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ABELIAN VARIETIES OF WEIL TYPE AND
KUGA-SATAKE VARIETIES
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Abstract. We analyze the relationship between abelian fourfolds of Weil type and
Hodge structures of type K3, and we extend some of these correspondences to the case of
arbitrary dimension.

Introduction. Abelian varieties of Weil type are examples of abelian varieties for

which the Hodge conjecture is open in general. We study the structure of abelian fourfolds of

Weil type, giving an explicit description of the Hodge structures of the cohomology groups,

in particular the sub-Hodge structures of the second cohomology group. Starting from the

observations of Paranjape [P], we show that for certain abelian varieties of Weil type (those

with discriminant one) there exists a polarized sub-Hodge structure of the second cohomology

group of dimension 6 with h2'0 = 1. We show that the map which associates this polarized

Hodge structure to an abelian fourfold of Weil type with discriminant one admits an "inverse".

Indeed, we can construct the Kuga-Satake variety associated to this Hodge structure and prove

that the Kuga-Satake variety is an abelian variety of dimension 16 which is isogeneous to the

product of four copies of the abelian fourfold of Weil type we started with. In the last section

we generalize some of these results to higher dimensions; starting from a polarized weight

two Hodge structure of type (1, n — 2, 1) with n = 2 (mod 4), the Poincare decomposition

of the Kuga-Satake variety gives (a number of copies of) an abelian variety of Weil type with

discriminant one.
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and support in the realization of this paper, and I thank the referee for his helpful comments.

1. Abelian varieties of Weil type.

1.1. Weil type. Let (X, E) be a polarized abelian variety of dimension In and K c->

End(X) (8) Q be an imaginary quadratic field. The polarization E c H2(X,Q) defines by

duality a bilinear antisymmetric map, which is for convenience denoted by the same letter E,

from H\ (X, Q) x H\ (X, Q) to Q. X is said to be of Weil type if the action of K on the tangent

space 7b X can be diagonalized as

diag(σ(Jfc),... , σ(k), σ(k),... , σ(k)) (k e K)

with n entries σ(k) and n entries σ(k) (where σ : K <-* C is an embedding) and E(kx, ky) =

σ(k)V(k)E(x, y) for JC, y € T0X.
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1.2. Discriminant. Let (X, K, E) be an abelian variety of Weil type and let K =

Q(φ). The map

H: Hl(X,Q)xHl(X,Q) —• K

(x , y) i—• E(φx,y) + φE(x,y)

is a Hermitian form on the K-vectoτ space H\ (X, Q). There exists a A'-basis in which H is

represented by a diagonal matrix diag(α, 1, . . . , 1, — 1 , . . . ,— 1), where a is a rational posi-

tive number called the discriminant of the variety {a = discr(X, K, E) = (—l)n det(H) e

2. Hodge structures.

2.1. Let V be a g-vector space and A : 5(/?) -> GL{VR) be a rational representation

of the group

b \ e GL(2,Λ)} = C*

on Vff = V (8)ρ R such that Λ(j(ίi, 0)) = an 1. The couple (V, A) is said to be a (rational)

Hodge structure of weight n.

2.2. By the action of A, we have a decomposition ofVc = V <8>Q C into weight spaces:

vc=

where V ^ = {υ e Vc; A(z)υ = zpzqv} and V«'P = V^7'̂ . This decomposition of V is a

Hodge decomposition in the usual sense.

2.3. Polarization. A polarization of the Hodge structure (V, A) is a β-bilinear map

ψ : V x V -* β such that

(i) ψ(h(z)v, h(z)w) = {zz)nψ(v, w) for any υ, u; 6 V/?, z G C* (n =weight),

( i i) ψ{v, h(i)w) = ψ(w, h(i)v) for a n y v,we VR,

(iii) ψ(υ, h(i)υ) > 0 for any v e VR - {0}.

It is easy to show the following by direct computation (see [vGl]):

2.4. LEMMA. A polarization ψ is symmetric if the weight of the Hodge structure is

even, alternating if the weight is odd, and the quadratic form Q(v) — —ψ(v, υ) associated to

the polarization is positive definite on (V2'0 0 V0'2) Π VR and negative on V1*1 Π VR.

