in (2), (3), (4) with §
on the left. On the other hand, £2(B) is a Hilbert space and in particular satisfies the Radon-
Nikodym property. Then by Theorem 1 we get, for martingales such that || /||, L < 0o, the
a.s. convergence (in Ez(B)) of the martingale Q f, which in particular implies Sf < oo, a.e.

On the other hand, again by Kwapien’s Theorem, we have || f, || 13 < ClISnfll 2. Using
Lemma 1 and the fact that £2(B) is also isomorphic to a Hilbert space, we have

IRF)Wll?, < ClISy(RF)I, < ClISuF I3, < C'lIFall3,
B 2

€<(B)
In other words, the martingale transform operator R satisfies (v) of Theorem 1 with v; €
L(¢*(B), B) = ¢ ® B, iyx = x* forall x = {x/};>, € ¢*(B), By = ¢*(B), B, = B,
po = 2. Now given the B-valued martingale f = {fu}n>1, fn = 24— dk, We can consider
the £2(B)-valued martingale F, = 37_| Dy, with D¥ = dy, D] = 0 otherwise. Then

12) RF)n=fu, RE)'=f", |Fulleg =Sf, (F)'=Sf,

and we get the rest of (2), (3), (4) and (5).

Assume (2). By equation (11) we get that the martingale transform operator Q satisfies
AP{(Qf)* > A} < C||f*||Lg, that is, (i) in Theorem 1. Therefore we get |(Qf)*|lLr =
ISfllr < Cpl f¥llLr, 1 < p < 00, and in particular [|Sfll,2 < Cllfll 2 -

Applying Corollary 1, we have that the martingale transform (OF), = {(QfHn} j>1
satisfies (v) of this Corollary 1 with B; = B, B, = £?(B), ¢ = 2, po = 2. In particular,
if F = {Flm1isa £2(B)-valued martingale with F,, = ZZ=1 Dy, Dy = {D,{}jzl, for
1 < p < o0, then

ISFlizr = u sgps,,F“” -

sup (O F)ull sy |, = IOF IlLr < CIF* I
n
Then by our hypothesis (2) and Lemma 1, we get

C C C
P{(RF)* > 1} < TSR < I“SF”LI < I”F*“Ll )
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which shows that R satisfies (ii) in Theorem 1. Now given f, = ) y_, di, we choose as
before F, = Y ;_; Di, with D,’i =dy, D,{ = 0 otherwise. Then we get || f*||;1 < C|ISf |l .1,
and also ||f*||L§ < CpllSfllLr, for 1 < p < 00. So we have proved (2) = (1), (3) and (4).

Using the operators Q and R, (3) = (2) and (4) = (2) can be proved in a similar way.

Finally we shall prove that (5)= (1). By using (3) (in the B-valued setting) we have
that || f|| L, <00 = Sf < oo implies that the martingale transform operator Q satisfies the
hypothesis in Theorem 2. By (11) we get [|Sfll;2 < Cll fll 2.

Again, by using Corollary 1, we have ||[SF||;1 < C||[F*||;1. Given the operators ¥; €
L(¢*(B), B) = £>® B, 3;x = x/ for all x = {x/} € £2(B), consider an arbitrary sequence
v = {Uyk)} e Of this operators and the corresponding martingale transform operator given
by

n
~ 1
(RoF)n =Y gD = D'V + -+ DY
k=1
As in Lemma 1, one can see that every sequence v satisfies S,(R,F) < S,F. Then by the
part already proved, we get
IS(RyF)lipy < ISFllpr < CIF* |l .

'

Using the hypothesis (5), we conclude that for any sequence v and any £2(B)-valued
martingale F such that F* € L!, the martingale R, F converges a.s. (in B). Therefore, by
Remark 7 after the proof of Theorem 2, we have that any martingale transform R, F' satisfies
the conditions in Theorem 1. Now given f, = Y ;_, dk, we choose as before F, = Y y_, Dx,
with D,’(c = d, D,{ = 0, and ¥,x) = vk and obtain ”f”LZ < CpliSfllLr, 1 < p < 00.

3.4. UMD Banach lattices.

DEFINITION 3. A Banach space X is said to be UMD (unconditionality property for

martingale differences) if given p, 1 < p < oo there exists a positive real number C, such
that

lerdy + - +3ndn”L5’( <Cpldy +--- +dn“L’;(

for all X-valued martingale difference sequences (d;, da, ...), all numbers €1, &7, ... in
{—1,1},and alln > 1.

This definition is due to Burkholder, see [9]. It is known that the existence of one pg
satisfying the inequality is enough to assure the existence of the rest of p’s, 1 < p < 00, see
[22].

