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Abstract. The theory of surfaces in Euclidean space can be naturally formulated in
the more general context of Legendre surfaices the space of contact elements. We ad-
dress the question of deformability of Legendre surfaces with respect to the symmetry group
of Lie sphere contact transfoations from the point of view of the deformation theory of
submanifolds in homogeneous spaces. Necessary and sufficient conditions are provided for a
Legendre surface to admit non-trivial deforneans, and the corresponding existence problem
is discussed.

Introduction. The classical problems of applicability of surfaces in Euclidean, projec-
tive and conformal geometry fit into the general theory of deformation of submanifolds in
homogeneous spaces as formulated by Cartah(Pand further developed by Griffiths and
Jensen [17, 18]. Two submanifolds in a homogeneous spage; M — G/K, arek-th
order deformations of each other if there exists a smoothimad — G such that, for every
p € M, the Taylor expansions aboptof f andv(p) - f agree througlt-th order terms; i
is constantf and f are congruent with respect &. Of course, for each concrete geometric
situation there is a specific problem to sol\e Euclidean space, two surfaces are applicable
in Gauss’ sense if they are first order Euclidean deformations of each other, which means
that they are isometric with respect to the induced metrics, and are congruent to second order.
In projective 3-space, Fubini's notion of applicability of surfaces goes to second order and
rigidity to third order. In M6bius and Laguergeometry, second order deformable surfaces
coincide with isothermic andl-isothermic surfaces, respectively [20, 22].

This paper studies the deformation probléansurfaces in another classical geometry:

Lie sphere geometry. It is the outcome of our attempts to understand Lie-applicable sur-
faces within the general theory of defornmati Lie-applicable surfaces were considered by
Blaschke and his collaborators in the 1920s Régcently, interest in Lie-applicable surfaces
has reappeared in the work of Ferapontov comicey the relation between Lie sphere geom-
etry of hypersurfaces and the theory of integrable systems [12, 14].

To put our discussion in perspective let esall some facts about Lie sphere geometry.
Any smooth immersion of an oriented surface into 3-space has a contact lift to the unit sphere
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bundle 4 of $3 = R3 U {00} called the Legendre lift. The unit sphere bundle is acted on
transitively by the group of Lie sphere transformations. This group is the group of contact
transformations generated by the conformal transformatioss tdgether with the group of
normal shifts, which transform an oriented surface to its parallel surface at a fixed oriented dis-
tance in the normal direction. Thus the Lie sphere group acts on the set of Legendre surfaces.
The principal aim of Lie sphere geometry is to study the properties of an immersion which
are invariant under this action [5, 11, 26]. Blaschke associated with any Legendre surface a
canonical coframé€ and proved that the position of a generic Legendre surface is completely
determined by its canonical coframe, up to Lie sphere transformations. However, he observed
that there are exceptions to this rigidity result. Accordingly, two non-congruent Legendre im-
mersionsf, f are calledLie-applicable if C = C. As we will see in Section 2, examples of
Lie-applicable surfaces include thedendrian lifts of isothermic anbl-isothermic surfaces,
which are known to constitute integrable systems [6, 2, 24].

In the paper, we think ofA as a homogeneous space of the identity compoGeat
the Lie sphere group. We will prove that two (hondegenerate) Legendre immersions are Lie-
applicable if and only if they are second ordieformations of each other; that two Legendre
immersions are always local first order defations of each other; and that they have third
order rigidity. Further, we show how to recognize that a Legendre surface is deformable and
in this case how to find all its deformations.

In Section 1, we collect some background material about the Lie sphere geometry of
surfaces and develop the method of movingrfea in this context (see [5, 11]). We iden-
tify A with the space of isotropic 2-spacesRt? and linearize the action of Lie transfor-
mations. In this model, the identity component ofdC2) acts onA by contact diffeomor-
phisms and provides a double cover®f We then apply the method of moving frames to
study Legendre surfaces and recall the construction of a canonical lift to the Granger
a natural nondegeneracy assumption. For any Legendre surface, we introduce the canonical
coframe(at, ?), which turns out to be the analogue of that considered by Blaschke [5], and
the quadratic and cubic forms of the surface. fédine a set of local differential invariants
q1, 92, p1, p2, r1, r2 for a Legendre surface and relate them to the classical ones discussed by
Blaschke and Ferapontov. We then deduce the compatibility conditions, which play the role
of the Gauss-Codazzi equations for a Legendre surface in Lie sphere geometry. The functions
q1, g2, p1, p2 are completely determined by the canonical coframe, while; govern the
extrinsic geometry of the Legendre immersion.

In Section 2, we investigate the class of Legendre surfaces which are not determined by
the canonical coframe. We take the point of view of the deformation theory of submanifolds
in homogeneous spaces. We introduce the concept of deformation and discuss the related
questions of analytic contact and applicability. We study the problem of second order defor-
mation of Legendre immersions and prove that two nondegenerate Legendre immersions are
second order deformations of each other prégiaden they are Lie-applicable, or equiva-
lently, when they have the same quotient of cubic to quadratic forms (see Theorem 2.10).
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In Section 3, for a given Legendre immersion, we introduce a suitable linear connection
on the trivial bundleM? x R2 and show that the existence of non-zero parallel sections with
respect to this connection is a necessary and sufficient condition for the Legendre immersion
to have non-trivial deformations. In particular, we show that the non-trivial deformations of
nondegenerate Legendre immersion depend on three parameters at most. The above character-
ization allows the introduction of free parameters in the Maurer-Cartan form of the canonical
frame of a deformable surface without violating the structure equations, and suggests the ex-
istence of a Backlund transformation for the class of deformable Legendre surfaces. We will
return on this topic elsewhere.