2.5. Weight 2 Hodge structures. Let (V, A, ψ) be a polarized Hodge structure of

weight 2. The triple (dim V2 °, dim VlΛ, dim V0'2) is said to be the type of the Hodge struc-

ture.

3. Sub-Hodge structures of the cohomology groups. Let K := Q(φ) (φ1 = —d)

and V be a AT-vector space. We can extend the action of K* to /\Q V in a natural way:

k2(v Λ w) = kυ A kw (k e K*). In order to examine the sub-Hodge structures, the following

proposition concerning K -vector spaces is very useful (see also [M], [M-Z] and [vG2] in

which this proposition is implicitly contained):
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3.1. PROPOSITION. Let Vbea K-vector space. Then the Q-linear map

2 2 1 1
/ : Λ V c-> Λ V , a AK b t-> -a A b φa A φb

K Q 2 2 d

is injective and Im(ι') = {w e /\ρ V;ψ2W = —dw} {where ψ2 is the action of φ e K* on

/\Q V already defined).

PROOF. Let W := Hom^(V, K), W* := Homκ(W, K) and (W*)Q := HomQ(W, Q).

The trace map

ω : W* -^> W*^, where Tr: K BZ H—> z + zeQ

f H ^ T r o /

is a linear isomorphism of Q-vector spaces. We also have an isomorphism of A'-vector spaces

a: f\V — • Bomκ(/\W,κ\
K ^ K '

a AK b i—• [ctAKβ^ a(a)β(b) - β(a)a(b)].

Then, since K -linear homomorphisms are also β-linear, we have a chain of maps

j\V -% Homκ(/\W,κ\ -̂ > HomQ(f\W,κ
K ^ K ' V ρ

Tr

K V ρ

α
Writing these maps in term of Q and A'-basis, we have that i(a AK b) = (l/2)a A b —

(l/2d)φa A φb. The map / is a composite of injective maps, hence is injective.

\Obviously, Im(/) C {w e /\Q V; φiw = —dw}. Indeed, we have

ψ2\ -aAb-—φaAφb) = -φ(a)Aφ(b)-—φ2(a)Aφ2(b) = (-d)l -aAb-—-φaAφb ) .
\2 Id ) 2 2d \2 2d )

Let now V^ = V+ © V_ be the decomposition of VK = V ®Q K into the subspaces in

which the elements k e A' act respectively as σ(k) and σ(fc); we have dim^ VK = 2n and

dim A: V± = n. By the action of K on /\Q V, we have φ\ — d2 and can decompose the space

as /\Q V = W+ φ W-, where W± are the +d and the — d eigenspaces of ψ2. We showed that

Im(ι) C W-

and for the equality it is sufficient to show that these spaces have the same dimension. Ten-

soring with K, we have Λρ V Θρ K = (W+ 0 ρ K) φ (W- ®Q K) = W+,κ φ W-tK, and

looking at the decomposition of VK and using the equality /\Q V (g>ρ K = /\κ VK , we have

also
2 2 2
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It is easy to show that /\2

K V+ c W-,κ, AK V- C ^-,K and V+ 0A: V- c W+,κ, and hence

we have
2 2

K K

Now, using also the injectivity of the map /, we can compute the required dimensions:

dim* W-,κ = (fj + (fj = l(ί\, dim (̂Im(/) ®ρ K) = 2dim* /\ V = ^

D

3.2. Abelian varieties of Weil type. Let (X, K, E) be a polarized abelian fourfold of

Weil type (where K = Q(φ) with φ2 = -d); we have HX(X,Q) = K4, H2(X,Q) =

/\ρ HX(X,Q). Now, we study the sub-Hodge structures of the second cohomology group

of a generic abelian fourfold of Weil type and show that, if discr(X, K, E) = 1, there is a

substructure of weight 2 and type (1, 4, 1).