By a Banach lattice we mean a Banach space X over the field of the real numbers,
together with an order relation < on X, satisfying the following properties:

(i) x <yimpliesx +z <y+zforeveryx,y,z € X.

(i) ax >Oforeveryx >0in X andeverya > 0inR.

(iii) Forevery x, y € X, there exists the least upper bound (say, sup{x, y}) and also the
greatest lower bound (say, inf{x, y}).



460 T. MARTINEZ AND J. L. TORREA

(iv) If |x| is defined as |x| = sup{x, —x}, then the order relation |x| < |y| implies the
inequality between the norms ||x|| < [|y]l.

DEFINITION 4. Let X be a Banach lattice. X is said to be p-convex, 1 < p < oo, if
the following inequality holds:

m 1/p m 1/p
(Z |x,-|1’> < c,,(z nx,-n;}) :
j=1 X j=1

and X is said to be g-concave, 1 < g < oo, if the following inequality holds:

m 1/q m 1/q
(an,-n‘,’() <G (lem)
j=I

j=1
where in both inequalities, the constants are independent of m.

’

X

Note that the Banach lattice L? is p-convex and p-concave.

When X is a lattice of functions or, more generally, when X is order continuous, the
concrete representation of the lattice allows us to define (Z;f;l [x1P) 1/P in the obvious way.
However, for a general lattice, these expressions need some technicalities to be defined, see
[21].

REMARK 5. The following generalization of the classical inequality of Khintchine
holds, see [21]. Let X be a g-concave Banach lattice for some g < oco. Then there exists a
constant C < oo such that, for every sequence {x j}’}‘=1 of elements of X, we have

m 1/2 m 1/2
12 2
(Z|x,| ) ) fwl) Zr,(t)x, (Dx,l )

j=l ]:1
DEFINITION 5. Let X be a Banach lattice and f = {f,},>1 a X-valued martingale,
fn = Y g dx. For each positive integer N, we define the operators

N 1/2
Sx.N f@) = (}: |dk(w>|2> :
k=1

Then ||Sx. n fllx can be seen as the norm of the element (d, ... ,dy) in the Banach

space
1/2

X&) = [{x:} ,cX”( lxi|2) <oo].
X

X ((%,) is also a Banach lattice with the coordinate-wise order when X is a Banach lattice.
We can prove the following characterization of UMD Banach lattices.

c! dt < c‘

X

THEOREM 5. Given a Banach lattice X, the following statements are equivalent:
(1) X satisfies the UMD property.
(2) There exists C > O such that for any A > 0 we have

C
PUF > 4 < ZswplSk Sy and PlISxwSlx = 3 < 1Ay
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(3) There exists a constant C > 0 such that C~! lf*ll,r < supy ||SX,Nf||L;( <
Cllf*lipr-
(4) There existp, 1 < p < 00, and a constant Cp, such that

Cp 1y < sup ISk flzg < Collfllg

PROOF. The proof follows the argument on the proof of Theorem 4 with some technical
modifications.

(1)< (4). This is due to Bourgain and Rubio de Francia, see [7] and [23]. It can be
obtained by using Remark 5 and the fact that any lattice with the UMD property is g-concave
for some g < 0.

In order to see that (4)=>(2) and (3), we consider the martingale transform operator
QX,Nf = {(QX,Nf)n}nzl, defined by

n
(Qx N n=) vidi=(d1,dp, ... dnsN,0,... ,0),
k=1

where v = (0, 7D, 0,1x,0,...,0) € L(X, X(€3)), vex = (0,%7D,0,x,0,...,0) for
x € X, when k < N and vy = O otherwise. Then ||(Qx,Nf)n||X(e%/) = ||Sx.nan fllx and,
therefore, Q x n satisfies (v) of Theorem 1 since for all n

1CQx,NFnllpr , = CIIfIIL;, forsome p, 1 < p <o0.
X(€5)

Let us consider now the extension of Qx n, which we will call Q X, N, defined for X (Ei,)-
valued martingales by

n

(OxNF)a =) ViDg=(D1,..., Dy, 0,...,0) € X(UR)(ER)
k=1
where
N 1/2
X(€3)(€3) = [{xi},”:] C X (€3); H (Z |x,-|2) < oo} :
i=1 X(3)
and V = (0, 7D 0, IX(Z%/),O, ...,0)fork < N, V, =0if k > N. This transform verifies
for a X(Zi,)-valued martingale F such that F,, = F,}, e, F,f‘]):

X(%)