In Section 4, we discuss some examples of deformable Legendre immersions.

In the last section, we study the existence of deformations. We use the characterization of
deformable Legendre immersions in terms of parallel sections to set up the exterior differential
system of a deformation. We then prove that this system is in involution in Cartan’s sense and
that its general solutions depend on six functions in one variable.

1. SurfacetheoryinLiespheregeometry. In this section, we briefly recall the basic
structure of Lie sphere geometry and deyethe method of moving frames for immersed
surfaces in the context of that geometry. More details about Lie sphere geometry are given
in the recent monograph of Cecil [11], in the book of Blaschke [5], or in Lie’s original work
[19].

1.1. Legendre immersions. L&E be the unit sphere iR* and identify the unit tan-
gent bundled = 7152 with the set of all pairgv, £) € S% x $3 such thaw is orthogonal to

& ie.,
A={v,86eSxSPCcR*xR*v-£=0}.

Let 1, w2 : T1S° — S° denote the restrictions ta of the canonical projections of x $3
onto its factors. Then the equatidtr; - 7o = 0 defines a 4-dimensional contact distribution
Don A.

If F: M2 — $3is an immersed surface oriented by a field of unit normalghen
(F,n) : M?> — A is an integral submanifold dP. In general, an immersiofi : M2 — A
which is an integral submanifold @? is called alLegendre surface. The Lie sphere group,
that is, the group generated by the conformal transformatios$ tdgether with the group
of normal shifts, which transform an oriented surface to its parallel surface at a fixed oriented
distance in the normal direction, preserves the contact distribfitiand acts naturally on the
space of Legendre surfaces.

If f=(F,n):M?— AisaLlegendre immersion, the smooth nfap M2 — S need
not be an immersion. However, without losspeierality, we can always assume (applying if
necessary a normal shift) thatis locally an immersion. This follows from a result of Pinkall
[26] (see also [11]) stating that, for eaphe M2, there exists < [0, ) for which the parallel
surfaceF; = (cost) F + (sinf)n is locally an immersion.
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We recall that theurvature sphere at p € M2 corresponding to a principal curvatuce
is the oriented sphere in oriented contact witt/2) at F(p) and centered at the focal point
determined by the principal curvatukge The notion of a curvature sphere is invariant under
Lie transformations. For instance, ff : M2 — R3is an immersed surface oriented by the
field of normalsn : M2 — §2, then(F, n) : M2 — R3 x §2 c A is a Legendre surface. In
this case, the curvature spheres at a ppirt M2 are the oriented spheres(p) centered at
F(p) + ki(p)~tn(p), with signed radiug; (p)~1, i = 1, 2. Whenk;(p) = 0, theno; is the
oriented tangent plane of the surfacerap).

DerINITION 1.1 (Nondegeneracy condition). We say that a Legendre suifaee
(F,n) : M? — A is nondegenerate if F is umbilic free and both of the curvature spheres
corresponding to the principal curvaturkes k» are immersions into the space of oriented
2-spheres ir§® (including points).

1.2. Moving Lie frames for Legendre surfaces. Bét? denoteR® with the symmet-
ric bilinear form

D (X,Y) = —()coy5 + x5y0) - ()cly4 + x4yl) + x2y2 + x3y3 ='XqY

of signature(4, 2), where(x’) and(y”’) are the coordinates of andY with respect to the
standard basis, . . ., ¢5) of R6. Let G be the connected component of the identity of the
group

{A e GL(6,R) |'AgA = g}

of linear transformations which leave the form (1) invariant, ang tet{B € gl(6, R) |'Bg+
gB = 0} be its Lie algebra. For each € G, we denote byA; = A - ¢; the J-th column
vector ofA. Regarding each of the vectots as a vector-valued function: G — R on G,

since theA ; form a basis, there exist unique 1—f0r§ with 7, J € {0, 1, ..., 5}, so that
2) dAj=whA;, J=0,...,5.