Let 5 = i(/\2

K Hι(X, Q)) C H2(X, Q). From Proposition 3.1 the map i is injective, so

S = f\2

K Hι(X, Q), and it is often useful to forget the inclusion. Then we have the following:

3.3. LEMMA. Let (X, K, E) be an abelian fourfold of Weil type. Then the subspace

S is a sub-Hodge structure ofH2(X, Q) with dim S 2 ' 0 = dim Soa = 2, dim S1 '1 = 8 .

PROOF. We consider the automorphism ψ2 of H2(X, Q)\ we have φ\ — d2, and let

H+ and Ή2. be its (respectively) +d and — d eigenspaces. Using Proposition 3.1, we have

S = Hi, and hence it is a sub-Hodge structure of H2(X, Q). Let HX{X, C) = V+ Θ V_

be the decomposition into the i<Jd and the — i\fd eigenspaces of φ; since X is of Weil type

(2, 2), we have V± = v | ' ° ®V±'\ where V^j = V±Π HιJ and dim c V^j = 2. Then we

have

2 2

dim S2'0 = dim /\ v|'° + dim /\ W'° = 2,
c c
2 2

dimS 0 ' 2 = d im/\ V 0 1 + d im/\ V 0 1 = 2,
c c

dimS 1 ' 1 = d i m y ^ o 0 y ° ' 1 - h d i m V i ' O 0 y 0 ' 1 = 8 .

D

3.4. Hermitian form. We can extend H to a β-bilinear form H on /\^ Z/1 (X, β ) by

defining

H(a AK b, c AK d) := H(a, c)H(b, d) - H(a, d)H(b, c).

Let {v\, w\, V2, W2\ be a K-basis of Hι(X, Q) in which the matrix of the Hermitian form is

diag(α, 1, —1, —1). A direct computation shows that in the K basis of /\2

K Hι(X, Q)

a\ - v\ AK w\, a2 = v\ AK v2, a3 = v\ AK w2,

b\ — V2 AR W2, b2 — w2 AK W\ , £3 = wi ΛA: V2 ,
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and hence we have H = diag(α, —α, — a, 1, —1, —1).

Let now γ : f\4

K Hλ{X,Q) -> K be the isomorphism sending a\ ΛK b\ to 1. Then we

have the following

3.5. PROPOSITION. There exists a φ-antilinear automorphism t e Endκod(S) such

thatt ot — a -Id, and for all v, w € /\2
K Hι(X,Q) we have H(v, w) = γ(t(w) A υ).

PROOF. We define a K-linear isomorphism p

2 / 2 x *

p:/\Hι(X,Q)-+(/\Hι(X,Q)\ , x ^ [y ̂  y(x ΛK y)]

and a <p-antilinear bijection τ

2 / 2 \ *

V /

The isomorphism ί is defined as

Since τ(w) = p(t(w)), we have H(v, w) = γ(t(w) ΛK υ) and the <p-antilinearity follows

from the K-linearity of p " 1 and the ^-antilinearity of τ. The representation h : C* ι->

GL(Hι(X, Q)) defining the Hodge structure of Hι (X, Q) gives a representation

h2 : C* h^ GL(5), z ^ M ^ u ) ^ Λ(z)υ Λ ^ h(z)w],

which defines a Hodge structure on S. Since /\4

K Hι(X,Q) = K is one-dimensional, we have

that/i4(z)(ι;Λtf to) = h2(z)v A% h2(z)w = |z|4(fΛ^M;) for all υ, w; e S and, by the properties

of E and # , we also have that H(h2(z)υ, h2{z)w) = (zz)2H(v, w) = \z\4H(v, w). These

observations show that for all ι>, w € S

Y(t(h2(z)(v)) AK h2(z)w) = H(h2{z)w, h2(z)υ) = (zz)2^(u;, v)

= kl4/(^(v) Λ/̂  if) = y(/z2(£)*(tθ A ^ h2(z)w).

Hence ί o /i2(z) = h2(z) ot,sot e EndHodί^)- If we write explicitly the action oft = ρ~xτ

on the elements of the basis {a\,... , £3}, then we have

a\ 1—> aa^ \-> ab\ , b\ \-> Z?j i—>- ύti

(and similarly for the other elements of the basis), and hence t o t = a Id as required. D

3.6. COROLLARY. EndHθd(S) = # , where
1 1 1

H = {λi + Λ2<p + λβί + Λ4<p o ί ; ^ ) = — β , ί = a, φ o t = — t o φ)

is a quaternion algebra over Q. In particular, if a £ Nmκ/Q(K*), then H is a skew field and

hence S is a simple Hodge structure.