N 12
OxNF)* =1 @xNFIvllx@)@,) = “ (; |Dk|2>

N 1/2 N 1/2
-|((gee) o (eee) )
k=1 k=1 X%)
N N 12 N N2
(ZDD,{P) ’( an,NF/VV)
j j=1

k=1 j=1 j=

(iilbz‘lz)m

j=1k=1

X

X X3
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Using Krivine’s Theorem, see [21, page 93], we have thatfor 1 < p < 00

N N2
(}: |Qx,NF/V|2)

j=1

I OxnE)*llee = I Qx.NF)nllr

2,2 _‘
X@)E3)

N o \12
(L)
j=1

where K¢ is the universal Grothendieck constant. This says that the martingale transform
operator 0 x.n also satisfies (iv) of Theorem 1.
On the other hand, given the X (Z%,)—valued martingale F = {F,}u>1, Fn = ZZ:I Dy,

Dy = {D,i } ?’zl, we define a martingale transform operator Ry ny as

LI’
X&)

<CKg

=CKgliFnlr = <CKGlFllyr
P X(2) x@3)
X

nAN

n
(RxNF)n =) oDy =) _ Dy,
k=1

k=1
where ;x = x/, x = {x/} € X(£3), for j < N and §; = 0 otherwise.
Then, using the hypothesis and the fact about Q. n, we have

N 1/2
(2 etr)
k=1

I(Rx, N F)nllr < Csup | Sx,m(Rx,nF)llp < C‘
M

L%
N N 12
, )
< CH(ZZID,U ) = CI@x NNl |
J=1k=1 Ly Xy
<ClFnllr = <CIFlp .
X2, X(32)

N N
This says that Ry x satisfies (iv) of Theorem 1. Now we have the same ingredients as in the
proof of Theorem 4 and we leave the details of the remaining part of the proof to the reader.

3.5. UMD Kothe Banach lattices. For a general lattice X, size conditions over Sx n f
state whether or not X is UMD. In the special case when the lattice is a Kothe function lattice
with Fatou property, convergence conditions also characterize those that are UMD.

Let (X, A, 1) be a o-finite measure space. A Banach space X consisting of equivalence
classes, modulo equality almost everywhere (a.e.), of real-valued, locally integrable functions
defined on X, is called a Kothe function space if the following hold:

(1) If [f(s)] < |g(s)| a.e. on X with f measurable and ¢ € X, then f € X and
I£lx < llglx-

(2) Forevery E € A with u(E) < oo, the characteristic function xg of E belongs to
X.

Every Kothe function space is a Banach lattice with the obvious order ( f > 0 if and only
if f(s) > 0a.e.).

A Kothe function space is said to have the Fatou property (see [21]) if for any sequence
of functions { f,} in X such that f, > 0 a.e., f,(s) 1+ f(s) a.e. and sup, || fullx < 00, then
f e Xand | fllx = sup, || fullx.
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For such a function space we have the following

THEOREM 6. Let X be a Kothe lattice with the Fatou property. The following state-
ments are equivalent:

(1) Xis UMD.
(2) For every X-valued martingale f, it holds that, defining Sy f = (ZZ‘;I |d |12,

||f||L;( <00 = SxfeXae., and Sxf € Lﬁ( = f converges a.e.

PROOF. Following the ideas in the proof of previous theorems, we try to regard Sy f
as the maximal of a martingale transform operator valued in certain Banach space. Define

0 1/2
X(@2)={{xi}?il cX; “(ZIX,'|2> <oo}.
i=1 X

If X has the Fatou property, then X (¢%) is a Banach space. It is also a Banach lattice with
the obvious order ({x;} < {y;} if and only if x; < y; for all i). Moreover, if X is UMD, X (¢2)
is also UMD (see [23]).

Suppose X is UMD. By Theorem 5, this is equivalent to the condition

Sl/\]/p IISX,NfIlL; ~ llflng{ .

Since L';( has the Fatou property if X has, for any f bounded in Lf(, 1 <p< oo, we
can define Sy f = supy Sx,n f in L;. Also, we have ||Sxf||L§ = supy ||SX,Nf||L;.

Consider the martingale transform Qx such that, for a X-valued martingale f, f, =
> % dk gives the X (¢2)-valued martingale (Qx f)n = > j_, kdk = (d, ... ,dp,0,...).
Then, since X is UMD and ||(Qxf)nllx(ez) = ||Sx.»nfllx, Qx verifies statement (iv) in
Theorem 1 with By = X and By = X(£2). Moreover, X is superreflexive (see [9]) and
therefore it has the Radon-Nikodym property. Then, by (x) in Theorem 1, we get that f being
bounded in L}( implies that Qf converges a.e. in X (¢£2). But this is equivalent to Sy f € X
a.e., and hence we obtain the first part of (2).