(We use the summation convention iepeated indices.) The 1—f0rm:§ are the components
of the left-invariant Maurer-Cartan form = A~1d A of G. They are connected by relations
obtained from the differentiation dfA;, A;) = ¢;5, 1, J € {0, 1, ..., 5}, which are
3) ‘wg+go=0, or oXgx;+wXgk;, 1,7€{0,1,...,5},
and reflect the structure of the Lie algelpral he forms

. 01, 0], wp, WG, WY, Wf, W3, W), W3, Wy, VF, 0. F, WY

yield a left-invariant coframe field o@&. Differentiating (2), we obtain the structure equations
of G, which are

4) do=-wAw, o do)=-wbro, 1,7€{0,1,...,5.
For eachX € G, the Maurer-Cartan form transforms as follows
(5) Ri(w) = X tox.
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The projectivizationQ = P(L) of the light cone£ of R*2 is known in the classical
literature as théie quadric. In Lie sphere geometry, the Lie quadric parametrizes the set of
all oriented 2-sphere i62, including points, and the lines i@ correspond to parabolic pencils
of spheres in oriented contact. The set of all line®inthat is, the isotropic Grassmannian
of null 2-planes through the origin iR*2, forms a smooth manifold which can be identified
with A (for more details see [11]). Under this identification, the gréugcts transitively on
A by the usual action of on the Grassmanniafi>(R*?) and preserves the contact structure.
The projection map

(6) A A€EG —> AleoAel] =[AoA A1l € A =G/Go

defines a principatio-bundle overA, whereGy is the isotropy subgroup at the chosen origin
[eo A 1]

A Legendre surfacg : M2 — A may then be represented by two mafs F1 : M2 —
L suchthatf = [Fo A F1], (d Fo, F1) = 0 and(Fp, F1) = 0. Of course, such a representation
is not unique. For example, i : M? — RS is any smooth immersion iR3, oriented by a
field of unit normals: : M2 — 52, then theLegendrelift f = [Fo A F1]is given by

F, (1 1F1F2F3 1F1 1F F>t
0= s T = 3 ) s T T — A N )
@ NZ V2 2
1 1 1 d
Fl=— 0,—(1+nl),n2,n3,—(l—nl),noF) .
! ﬁ( 2 72

A frame field along a Legendre surface : M2 — A is a smooth map\ : U — G
defined on some open subsetM® such thatf = [A9 A A1]. For each local framel :
U — G we leta = A*w. The Legendre condition simply means that the f(mﬂ‘rvanishes
identically. Any other local frame is given by = A - X, for some smooth maf : U — Go,
and the 1-form& anda are related by

(8) a=Xtdx +xtax.
The totality of frames along is the principalGo-bundleFo(f) — M2, where

Fo(f) ={(p,A) e M x G | f(p) =[AoA A1l}.

Thecanonical frame. Following the usual practice in the method of moving frames, we
can construct a canonical lift to the groGy Z, for any nondegenerate Legendre surface. The
idea of the procedure is at each step to normalize the Maurer-Cartan matrix of a frame along
f as much as possible, and then take the exterior derivative of the equations expressing this
normalization, thereby leading to the next step. Similar preferred frames have been given by
Blaschke [5] and Ferapontov [12, 14]. Here, we skip the construction.

THEOREM 1.2 (Existence of the canonical frame)Let f : M2 — A be a nonde-
generate Legendre immersion of an oriented surface M2. Then there exists a unique lift
[A]: M? — G/Z, satisfying the Pfaffian equations

9) WQ=at=d=ad=af—at=ad-od=a)=al=0



166 E. MUSSO AND L. NICOLODI

with the independence condition
(10) Olg A ozf > 0.

[A] is called thecanonical framefield along . Leta! = o3 anda? = «2. The coframe
(o, «?) on M2 is referred to as theanonical coframe of f. The bundle of canonical frames
along f will be denoted byF(f) — M?2.

DerINITION 1.3. Thequadratic form @ and thecubic form ¥ of the immersionf are
defined by

(11) & =—ata?, ¥=—0H2+ 3,
respectively. The quotiel® = ¥/® of the cubic formy to the quadratic forn® is a well-

defined maB : T (M) — R U{oo} which is a rational function when restricted to the tangent
spaced,(M). B is called the~ubini-Blaschke invariant of f.

The invariant functions. The only non zero components of the Maurer-Cartan farm
of the canonical frame are' = o3, «? = o2, anda), of, o2, @3, 2. From the exterior
differentiation of these forms and the structure equations, it follows that there exist smooth
functionsq1, g2, p1, p2, andri, rp such that

2

al = —2q10 + gpa?, ol = —qrat + 2g202,
a% = plal + roa“,

(12) Olg = riat + poa?,
ag = —rpal + r1a2 .

We shall refer to these functions as fimeariant functions of f. In fact, using the structure
equations, we obtain

(13) dOll:Olg/\Oll, dazza%/\az,
(14) docg = (a? — ag) Aol dot% = (ot — Ol%) N
(15) d()l% = —ot% A a%, d()lg = —Ol8 A ag, d()lg = —(ozg + a%) A ag.
In terms of the invariant functions, these equations become
(16) dal = —qzotl A ocz, da? = —qlal A a? ,
(17) —2dq1/\al+dq2/\a2=(p2—q1q2— 1)al/\a2,
—dq1 A al + 2dgor A a? = (—=p1+q192 + Dol A a?,

drinat +dpo Aa? = (2qor1 + 3q1p2)a1 Aa?,
(18) dp1 A at +drp A a? = (2q1r2 + 3g2p1)at A a?,
—dro Aot +dry A a? = 4(q1r1 — qzrz)ozl AaZ.
Equations (16) and (17) tell us that the invariant functignsyz, p1, andp, are determined
by the canonical coframe. Equations (18) can be viewed as compatibility conditions arising
from the fact that the canonical coframe is obtained from the Legendre immersion. Thus,
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we may think of (16) and (17) as the Gauss dumes and of (18) as the Codazzi-Mainardi
equations of the immersion.