PROOF. By Proposition 3.5 we have that t e EndHod(S) Moreover,

h2iφx AK y) = h(φx) AK h(y) = φh(x) AK h(y) = φh2(x AK y),
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so K ^ EndHod(S) Since t is <p-antilinear, we have H C EndHod(S)

Let MT G GL (Hι (X, Q)) be the Mumford-Tate group of the Hodge structure Hx (X, Q)

(for the definitions and properties of the Mumford-Tate group, see [vG2, par. 6.4]). Then we

have

/ 2 2 \MT(C)

EndHod(S) ® C = (End c(5 ® C ) ) M T ( C ) = End / \ V+ Θ / \ V_
^ c c '

where V+ and V- are the standard and the dual representations of MT(C) = 5L(4, C) (the

isomorphism MT(C) = SL(2n, C) holds for a general polarized Abelian variety of Weil type

of dimension 2/t, see [vG2]). Since Λ c v - = C ' w e h a v e Ac v+ = Λ c ( y - ) * = Λ c v - ' s o

MT(CK/ / 2 \MT(CK

= M2 ί Endί /\ V+J J = M2(C)

(the last isomoφhism comes from Schur's lemma). Therefore, EndHod(S) = H because they
are of the same dimension. D

3.7. Hyperbolic lattice. The bilinear form associated to the lattice "hyperbolic plane"

has a matrix Hyp = ft lΛ (see [B-P-V, p. 14]).

3.8. THEOREM. Let (X, K, E) be an abelian fourfold of Weil type with discriminant

one. Then we have:

1. S = Γ+ 0 T-, where T± = Ker(ί ± Id) are sub-Hodge structures.

2. φ : 7+ —> T- is an isomorphism of Hodge structures.

3. LetT = 7+. The polarization /\2 E ofH2(X, Q) induces a polarization

2 γ

/\E\Tχτ = -2j

and we have H\TxT = Hyp 0 Hyp 0 [-2] 0 [-2d].

PROOF. The first result is obvious, since t2 = Id by Proposition 3.5. The second

follows from the <p-antilinearity of t: if v € 7+, we have t(v) = v and t{φv) = —φt(v) =

—φv, so φv € 71. In order to prove the third result, we observe that H is Hermitian, since

H(a AK b, cΛKd) = H(a, c)H(b, d) - H{a, d)H(b, c)

= H(c, a)H(d, b) - H(d, a)H(c, b)

= H(cΛKd,aΛKb).

O n Γ x Γ the form H is symmetric, since

H(v, a) = y(t(a) ΛK V) = γ{a ΛK V) = γ(v ΛK a) = H(a, v),
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and in particular lm(H) = 0. By Proposition 3.1, the elements a Λ# b of S can be written as

(l/2)a Λ b — (l/2d)φa A φb, and an easy computation shows that

2

f\ E(a AK b, cΛKd) = (l/2)[E(a, c)E(b, d) - E(a, d)E(b, c)

- (l/d)(E(φa, c)E(φb, d) - E(φa, d)E(φb, c))].

Howewer,

H(a Λb,cΛd) = H(a, c)H(b, d) - H(a, d)H(b, c)

= (E(φa, c) + φE(a, c))(E(φb, d) + φE(b, d))

- (E(φa, d) + φE(a, d))(E(φb, c) + φE(b, c))

= {E(φa, c)E(φb, d) + φ2E(a, c)E(b, d)

- E(φa, d)E(φb, c) - φ2E(a, d)E(b, c)}

+ φ{E(φa, c)E(b, d) + E{a, c)E(φb, d)