Define now the martingale transform Ry for X (62)-valued martingales F, = ZZ= 1 Dk
by (RxF)n = Y p—; Dk = Y j_, D¥, where the operators ¥ are defined to be #;x = x/,
for any x = {xj}jzl € X (£%). We have for 1 < p < oo.

sup [[(Rx F)nllp < Csup ISxn(Rx F)li p = Csup
n n n

n 1/2
(Zmﬁ)
k=1

< Csup|Full,r
n § wa%

n 1/2
(ZlDflz)
k=1

P
LX

< Csup
n

=C sup ”SX(ZZ).nF”Lp
LP n X2
X(€2)

where the first and last inequalities are due to the fact that X (£2) is a lattice and X and X (£2)
are UMD.
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Then, Ry verifies (iv) in Theorem 1 with B; = X (¢2) and B, = X. For any X-valued
martingale f, f, = Y ., d, taking F such that Dy = (0, 7D, 0,4y, 0, ...), we obtain the
second statement in (2).

To prove the converse, we do in the same way as in the proof of Theorem 5. It would
suffice to conclude from (2) that transforms Qx and Ry verify Theorem 1. Since Qx is
translation invariant, the first statement in (2) assures that it verifies the theorem, and we get
supy 1Sx,v Fllz < Cllf g

Ry also verifies Theorem 1, since it can be seen, in the same way as in Theorem 5, that
F*eL! implies that Sy (Rx , F) is in L}( for all transforms Ry ,. As it is usual, here v is
a choice of operators vy in such a way that (Rx ,F), = ZL] D,'(’ ®) The extension of the
transform Qx that we need this time, Qy, is defined for X (¢2)-valued martingales F as the
X(Cz)(ez)-valued martingale (QX F), = (Dy,...,D,,0,...). From Krivine’s theorem we
see that this transform verifies Theorem 1 if Qx does, and this yields the desired result, with
the same reasoning as in the proof of the former theorem.

3.6. The Hardy-Littlewood property. Given X a Banach lattice, J a finite subset of
positive rational numbers and f a X-valued function defined in R", consider the maximal

operator

1
M —sup — dy.
176G flellj) |B(x, )| JBx,r) I Oldy

X is said to have the Hardy-Littlewood property if there exists pg, 1 < po < oo such that M
are bounded in Lf(" uniformly in J, see [18]. The definition depends neither on the dimension
nor on pg. Moreover, it can be seen, see [18], that X has the Hardy-Littlewood property if
and only if M are uniformly bounded from L}( into weak —L}(.

For a X-valued martingale f, we can define the maximal operator

Mxnf = sup |fil,
1<k<N

and we say that X has the probabilistic Hardy-Littlewood property if there exist a constant C
and a pg, 1 < po < 00, such that supy “MX,Nf”L;o < C”fllL;o- Using our method we
can prove the same kind of equivalent definitions of this property as in the Euclidean case.
Moreover, we can go further and prove the following characterization.

THEOREM 7. X has the probabilistic Hardy-Littlewood property if and only if

sup IIMX,NfllL;( <Clf*lp -
N

PROOF. Observe that for each N

M =" max Il = N_ .
IMx .~ flix lska!fkl X H{fele=1 1 x e
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Consider the martingale transform operator Uy such that it gives for a X-valued martingale
f, the X (£37)-valued martingale

n
(UNf)n =Zwkdk=(d1#dl+d27 vd1++dn/\Nv~ ’dl++dnAN)
k=1

=(fl"'- afn/\N"" ifn/\N)GX(gloVo)v

where wyx = (0, 7D, 0,x,... ,x) € X(¢¥) forallx € X and k < N, wy = O otherwise.
Then, if X has the probabilistic Hardy-Littlewood property, Uy verifies (iv) in Theorem 1
with B| = X, By = X (£%7), and the bounds are uniform in N. In particular, from statement
(iii) in Theorem 1, we get the second statement, also uniformly in N. The converse can be
obtained with the same reasoning.

REMARK 6. It is clear that the Hardy-Littlewood property implies the probabilistic
Hardy-Littlewood for dyadic martingales. The converse is also true due to the fact that Hardy-
Littlewood maximal operator is controled by an average of the dyadic maximal operator, see
[17].

4. Proof of the general results.

PROOF OF THEOREM 1. We shall prove (i)=(ii)=>(iii)=>(iv)=(v)=(i) and (iii)= (*).

That (iii)=(iv) follows from Remark 1. (i)=>(ii) and (iv)=(v) are obvious.