Relations with Euclidean geometry. Let f : M2 — A be the Legendre lift of an ori-
ented immersiorF : M2 — RS with Gauss mam = (n, n?, n®) and suppose thaf is
nondegenerate. L&k, v) be curvature line coordinates am2. Then the canonical coframe
takes the form

t= L (eI (ki (22w, o = (Veg=t (k) (k2)o)3du,

1— k2 ko — k1
wheree and g are the coefficients of the first fundamental form fofwith respect to the
coordinate systertu, v). Moreover, the quadratic and cubic forms take the form

1

1
Dd=—(kD)ulk2)ydudv,
(kl—kz)z( Du(k2)vdudv

(k1)u (k2)y 3 3
Y=——"-—" (elk1),d k2)ydv©) .

(o~ k)R ki + g ko))

Observe that! = (By?)Y3dv ande? = (82y)Y/3du, whereg andy are given by
1 1
B = Veg kD, y= Ve lg(ka)y .
k1 — ko ko — k1

Using the above structure equations, the invariantgs, p1, p2 can be expressed in terms of
B andy. For example,

= s (2842 __ L (r

The invariants8 andy correspond to the invariangsandg considered by Ferapontov [12],

p. 207, and Blaschke [5] in the construction of the canonical frame. Note that the vanishing
of both 8 andy is equivalent to the condition that the principal curvatures are constant along
the corresponding principal foliations. This property characterizesyttiades of Dupin. If

one of the two principal curvatures is constant along the corresponding principal foliation, the
surface is the envelope of a one-parameter family of oriented spheres (including planes and
point-spheres), and we are in the presence of a canal surface.

REMARK 1.4. Associated with any nondegenerate Legendre immeystbere is the
3-web formed by thesymptotic lines of the quadratic form® and by thecyclidic curves?,
i.e., the curves along the zero-directions of the cubic férmn view of (11), the curves of
this web can be defined in terms of the canonical coframe by the Pfaffian equations

(29) al=0, o?=0, o'—a?=0.
The connection form of the 3-web is the 1-fogy, uniquely determined by the equations

det =" nat, da® =" Aa?.

1The family of curves which are orthogonal to the cyclidic curves with respect to the quadratidfcalled
anti-cyclidic system.
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Equations (12) and (13) yield
(20) tw = —qrat + ga0®.

From (20) one then computes the curvature of the 3-web, which is

1
(21) Ry, = é(pz - p1).

The surfaces for which the curvature vanishemniitally are called diagonally cyclidic (see
(5, 12)).

2. Contact, deformation and applicability. Let us recall the general notion of de-
formation in homogeneous spaces [17, 18].

DEFINITION 2.1. LetG/K be ahomogeneous space andflef : N — G/K be two
smooth maps. We say thgtand f arek-th order deformations of each other if there exists
a smooth map : N — G such that, for each poini € N, f andB(p) f have the same
k-th order jets ap, i.e., they have analytic contact of second ordep.aThe mapB is said
to be ak-th order deformation. When B is constant the deformation is said to torvial. A
map f : N — G/K is said to bedeformable of order « if it admits a non-trivialk-th order
deformation.

First, we will express the condition of analytic contact in the special case of mappings
from a 2-dimensional manifold/ into A. For this we need to introduce some notation.

2.1. Analytic Contact. Letx!, x2) be a local coordinate system on an openseif
M. Let E be a vector space and I8t (U) ® E denote the symmetri€-valuedk-forms on
U. The symmetric tensor product ofe $"(U) andr € S*(U) will be denoted by - 7. An
element?’ of $"(U) ® E has a local expression

T = El...ihdxil coedx

where the coefficientg;,...;, are E-valued smooth maps, which are totally symmetric in the
indicesit, ..., i. We then define thk-th order derivative of " to be theE-valued symmetric
form of orderi + k given by

k. .
0" Tiy-wiy

St Sl B BN LY Rl E S B I UES
axih+l N a_xih+k :

sk(Ty =

The definition depends on the choice of the local coordinates. Given Zpdir € S"(U)QE
of E-valued symmetriéd-forms and a 2 2 matrixp = (p}) € SK(U)Y®gl(2, R) of symmetric
k-forms, we set

(To, T1)p = (,08T1 + p5T1, P?To + piT1).
We can state the following

LEMMA 2.2. Let f = [FoA F1]l: M? - Aand f = [Fo A F1] : M — A betwo
smooth maps. Then, f and f agreeto second order at p € M, i.e., they have the same second
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order jetsat p, if and only if, for every local coordinate system (x1, x2) about p, there exist
po € gl2,R), pLeT*(M),®gl(2,R), p2€ (M), ®gl(2,R)
such that
(Folp. Filp) = (Folp. Filp)po.
(22) (8Folp. 8F1]p) = (8Folp. 8F1lp)po + (Folp, Filp)p1,

(82 Fol p, 8% F1lp) = (82Folp, 8%F1l ) po + (8 Fol p, 8 F1lp)p1 + (Folp, Filp)p2 .