- E(φa, d)E(b, c) - E(a, d)E(φb, c)},

and o n Γ x Γ (where lm(H) = 0) we have Λ 2 E\τχT = -(l/2d)H\τxτ- A direct compu-

tation shows that H\τxT = diag(2, —2, 2d, —Id, —2, — Id). With an appropriate change of

basis, we have H\τxT = Hyp © Hyp φ [-2] 0 [-Id] as required. D

3.9. COROLLARY. The Hodge structure Γo/3.8.3 has type (1,4, 1).

PROOF. We have from Lemma 3.3 that the type of S is (2, 8, 2). By Theorem 3.8 we

have that S = Γ φ 2 , and hence the type of T is (1, 4, 1). D

4. Clifford algebras. We showed that there is a polarized sub-Hodge structure T of

type (1,4, 1) with the quadratic form Q = H y p φ H y p 0 [ - 2 ] 0 [ - 2 J ] contained in the second

cohomology group of an abelian variety of Weil type with discriminant one. Now, using the

Kuga-Satake construction, we construct an abelian variety from this Hodge structure and show

that this is the variety of Weil type we started with.

4.1. DEFINITION (See [F-H, p. 301]). Let V be a vector space over Q of dimension n

and ψ be a symmetric, nondegenerate bilinear form. The Clifford algebra Cn is the quotient

of the tensor algebra by the two-sided ideal I{ψ) generated by all elements of the form υ (8)

υ — ψ(v, υ).

4.2. NOTATION. We write simply the "product" v\ vn for the class of υ\ ® ® vn

inCn.

4.3. DEFINITION. The even subalgebra C+ is the algebra generated by all linear com-

binations of products of an even number of elements of V.

4.4. Dimensions. We have dimρ Cn = T and dimρ C+ = 2n~ι.

5. Kuga-Satake varieties. Let (V, h, ψ) be a weight 2 polarized Hodge structure of

type (1, n — 2, 1), and let {#i,... , gn] be a basis of V in which the symmetric bilinear form
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Q = — ψ is given by (see Lemma 2.4)

Q = dχX2+d2X
2-d3X

2-...-dnX
2

n (di eβ>o).

5.1. Complex torus. Let J = (1/V^idi)g\g2. Then we have J2 = —1 and the left

multiplication by J on C+ (the even Clifford algebra constructed from (V, Q)) defines a

complex structure on C^R := C+ (g)ρ R. Let now C + z be the lattice of linear combinations

of elements of the basis of C+ with integer coefficients. Then

is a complex torus.

5.2. Polarization. Let Tr( c) be the trace of the map "right multiplication on C+ by

the element x e C+". We can define a polarization E on the complex torus Λo (see [K-S],

[vGl]) by setting E(υ, w) := Ίτ(aL(v)w), where i is the canonical involution i{ga

χ

x . . . g^) =

gnn . . . ga

χ and a e C+ is an element such that ι{ά) = —a and £"(1;, Jv) > 0 for all υ.

5.3. Kuga-Satake variety. The abelian variety (Λo, E) is the Kuga-Satake variety as-

sociated to the Hodge structure (V,h,ψ) of type (1, n — 2, 1).

6. Abelian fourfolds.

6.1. Hodge structures of dimension 6. Let (V, /*, ψ) be a weight 2 polarized Hodge

structure of type (1,4, 1), and let {/1,... , fβ} be a basis of V in which the bilinear form

Q = -ψ is given by the matrix Hyp Θ Hyp 0 [/] 0 [m] (with /, m < 0). In the basis

e\ = f\ + h , 2̂ = fx - f2 , £3 = / 3 + / 4 , e?4 = / 3 - / 4 , e5 = / 5 , eβ = fβ,

the matrix of β is diagonal and we have β = diag(2, —2, 2, —2, /, m). We construct the

Kuga-Satake variety (Λo, E) associated to the Hodge structure, which is an abelian variety of

dimension dime Λo = dime ^R = ^ ^n 0 Γ ( ^ e r t 0 examine the structure of this variety, the

following is very important.

6.2. THEOREM. Let V be a rational vector space of dimension 6 equipped with a

symmetric bilinear form Q = Hyp 0 Hyp 0 [/] 0 [m] (/, m < 0), and let C£ be the even

Clifford subalgebra generated by (V, Q). Then we have C£ = gU(Q(y/—lm)).