We begin with proving (ii)=>(iii). Consider a martingale f such that f* € LP, 1 <
p < oo (in other case there is nothing to prove). We can decompose f, see Remark 2, as
fn = gn + hy, and then

ICTH* e < WT 9 e + ITHY I .

By the fact that the sequence vy is bounded in £(Bj, B,), and the properties of the
martingale &, see Remark 2, we get

n n
I(ThY*llLr = | sup | Y vk < |[sup > vkl ces,. Byl 5,
n k=1 B 'Lp nok=1 LP
n o0
<supd llewlls, | =) llewlls, | =< Cpllf*lier-
k=1

k=1 LP LP

Define y, = 2XA,. {y»} is an adapted, positive, increasing process such that | gsllg, < Yn—1
and it also controls its martingale differences

IBnllB, < llgnllB, + lgn-1llB, < An—t 4+ An—2 < 2Xp_1 = Yu—1.
Let us fix A > 0. For B, § satisfying 8 > § + 1, define the following stopping times:
w=inf{n: (T gnls, > 2},

v =inf{n: |[(Tg)nlls, > P2},
o =inf{n : |lgxllg, > S\ or y, > §A}.
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These are clearly stopping times, as g, (T g), and y, are F,-measurable and 4 < v. Define
the functions u, = x{u<n<vac}, Which are uniformly bounded by 1 and F,-predictables,
since{u <n<vAaog})={u<ninNf{n<vaocl={u<n—-1}N{oc<n—-1}N{y =<
n—1}e F_1.

Consider the martingales a, = > y_, uxfx and (Ta), = Y _y_, vkuxBk. These martin-
gales have the following properties:

(1) a* <28)inthe set {u < oo} and a* = 0 in {u = oo}. In particular, we have

la*[l 1 < 28AP(u < 00) = 28AP((Tg)* > 1).

(2 P(T@* > Br,y* =61 < P(Ta)* > (B—48— DA).
From these properties of a and Ta and hypothesis (ii) we get

P((T@* > Br,y* <81 = P((Ta)* > (B—8 — DA)

= m”a Il

e s e (GO
cs .

= mp((Tg) >A).

Also, this leads to the following inequality:

IT*IT, = p /0 APTIP((Tg)* > Mdh = p /0 BVPTIP((Tg)* > BA)BdA
=p / BMNPTIP((Tg)* > BA, y* < 81)BdA
0

+ P/ (BMWPTIP((Tg)* > Br,y* > 81)BdA
0

o0 _ Ca ooﬂp _
p—1 * p—1 *
Sp/O B0 S P(T) >)»)ﬂdk+p/0 S PG > de
Cs P
— R8P * ) P L * P
B '3_5_1||(TQ) lzr + 57 ly™Ilye -

Taking B, 6 such that (C887)/(B — 8 — 1) = 1/2, we obtain
KT @™ lr < Clly*ller = ClIA*|ILr -
With this the first part of the proof is complete, since for our martingale
ITH e = T 9" e + TR e < CUAXLe + 1 f*ILr) < Cllf*lILe -

In order to prove (v)=>(i), we shall use Gundy decomposition. Fix A > 0 and decompose
f, following Remark 3, as f =a + b + e. Then

P((Tf)* > 1) < P((Ta)* > 1/3) + P((Th)* > 1/3) + P((Te)* > 1/3).
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We will denote by oy, Bk, 8k the martingale difference sequences for a, b, e, respectively. By
using the properties of the martingale a, we have

A C
P ((Ta)* > 5) <P(Ta#0)<Pl@a#0) =P (Sl]l(p llotk |1 3, #0> < IIIfIIL}gl .

On the other hand, since the operators vy are of norm 1 and By satisfy (3) in Remark 3, we
have

n

A\ 3 ) 3
p ((Tb)* > 5) =7 /(Tb) dP = stgp I(Tb)nllB,d P
> wbr

> [ dP<3fiuﬁu ap < Sl
== su = — .
A "p k=1 P = AR Ly

Hence, by using the hypothesis and the properties of e, we get

A C C
* — —_ *Po - Po
P ((Te) > 3) < 7 /(Te) dP < T sgp/ lenll,d P
C C C
< ISl’llp/ ”en”BldP = I”e”LE, < x
Finally, we will prove that condition (iii) with p = 1 implies (x).
Fix A > 0 and define the stopping time u = inf{n : || f|| 3, > A} and the scalar functions

Un = X{uzn) = X(f*_,<xr)- These functions u, are F,-predictable and uniformly bounded by
1. We consider the following martingales:

11y, -

n n

o= de, Fo=) wdi, (THHn=Y) wde, (TF)y=) viudy.
k=1 k=1

k=1 k=1

Observe that if n > w, F, = Y j_ X(u=k}dk = fu, then |Fyllg, = || full5,- On the other
hand, if n < u, F,, = f,. Therefore, if n > u,

Ff= <

n = max I FillB, = | Jnax_ | Fill 8, +#r2?§n | Fxll 8,
= <

| nax_ | Il fill B, + max I fullg, <A+ fulls

and in case n < u, Fy = maxi<k<u || FxllB, = maxi<k<n || fkllB, < A. Consequently,

o0
VET Iy <A+ Il =A+Z/{ il dP
k=1 =
n
=A+Zf
k=17 {u
n
SH'Zf
k=171{n

where in the last inequality we have used the martingale properties of f.
Applying (iii) to the martingale T F, we have that there exists a constant C such that
IKTE*|l;r < CIF*l;0 < CA+ I fllz1). Then F* and (T F)* are in L' and, since B,

I fellg,d P +/ 0 fulls,d P

{u>n}

||f,,nB.dP+f

{u>n

=k}

| fallsydP = A+ 1 full,
=k) ) 1
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has the Radon-Nikodym property by assumption, (T F), converges almost surely, see [13].
Now Tf = TF in the set where u; = 1 for all k, that is, in {f* < A}. In other words, T f
converges almost surely in the set { f* < A}, with A any positive number. If we choose a
sequence A, 1 0o, Tf converges a.s. in { f* < A,} for all n and therefore T f converges a.s.
in {f* < oo} = 52, {f* < An}. But using Doob’s inequality, we have

C
* 1 * o -~ =1.
P{f* <oo}= lim P{f* <2} 21— lim ™ IIfllL;?I 1

PROOF OF COROLLARY 1. Let vy € L(By, By) be the multiplying sequence of the

martingale T. Given F,, = Y ;_, Dy = {D _j_, d,f}?‘;l = {fj}?il, we have
B . n . o n
(T F)n = (T}, = {kad,{] =" ViDx,

k=1 j=1 k=1
where Vi = {vr, vk, vk, ...} € £2°(L(B1, By)) C L(E9(B1), £9(B2)), and [[Vill < [lkll.
Therefore, T is a martingale transform operator. On the other hand, given ¢, 1 < g <
00, since T satisfies Theorem 1, we have, ||Tf/ s, < ITFH* Ny < Collf? s, and
2 1

therefore

TF = T =
I IIqu(Bz) st;pll( F)nIIqu(Bz) sgp

. 1/q
(Z 1T f7)n ||5’92)
j L
_ 1/q
(Z ICfn ||‘g,)
j L4

By Remark 1 this means that T satisfies (v) of Theorem 1 with B replaced by £9(B) and B,
by £9(By). Then the corollary follows.

=Gyl Fls

4By

< C4sup
n

PROOF OF THEOREM 2. We will prove (ii) of Theorem 1. The proof follows the
argument for Theorem 1.1 in [9].

First, observe that we may assume f; = d; = 0. Given f = {f,}»>1 a martingale,
with associated o -algebra sequence {F,},> and other o -algebra G, construct the o -algebras
in the product space .7:',, =F, X §2, G = £2 x G. Consider a G-measurable random variable
r with P(r = 1) = P(r = —1) = 1/2, and define 7(w;, w2) = r(wz). 7 is independent
with respect to the fn-maningale fulwi, w2) = fu(w) and the fn-multiplying sequence
Up (w1, 02) = vp(wy).

We now define a martingale with the same behaviour as { f, },>1 and such thatd; = f} =
0. Let

Al={0,2xR2), A=cGUF),...,
Ay =0GUF,_))=c{AxB: A€ F,_1,BeG)

be another o-algebra sequence. The sequence D = (D, D, D3,...) = (0, Fdy, idy, .. D)
is then a A,-martingale difference sequence. The martingale whose differences are D is
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F = {Fy}n>1 defined by
n—1 B B
Fi=0, Fy=)Y Fdi=Ffu1, n=2.
k=1

Consider now the A, -multiplying sequence V = (I, 1, 7, ... ), where [ is any operator
in L(Bj, B;). The martingale transform of F by Vis TF = {(TF),,}, with

n—1 n—1
(TF) =0, (TF)y=)Y tGd)=FY Hdy=FTfar(@), n>2.
k=1 k=1
Then we have ||Fullz, = Il fu-1lls,, I(TFalla, = I(Tf)n1ll, and that the set where

TF converges is the set {w; : Tf converges} x £2. Therefore the martingale f and its
corresponding martingale transform T f verify the theorem if and only if F and TF do. The
rest of the proof is for F and TF, but we will avoid unnecessary notation by keeping the
names T, (vy, v2,...) and f for the martingale transform operator, its multiplying sequence
and the martingales that we will handle, respectively. As an intermediate step we shall prove

(xx) There exists an absolute constant C > 0 such that, given any A > 0.
(Tf)* >rae. = ||f g >CAr.