PrROOF. Let (x1, x?) be a local coordinate system on an open neighborlidad p.
As G acts transitively om, we may assume that

f(p)=f(p)=leoAeil.

The map
y=0% ...,y €eR% > [Xo(y) A X1(y)] € A
defined by
1 1.2 2\2 !
Xo(y) = <1, 0,y% »2,y3, SLOD%+ 07 ]) :
(23)

1 t
X1(y) = <0, Ly 5% SI0M2 + 092yt + 375 - y3)
is alocal coordinate system dfcentered aftsoAe1]. Then, there exists an open neighborhood
U’ c U of p and smooth maps, i : U’ — R® such that
flor=[Xooh) A (X10m)], flor=[Xooh) A (X10h)].

Thus, f and f have second order analytic contacipaif and only if the mapsG, = X, o h
andG, = X, o h,a =0, 1, satisfy

(24)  Gu(p) =Ga(p), 8Galp=08Galy, 8°Galp=08°Galp, a=1,2.
Let us write
(25) (Fo, F1) = (G1,G2)a, (Fo, F2) = (Go, G2)b,

wherea, b : U — GL(2, R) are smooth maps. Using (24) and (25), a direct computation
shows that this is equivalent to (22), whexg p1 andp, are given by

po = a(p)b(p)~*,
(26) p1 = (8alp — podblp)b(p)~*,
p2 = (8%al, — pod®bl, — 2p18b1,) b(p) ™. 0
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REMARK 2.3. From the proof of this lemma we see thatand f have first order
analytic contact ap if and only if there exisiop € gl(2,R) andpy € T*(M), ® gl(2, R)
such that

: (Folp. Filp) = (Folp. Filp)po.
(8Folp. 8F1lp) = (8Fol p. 8F1lp)po + (Folp. Filp)p1 .
2.2. Deformation of Legendre surfaces.
NOTATION 2.4. Giventwo mapyg, f : M2 — A, letFo(f) and byFo(f) be theGo-

bundles induced oM by f and f, respectively. We lej : Fo(f) — G andj : Fo(f) — G
be the natural maps

jipAeFo(f)>AeG, j:(pAeFo(f)>A€G.

The pull back of the Maurer-Cartan form 6fby j and j will be denoted byw = (a)j) and
by o = (cb§), respectively. IfA : U — G andA : U — G are local cross sections 6% ( f)
andFo(f), respectively, then thg-valued 1-formsa =14 A andA~1d A will be denoted byx
anda.

2.2.1. Deformations of order zero. A deformation of order zero betweghand f is a
smooth mapB : M — G such thatf (p) = B(p) f (p), for everyp € M. Thus,B induces a
bundle isomorphisn® : Fo(f) — Fo(f) defined by the formula

B:(p.A) € Fo(f) — (p. B(p)A) € Fo(f) forany (p,A)e Fo(f).

Conversely, every bundle isomorphism betwéeiif) and}‘o(f) arises from a deformation
of order zero.

2.2.2. First order deformations.

THEOREM 2.5. A zero-th order deformation B : M — G of the two maps f, f :
M — A isof first order if and only if the bundle isomorphism B : Fo(f) — Fo(f) satisfies
27) a)o = B*(wo) a)o = B*(wo) a)o = B*(a)o) a)l = B*(wl) a)l = B*(a)l)

PROOF. We have to show that for every local cross sectionU — G of Fo(f), the
cross sectiom = BA : p € U — B(p)A(p) € G of Fo(f) satisfies

~2 _ 2 ~3_ .3 4 ~2 2 ~3_ .3
ao—ao, 010—010, 010—0(0 011—011 011—0(1

Recall thatB is a first order deformation if and only if the two mapsand B(p) f have first
order analytic contact at, for each poinpp € M. The mapA’ = B(p)A : U — G is aframe
alongB(p) f andB is afirst order deformation if and only if the maps

FliqgeU— [Agly AAYlle A, F:iqelU— [Agly A A1yl € A

have first order analytic contact at From the characterizatiorf analytic contact, it follows
that ¥ and F’ have first order analytic contact atif and only if there exispo(p) € gl(2, R)
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andpi(p) € T*(M), ® gl(2, R) such that
(Aolp, Atlp) = (Aplp, A4l p)po(p) .,
: (840l p, Aol p) = (BAG|p. 8AL1p)p0(P) + (Aglps AYlp)pr(p) -
SinceA’ andA agree ap, we then have
(29) po = ld2x2.
Now, the structure equations 6fimply
(30) dAy=oagA,, dA)=a]A,, dAg=ajA;, dA1=a]A;, J=0,...,5.
Substituting (30) into (28) yields

(28)

~2 2 ~3 3 ~4 4 ~2 2 ~ 3
oalp =aglp. aglp=aglp, aglp =aglp, ailp =ailp, ailp =ailp
and

5‘8|p - 0‘8|p 5‘8|p - O‘c1]|p
pip) =1\ _, 1 a1 1
aolp —oplp aglp —ailp
Sincep has been chosen arbitrarily, we can conclude that the equations
ad=ad, =03, ag=of, E=d2, B=d
are identically satisfied oti. This gives the required result. O
As an application of Theorem 2.5 we have
COROLLARY 2.6. If f, f: M? — A arefirst order deformations of each other, then
f isalegendreimmersion if and only if f isa Legendre immersion.
2.2.3. Second order deformations.  We begin by proving the following

THEOREM 2.7. Let f, f : M — A betwo nondegenerate Legendreimmersions. Then
f and f are second order deformations of each other if and only if there exists a bundle
isomor phism
B:F(f) = F(f)
such that
(31) g =B (@), @2 =B*w?).