PROOF. Let {e\,... , eβ} be the "diagonal" basis and C4 be the Clifford algebra gener-

ated by [e\,... , 24}. Let z = e\ ... eβ. Then Q(z) is the center of c£ and z2 = -16/m. The

map

φ ' (C+ 0 e5C~) <g)ρ Q(z) -• C+ , fl0λh>αλ

is an isomorphism. Indeed, it is a surjective homomorphism between two β-algebras of the

same dimension. We have

C+ = End(/\w\

/ ev odd \ / odd ev \

C4 = Endί f\ W, f\ W J φ Endί f\ W, /\ W J ,
odd \ / odd
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where W = {f\, fo) (cf. [F-H, p. 305]). Therefore we can construct the isomorphism

μ : C+ Θ e5C~ -> gl4(Q), (a, e5x) H

where α^ G End(Λ e v W), xoe e End(Λ°d d W, /\ew W), xeo € End(Λ e v W, Λ° d d W), and

<W G End(Λ°d d W). So, we have

Π

6.3. COROLLARY (Poincare's decomposition). From Theorem 6.2 and [S] we have

that, in the general case, Endo(Ao) = c£ = gU(Q(>/—ϊm))t and hence Ao ~ A4 (Poincare's

theorem), where A is a simple Abelian variety with Endo(A) = Q(\/—lm).

6.4. THEOREM. The abelian variety A is an abelian fourfold of Weil type over K =

Q(\/—lm), and there exists a basis in which the Hermitian form H = E(φx, y) + ψE(x, y)

is diagonal with a = 1 (that is, H = diag(l, 1,-1, —1)).

PROOF. Let β = (l/4)f\ fififa We have β2 = β and one can verify that the map

0 : C + - > C + , x^x β

has kernel of dimension 24 over Q. Hence the image has dimension 8 and we have that the

image of Im φ 0 R in the Kuga-Satake variety is isomorphic to A.

A direct computation shows that Im φ has a basis

£l=/2/4, S2=2/l/2/3/4. £3 = /2/3Λ/5 , £4 = /l/2/4/5,

«i = /2Λ/5/6, S2 = ^1/2/3/4/5/6, δ3 = /2/3/4Λ, δ4 = /1/2/4/6

It is easy to show (using the "diagonal" basis) that

/£! = — £
2
 , /£2 = £l , ^^3 = —£4 , Jε* ~ £3 ,

/δi = — 82 , /<$2 = 8\ , /<$3 = — £4 , Jδ4 = 63 ,

and
zε\ = 451, zε2 = ^h , zε?, =

z5i = —4lmε\, z<$2 = —4lmε2 , z<$3 = — 4ra£3 , Z84 = —

TheZ-eigenspaceofthemap/lim^cisspannedby —/£i+£2, —iε3+ε4, —181+82, —183+84,

and the action of z on this subspace is given by the matrix

ίO -4lm
4 0
0 0

[0 0

The eigenvalues of the matrix are z and z both with multiplicity 2. Hence A is an abelian

fourfold of Weil type over Q(z) =
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We observe that the every admissible complex structure Jf can be written as J' =

aJι(a), where a e Spin(Q) := {x e C+;xι(x) = l,xVι(x) C V] (/' = e[e'3 with

e[2 > 0; then e\ is obtained from e\ by the action of SO(Q) and Spin(Q) is a 2:1 cover of

SO(Q)). Since

E(x, Jfx) = Ίΐ{at(x)Jf) = Ίτ{ou{x)aJι(a)x)

= Ύr(aι(ι(a)x)J(L(a)x)) = Ίr(aι(y)Jy),

we have that the choice of the element a € c£ in the definition of the polarization does not
depend on the choice of the complex structure (£(JC, JX) > 0 for all admissible J).

A direct computation shows that a = — f\ fo satisfies the "positivity condition" of E and
that the matrix of the polarization in the basis {£;, 8j} is

(M \
-21M

E = i w » where M

-2mM

__ ( 0 - 6 4 \
~ \64 0 )

On the K-basis {ε\,... , 64} we have that //( c, v) = £(<p;c, v) + φE(x, y) has the matrix

representation

H (ψM \
H = \ -2φM) '

and this matrix can be diagonalized as H = diag(l, 1,-1,-1). D

We can now prove the following

6.5. THEOREM. The abelian fourfold A occurring in the decomposition of the Kuga-

Satake variety is isogenous to the Abelian fourfold X we started with.