It suffices to show (xx) for A = 1. Suppose that (xx) is not true, i.e., for every j > 0 there
exist a martingale f/ such that (Tf/)* > 1 as., but [[(f/)*||,1 < 27/. Then we are going
to find a counterexample for (), that is, a martingale F such that F* € L' but T F does not
converge almost surely.

We may assume that for each j there exists an index #; such that
- 1
P((Tfj)nj >1) > 7"

Otherwise, we would have P((Tfj):‘n > 1) < 1/2 for all m and then P((Tfj)* > 1) <1/2,
while our hypothesis is (Tf/)* > 1 a.s.

Each f/ is defined on a probability space (£2/, F/, P/) and it is relative to an increas-
ing sequence of o-algebras, {Fj },>1. Transfer all the martingales f/ to the product space
(2, F, Py =[172,(22/, F/, P/) to obtain independent martingales in the usual way, defin-
ing the o -algebras

Fl=Q"'x xQI""'xFl x /! x ...

and the sequences

flhw. .. )= flw), dw, o, . . )=dw).
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Define a new sequence of o -algebras by
A= F Ay = F
Ant1 =0 (FELUFD, oo Anyany = 0(FLUFL).
Anytnmprt = 0(F) UFL UFD). ..

Ay tnstetmsn = 0(Fp UFE U+ U J-‘,’;k UFth,
where h = 1, ..., ng41. The sequence given by
(13) =@d|.dy.....d} . di,....d} . d}....)
is the A4, -martingale difference sequence of the martingale F, that verifies

Faptotmeth = Jiy + foy + o+ fi + B k=1

Therefore, for h = 1, ... , ng41, we have
ny+--+ng+h
(TF)pyocgmprn = Z v;iD;j
Jj=1
(14) = id] v} A v v 1@ o v pdl,

+vﬂ1+nz+l‘?13 +ot vn|+~~~+nk+|&rlfk +eee vn|+---+nk+hd-1";_’—1
= (T + Ty Py + -+ Tyt FOn + Ty D0

Observe that F* isin L!. Since, for h = 1,...,ngy1, we have
k+1

I Pyt hll 3, < Z 1A s, + 1A s, < Z(f .
i=1
and then || F¥ L ipllin < Sk 2= < 1. Thus, | F*|l0 < 1.
Now we shall see that T F does not converge almost surely, that is, it does not verify ().
It is clear that lim sup,, ,,, {|[(T F), — (T F)mll B, > 1} is a subset of the set of points w for which
there does not exist lim,_, o (T F),(w). Using the fact that T Fy,, 4...qonyoh — T Fypyogon, =
(T4t f )1, the events

R+1
A= JUT Fonytoctmrn = (TFny g 13, > 1)
h=1
— rk+1
= {lfli;nfa’iiﬂ ||(Tn|+~-+nkf )h”Bz > 1}

are independent (since (T}, 4...4n, f k+1y, are independent in k) and verify, due to the choice
of the ny’s and the fact that T is translation invariant,
- 1
— k+1 k41
P(A) = P (152"%. Ty 4 Dl 8y > 1) PATF* 5, > D> 5.

Then Borel-Cantelli lemma tells us that P (lim sup Ax) = 1, and therefore that there does
not exist lim,,—, oo (T F'),, in a set of probability 1.
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We shall prove now that (x) and (s*) imply (ii) in Theorem 1. Choose a martingale f
such that || f*||;1 = 1 and a fixed A > 0. We can assume that there exists an index rng such
that

P((Tf),";0 >A)=p>0.

Otherwise, since P((Tf)} > 1) = O for all n it leads to P((T f)* > A) = 0, and there would
be nothing to prove.