PROOF LetU C M be any coordinate neighborhood &f and letA : U — G be
a canonical frame along. We show that a first order deformatigh: M2 — G is of the
second orderifandonly it = BA : U — G is a canonical frame along such that
&8:0{8, @2 =a?.
From Theorem 2.5, we know thatis such that

(32) @=ad, a?=d?.
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We also know that the frame fieldsandA’ = B(p)A satisfy
Ao, A, = (A, A}),
33) {( 0. Al = ( ,1) | o
(8A0,8A0)|p = (A4, AD|p + (Ap, ADIpo1,

where
(@@ —adly @ —adl,
e ((&cl, —ab)l, @ ai)|p> '
Lemma 2.2 implies thaB is a second order deformation if and only if, for everg U, there
exists

0 0
_ (% 01 2
p2_ 1 1 ES (M)|p®g[(2a R)
OO Ol

such that
(34)  (8%A0.8%A1)|, = (8%Ap. 82AD)|p + 2(8Ah, 8AD pp1 + (Ap. ADIpp2.
Equation (34), when written out, gives
82A0|, = 82A5) ) + 28Ag| p(@3 — ad)|p + SAY (& — ad)l,
+ Aplpod + Aol
82A1lp = 82Al]p + 25A9]p(@ — D)l + 8411, @1 — Dl
+ Apl o + AYl0i.

(35)

On the other hand, from the Maurer-Cartan equations ahd the fact thal|, = A’|,, we

compute

(36) 52“30|p = ¥51pAolp + v5 1pALlp + Y5 1pA%lp + ¥51p A3l + 7515 A5l
82A11p = v Ablp + il AlLlp + Y2l Ablp + ¥Rl ASlp + v1 15 Ajlp
where

S = 8ag + agag + ajad + a3ag .

Ve = sl + adag + adald + agas

vé = aa? + adas,

vg = a3 + agag .

Ve = a3,

yd = 8a) + adaf + ajad + azas
yi = da} +adad + atat + azaj,
yE =08a2 +ajaf,

ye = agag + a?a;

vi = adas.
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Using the Maurer-Cartan equations4f, (35) can be written as
(37) 82441 p = BRlpAgly + BglpALlp + B1pAslp + B3lpAsly + 5l pAslp
82441p = BY1pAoly + BilpALlp + BElpAdlp + BLlpA%lp + BLpAGlp .

where

BS = (Ba + ade + aded + adel + 203(@ — o) + 2023 — ad) + oD,
,36[ = (50(% + aga% + aga% + 201(1](&8 - ag) + 201%(&% - aé) + a&)lp ,

B2 = (aa? + 2025 — ad)lp

,38 = (50(8 + agag + 2018(078 — a8))|p ,

B = (@3ed)lp .

BY = (802 + odaf + ata? + a2a + 203(@2 — o) + 220} — od) + D),
,311 = (50(% + a(l)aé + a%a% + a%a% + 201(1](&(1) - “(1)) + 201%(&% - a%) + crll)lp ,
B2 = (8a? + afa? + 202(@t — ad))l,,

,Bf = (a?ag + 2018(&(1) — 01(1)))|p ,

Bi = @)l

Form (36), (37) and (32), it follows that is a second order deformation if and only if

az(&cl] — acl]) = —01107:23,
al(&? — Ol?) = az&g ,
(38) 2051 _ oL
a“(a; —ay) =0,
at@) —ad) =0.
The last two equations of (38) yield
(39) ad=ad, aj=oat.

Computing the exterior derivatives of (39) and using the structure equations, we obtain
(40) agrna?=adrnad=0.
Differentiating the equations in (38), and using again the structure equations, we see that
@? A @ —ad) +atrad =0,
:al/\ (&g—ag) —012/\07:23 =0.
This implies thaﬁg vanishes identically, Furthermore, from the first two equations of (38)
we get

This yields the required result. O

Taking into account (12), we have
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COROLLARY 2.8. Let f, f benondegenerate Legendresurfacesand let A bea canon-
ical framealong f. Then f, f arenon-trivial second order deformations of each other if and
only if there exists a normal frame A along f such that

(41) at =at , oa? =a? ,

2

(42) ag — &g = wial, a% — &% = woa”, ag — 072 = —woat + wia?

for smooth functions w1, w such that (w1)? + (w2)2 # 0.

REMARK 2.9. If f, f are non-trivial second order deformations of each other, then
from the structure equations of the canonical frameand A, it follows that theg-valued
1-formn = a — « satisfies

(43) dn+aAn+nAra=0.
We can summarize the previous results in the following

THEOREM 2.10. Let f, f : M? — A be non-congruent, nondegenerate Legendre
immersions. Then the following statements are equivalent:

(1) f and f arenon-trivial second order deformations of each other.