PROOF. The abelian fourfolds A and X are both of Weil type with discriminant equal

to one, so we have only to show that they have the same complex structure. We consider

the Hodge substructure T c H2(X, Q) defined in Theorem 3.8. We also have that T C

H2(A, Q) (see [vG2]). Let MT(X) be the Mumford-Tate group of the abelian variety X,

that is the Mumford-Tate group of the Hodge structure Hι(X,Q). The subspace T is ob-

viously a subrepresentation of MT(X) and its Hodge structure is given by a representa-

tion ft+ : C* -• MT(Γ)(J?) c GL{TR) C GL(H2(X,R)). Now, we consider the map

hx : C* -> MT(X)(Λ) C GL(Hι(X,R)) which gives the Hodge structure on Hι(X, Q),

we observe that the map MT(X)(Λ) -• MΎ(T)(R) is a 2:1 cover (over C, and with A and

X general, we have that it is the map SL(4) -> SO(6) = SL(4)/(±Id)) given by the action

of MT(X)(R) on/\2Hι(X,R). We have then the diagram

A+ : C* -• MT(X)(J?)/(±Id> = MΊ(T)(R) cGL(H2(X,R))

t
hx : C* -> MT(X)(R) C GL(H{(X,R)).

The complex structure Jx on X is given by hχ(i), which lies over /z+(/), so we have two

possible choices for Jχ> J and —J. We repeat now the same argument using the inclusion
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T c H2(A,Q); from MΊ(X) = MT(Λ) (see [vG2]) we obtain the diagram

A+ : C* -> MT(X)(J?)/(±Id)=MT(Γ)(JΪ) c
t

hA: C* -+ MT(Λ)(Λ) = MΊ(X)(R) c

where HA gives the Hodge structure on Hι(A,Q). Then, for the complex structure on Λ,

JA = hA(i), we have the same two choices J and —/ as X since also AA(O lies over Λ+(i).

As A and X are of Weil type, we can identify the K -vector spaces Hι(A, Q) and Hι(X, Q),

and thus JA = ±Jχ> Since the polarization on an abelian fourfold of Weil type with discrim-

inant equal to one is unique (see [vG2]), we have Ex = EA. From the "positivity condition"

of a polarization we conclude that A and X have the same complex structure. D

7. Higher dimensions. Now, we generalize the result of Theorem 6.4 and show that

there exist other cases in which the Kuga-Satake construction gives abelian varieties of Weil

type with discriminant one.

Let (V, h, Q) be a rational polarized weight 2 Hodge structure of dimρ V = n = 2m,

type (1, π - 2 , 1), and let Q = -ψ given by Q = dxX
2+d2X

2-d3X
2-.. .-dnX

2

n (dt e β>o)

in a basis {#i,... , </„}. Let - d := (-l)md\ - dn and C := Cn be the Clifford algebra

associated to (V, g) . We consider the case n = 2 (mod4) equivalent to (see [vGl, Theorem

7.7]) C + = M2m-\(Q(V—d)) and construct the Kuga-Satake variety AQ associated to such

a Hodge structure. Since End(Λo) = C + = M2m-ι(Q(V^d))9 we have from Poincare's

theorem that Ao ~ A2m , where A is an abelian variety with End(A) = Q(y/^d). Obviously,

we have that dimΛ C% = dimρ C + = 22m~\ and therefore dim(A0) = dime C j = 2 2 m ~ 2

anddimc(A) = 2 m " 1 .

7.1. THEOREM. L^ί {V,h,ψ) be a rational polarized weight 2 Hodge structure with

dimension dimρ V = n = 2m, type (1, n — 2, 1) and let —d := (— l) m di - -dn. Then, if

n = 2 (mod 4), A is an abelian variety of Weil type over K = Q(\/—d).