As in the preceding part of the proof, we can construct infinitely many independent
copies of the sequences (f, Tf), say (f/, Tf/), moving the variables to the infinite product

space, where f is now defined on a probability space (§2, F, P) and it is relative to an increas-
. ~ j—1)
ing sequence of o-algebras, {F,},>1. Define then the o-algebra sequence F;, = 2 x vl

X2 x F, x §2 x ---, and the sequences ff, Tfj, as before.
Define now the functions u; = x;r 7iy» <;)- Eachu; is F,,-measurable, since
IIO—

(T f (@1 @2,...) = max (T ftwr, @2, )lig,
<k<no

= max |[(Tf)@))lp, = (Tfn, (@)
<k=<ng

and verifies for all j
E(uj) = P((Tf);, <M =P(Tf)}, <M =1-p.
Define a new sequence of ¢ -algebras by
Ar=Fl . Ay =FL
Angrt = 0(Fp UFD), .., gy = 0(F) UF),
Aoosr =0 (FL UF U, ...
Atngrh = o(Fp UF2 U+ UFE UFFH,

where h = 1, ..., ng. Now, the sequence given by

71 31 1 72 72 3
D =(d.dy.... dy,uid}, ... uidy upuady, ...),

Jk+1
Dkn0+h=ul'--ukdh+ , h=1,2,...,np

is a A,-martingale difference sequence. The martingale whose differences are D is F, with
n
(15) Fu=) Di=fo+uifp+-+ur...ufft, n=kno+h, h=1,.... no.
k=1

Observe that for n = kng + h, where h = 1,... ,ngpand k = 0, 1, ..., it holds the
following

IEallg, = I f +ur f2 + - +urou fi g,
< Wk le +utl f2 s+ +ur.ouel FE s, -
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Then F;f < (f)5, +ui(fD), + - +ur...up(fA1)}. Using the fact that || /*[| 1 = 1 and

no
uj is independent of f,ﬁ and u; for all j # k, [, we have that

IE L < ICFDg I + E@DIG Dl + -+ E@) ... E@ol D5
2 1
< 1+(1—p)+---+(1—p)"SZ(I—p)"=;.
k=0

Therefore || F*|;1 < 1/p.
Let us consider now the martingale T F, which is, forn = kngo+h,h =1, ..., no,

(16)  (TF)y =Y D= (T f g+ u1(Tng [y + -+ + 101tk (Tang 1
k=1
Since (T F)y = (T f')y for 1 < n < ng, we have {(T 1), > A} C {(TF)* > 1/2}. Also

. " s
(TN, <M N (T A5 > M C [(TF)* > 5} ,

since in that set u; = 1, and (T F),, = (Tfl),,o, (T F)pg4n = (Tf‘),,0 + (T,,sz)h, for
h=1,...,no. Therefore

A< Ty fHn, = max |(Tny fHulls, = max |(TF)ngsn = (T Fnyllp, < 2T F)*.
1<h<ng 1<h<ng
By the same reasoning, all the sets of the form
(T S A0 N {(Te2ing £ < M N {Trmtyng £ > M

are subsets of {(T F)* > X\ /2}. These sets are disjoint and (T(j_l),,ofj);‘;o, (T<k-1>n0f")20 are
independent for j # k. Therefore, we have

P{(TF)* > 1/2}

> PHJA@ D5 <20 N {(Tamaing £ 7105 < M N (T smyng ) > 2D
k=1

PUT A5 < A0 0 {(Ta=in 05 < AT mtyng £y > M)

nogp —

M

~
Il

1

p(l—pft=1.

M

]
Then, (T F)* > A/2 a.s. and applying (**) we have for some absolute constant C

~
I

>0

1
Cr=|IFH Iy = » = p=P{(Tf)y, > 1} =<

Finally, we note that the index ng was chosen to verify P((Tf e > A > 0. As
(Tf ):0 = (T f ),’jo for all k > 0, we could have chosen any other index no + k and have

reached for it the same conclusion P ((T f ):0 +x > A) < C/A for the same constant C. Taking

limits, we obtain P((Tf)* > A) < ¢/X and the proof is finished.
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REMARK 7. As far as we know, there does not exist a useful complete reciprocal to
Theorem 1. Nevertheless, Theorem 2 also holds under other assumptions, for instance, the
following condition

' I f*llg0 < o0 = T®f converges a.s.

when it is verified for any martingale f and any 7¢ in the following class of martingale
transform operators. Consider the family {7%}yc4 of martingale transform operators de-
fined by multiplying sequences {v}} such that each v} is a constant operator and for any

sequence {«(k)} C A, the multiplying sequence {v,‘f(k)} defines a martingale transform oper-
ator T# € {T*}qe 4. This property of the family of martingale transform operators allows us
to construct martingales F, T F in the same way we did in (13), (14), (15) and (16). Then, a
slight modification of the proof above for Theorem 2 yields that any T# € {T%}4c4 verifies
statements (i)—(v) in Theorem 1.

Acknowledgments. We thank the referee for his suggestions, which contributed to im-
prove the final version of this work and, in particular, to clarify Theorem 2.
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