(2) Thereexists a bundle isomorphism B : F(f) — F(f) suchthat

ol =B5 @Y, o?=B*®7.

(3) f and f induce the same canonical coframeon M.
(4) f and f havethe same quotient of cubic to quadratic forms, that is,

(44) V)P =0/ .

The equivalence of (1), (2) and (3) is a direct consequence of Theorem 2.7. As for the
equivalence with (4), if (44) holds, there exist canonical frameand A along f and £,
respectively, such that! = o, @2 = 2. Sincef and f are not congruent, this yields (42).

EXAMPLE 2.11 (Isothermic nets). Léf c RZ? be a simply connected open set with
coordinategu, v). A net is a two-parameter smooth immersign U — R2 satisfyingF,, -
F, x F, = 0. AnetF isisothermicif F is a conformal map, that iy, v) are both principal
and isothermal coordinates. Isothermic nets parametrize isothermic surfaces. Examples of
isothermic surfaces include quadrics, surfaces of revolution, cones, cylinders and constant
mean curvature surfaces. The main local differential invariant of an isothermic net is the
Calapso potential, that is the positive functiop defined by

1
0> (du? + dv®) = 2t - k2)2dF - dF,

wherek; andky are the principal curvatures. The Gauss-Codazzi equations imply tlsat
solution of theCalapso-Rothe equation:

A You) + 2(@Puv = 0.



DEFORMATION OF SURFACES IN LIE SPHERE GEOMETRY 175

Denote byf : U — A the Legendre lift ofF and letyy = loge. If ¥, ¥, # O, thenf is
nondegenerate and the corresponding canonical coframe takes the form

ot = Y (P)2dv, o = Y W) 2Ydu .

Let W be a smooth function such thag = dEe@w), whereq,, is the closed 1-form
1
ap = —e?V (5@—2*” Ay + 29, (1+ e—”’m/n)du
1
+ e <§(e—2‘/’m/f)v + 2y, (1 + e—z‘/’m/f))du .

The Calapso potential and the functiBhgive a complete set of invariants for the isothermic

net with respectto the conformal group [2, 25], thapisndW determineF up to a conformal
transformation. One of the most important features of isothermic nets is the existence of a
spectral transformation. This transformation was independently discovered by Calapso [7, 8]
and Bianchi [4], who introduced it as tifetransformation. Given a real constamnt € R, the
T,»-transformT,, (F) of F can be characterized, up to conformal transformations, by

o1, Fy =9r, W, =Wr+ me=2V .

Thus the Legendre lifts of thE-transforms ofF’ have the same canonical coframe and are not
congruent (see Remark 4.2 and (51)). This shows that the Legendre lifts of isothermic nets
are deformable.

ExAmMPLE 2.12 (L-lsothermic nets). Another class of deformable surfaces is given by
the Legendre lifts of_-isothermic nets. A neF : U — R3 is said to bel-isothermic if the
Gauss mam : U — 2 is conformal with respect to the third fundamental form, that is,
(u, v) are principal coordinates which are isetmal with respect to the third fundamental
form. L-isothermic nets parametrize the classleisothermic surfaces. Examples include
minimal surfaces irR® and molding surfaces [23]. The study bfisothermic surfaces goes
back to the work of Blaschke and presents manglogies with that of isothermic surfaces.
For instance[-isothermic surfaces admit a spectral transformation which is the analogue of
the T-transformation for isothermic surfacesl]2 We briefly recall some basic properties of
L-isothermic nets and show that theiedendre lifts are deformable. TBéaschke potential
of F is the positive functiorp defined by

2
1/1 1
2 2 2
d dv)=-|——— ) dn-dn.
o (du“ + dv©) 4<k1 k2> n-dn

In this case the compatibility condition arigj from the Gauss-Codazzi equations is Bhe
schke equation

(45) A(%(plw> =0.
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Let f be the Legendre lift o' andys = log¢. In the nondegenerate case, which amounts to
Y, # 0, the canonical coframe ¢f can be written as

ot =Y W) Zdu,  o® =Y {)2dv.
In addition to the Blaschke potential, the other local differential invariant a6 a smooth
function W defined by, = d (e2¥ W), where

ay = —ez"’(%(e‘z"’ AV + 29 (e A¢)>du

1
+e (E(ez'” AY)y + 29 (ez‘”Aw)>dv :
Givenm € R, the T, -transformT,,(F) of F can be characterized (up to Laguerre contact
transformations) by
oT,(F) = 9Fr, Wrg,r)=Wr+ me=2V .

The Legendre lifts of th@ -transforms ofF' have then the same canonical coframe and are
not congruent (see Remark 4.2 and (51)), froimiclu follows that the Legendre lift of an
L-isothermic net is deformable.

3. Infinitesimal deformationsand deformablesurfaces. Infinitesimal deformations.
If £ and f are non-trivial deforrations of each other, thepn= @ — « never vanishes and,
according to (43),

(46) Sly = AnA~1
is a closed 1-form with values i for every canonical framg along f. Moreover,
(47) Dly :=[AA™Y]
defines a smooth map : M2 — G/Z, such that
D YdD =5.