PROOF. First, we consider the case in which J = (\l\ld\di)g\ g2 is the complex struc-

ture on CR. Let z = g\ gn- Then the element z is in the center of C + and we have

= (-\)™V™-Vdx- dn = -d

(since 2m — 1 is odd). Let j c € C + a generic element of the even subalgebra. We then define

a map "left multiplication for x" by setting

ι* : CR ~^ CR ' v *~* x v '

The maps // and lz are injective (e.g., lz(w\) = lz(vύ2) =Φ lz(w\) = lj(w2) =ϊ w\ = w2)

and both have complex eigenvalues. Therefore we have that, for all v e C^, lj(υ) £ (v) and

lz(υ) £ {v). Let H = Q(J, z); H is an extension of degree 4 over Q and there are the obvious

isomorphisms Hι(Ao,R) = C^ = H2m~3. Using these isomorphisms, we can construct a

basis of Hι(Ao, R) in the following way: let gx = 1 € C + . Using the "left multiplications",

we obtain J, z and Jz (these elements are independent).
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Now we choose an element g2 not contained in the span of the previous elements and

continue the construction. In this way we find the basis

[gx = 1, J, z, Jz,. , gt, Jgn zgt, Jzgt] (t = 2lm-χ/A = 2 2 m " 3 ) .

It is easy to show that

J~gx,iz~gx Jzgt]

is a basis of H1'°(AQ) (the /-eigenspace of / ) , and we can compute directly the action of z on

this space:

zijgj + Jgj) = izgj + Jzgj
z(izgj + Jzgj) = d{igj + Jgj)

/O -d
1 0

and hence z =

0 -d
1 0

Since every

(? can be diagonalized as
\ 0 -yf^d

we see that A is of Weil type.

Now, we show that this result holds for all complex structures. Let C£ = V+ Θ V- be

the decomposition of c£ in the (V—^)- and (—V^J)-eigenspaces of z. We observe that J

commutes with z (z is contained in the center), so lj respects this decomposition and it has

t eigenvalues / and t eigenvalues / on each component (indeed, A is of Weil type and the

condition % has type (t, t) on // 1 0 (X)" is obviously equivalent to the condition *7y has type

(f, 0 on V+"). Moreover, every complex structure can be written as gJg~ι with g e Spin(Q);

we have gz = zg, so lg respects the decomposition of C^, and therefore lgjg-\ respects this

decomposition. Since the matrices of lj and lgjg~\ have the same eigenvalues, lgjg-\ has

type (r, t) and A is of Weil type for every complex structure. D

7.2. Discriminant. Let £(JC, v) = Ίτ{aι{x)y) be the polarization of A. We want to

show that discr(A, Qi-J^d), E) = 1.

7.3. THEOREM. 77*ere exists a Q(</—d) basis ofH\ (A, Q) in which

, . . .", 1 , - 1 , . . . , - 1 ) .

PROOF. Using the decomposition

it is possible to construct a β(z)-basis {e\,... , ̂ } (where /z = 2n~2) of //j (A, β ) in such a

way that gn does not appear in the elements β\ (as complex structure we can use, for example,

the element J defined in 5.1). Using the Frobenius theorem, we can change the basis {e(\ to a
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basis [ei} in which the matrix of the polarization has the form

< 0 a\
-a\ 0

0
-ah

ah

(aieQ).

Now, we decompose the even Clifford subalgebra as C + = Q 0 C^"; from [vGl] we have that

Ker(Tr) = CQ. Then, we can choose the element a e C+ of the polarization without terms

containing gn. Indeed, ι(x)y does not contain gn, and if a = a\ + gncέ2, we have

Tr(aι(x) y) = Ίr(an(x)y) + Ίr(gna2ι(x)y) = 0

contains necessarily #„, so it cannot be a coefficient), so the term gnot2 is useless.

By definition, H(x, y) = E(zx, y) + \Γ^άE(x, y), and we have E{zeΊ, ej) =

Tr(ai(ze})zej) = 0 (the argument contains gn). Then

H =

0 \

0

0

On a 2(>/^J)-basis, this matrix can be transformed as

/0 1 \
1 0

0 1

and we have H = diag(l,... , 1 , — 1 , . . . , —1) as required. D
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