On the other hand, let : M2 — A be a nondegenerate Legendre immersion and, define
n(w1, wz) € 21(U) ® g by

00 0 wiel  —woal + wia? 0
0 0 wy? 0 0 woal — wia?
oo o 0 woa? 0
(48) nwiwa) = 5 5 4 0 0 wiak ,
00 0 0 0 0
00 0 0 0 0

for smooth functionsuvy, wo. Note thaty takes values in the abelian subalgebra
a={T € g|T(e0) = T(e1) =0, T(e2) cxe1, T(e3) o &0} .

From (43), it follows that the 1-forminA—! € 21(U) ® g is independent ofi. Thus, there
existss € 2Y(M) ® g suchthat|y = AnA~—L.
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DEfFINITION 3.1 (Infinitesimal deformations). We say thgis aninfinitesimal defor-
mation of f if § is closed. LetA y denote the set of infinitesimal deformationsfof

We are now in a position to characterize the Legendre surfaces which admit non-trivial
deformations in terms of infinitesimal deformations.

THEOREM 3.2. Let M2 be simply connected. Then a nondegenerate Legendre immer-
sion f : M2 — A admitsnon-trivial deformations if and only if Ar #0.

PrROOF. If f is a non-trivial deformation off, thenn = @ — « defines a non-zero
infinitesimal deformation. Conversely, Igtbe a non zero infinitesimal deformation. Then,
8 € 2Y(M)®gis anon-zero closed 1-form and there exi8ts M — G suchthatD~1dD =
8. Note thatthe mag : p € M — D(p) - f(p) € Ais a non-trivial deformation of. O

REMARK 3.3. Note that for every non-zemp e A there exists a non-trivial defor-
mation f which is uniquely defined by and the corresponding infinitesimal deformation,
up to the action of5. Moreover, asA ¢ is a real vector space, givene Ay andr € R, ry
is another infinitesimal deformation. Therefore, the deformationsafise in one-parameter
families. In other words, deformable surfaces do hagpeatral transformation. This sug-
gests the existence of a Backlund transformation for deformable surfaces.

Infinitesimal deformations and parallel sections. Let f : M? — A be a nondegenerate
Legendre immersion and consider €3, R)-valued 1-form

—2(2q10 — g20?) 0 —at
(49) o= 0 —2(qrot — 2g00%) o?
2(p2 — Do —2(p1—Det  =3(qrot ~ q20?)

DEFINITION 3.4 (o-connection). The form (49) defines a linear connection
D°w :=dw+ow

on the trivial bundleV/? x R3, for each smooth functiow : M2 — R3. D is referred to as
the o -connection of f. By Py we denote the vector space consisting ofpallallel sections
of theo-connection.

A simple computation shows that the curvature fa2h of theo-connection is given by

0 0 0
(50) °=| o0 0 0 al A2,
201p2 202p1 3(p2 — p1)
where for a smooth function: M — R we writedg = 319’ + d2ga?.
For everyw = (w1, wa, w3) : M%2 — R3, let (w1, wp) be defined by (48).
PrROPOSITION 3.5. A nondegenerate Legendreimmersion f is deformableif and only
if there exists a parallel section of the o -connection. Moreover, the mapping

w e Pr— n(wi,wz) € Ay
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is an isomor phism of vector spaces.

PROOF. Let f be a deformation of . Thena! = &1, «? = @2 and

2

ag—&gzwlal, a%—&%:wza, ag—&gz—wzal—i—wlaz

for smooth functionany, w» such that(w1)® + (w2)? # 0. Differentiating and using the
structure equations, we get

d(wlal) = —a8 Awial,
d(wzaz) = —wza% Aa?,
d(—woal + w10?) = — (@ + o) A (—wial + wia?),

which imply
(dw1 + 2w1a8) Aol =0,
(dw2 + ZwZa%) Aa?=0,
(dw1 + 2w1a8) Aa? = (dwy + 2w2a%) Aal=0.

By Cartan’s Lemma, there exists a smooth functiei: M2 — R such that

dwy = —2w1a8 + w30l1, dwy = —2w2a% — w30l2,

that is,
dwi — 2w1(2q10 — goa®) — waat =0,
dwy — 2w2(qlal - 2q2a2) + w3a2 =0.
Taking the exterior derivative of these equations yields
dwsz + 2(p2 — Dolwy — 2(p1 — Datwy — 3(grat — qzaz)wg =0,

which shows thatws, wa, w3) is a parallel cross section of tlkeconnection.
The converse follows by observing thatws, w2) defines an infinitesimal deformation
if w= (w1, wz, w3) is a parallel section. O

REMARK 3.6. Nondegenerate deformable Legendre surfaces may be classified in
terms of the dimension o ». For a generi¢f the space) ; is one-dimensional. It is not too
difficult to show that surfaces with a three-parameter family of deformations can be generi-
cally obtained as deformations of the Legendre lifts of molding surfac&’inlt is not at
all clear if there exist Legendre surfaces with a two-dimensional family of deformations. But,
if they exist, then they can be reconstructed from the integral manifolds of a Pfaffian system
with empty complex characteristic variety. Thus, this class is either empty, or it depends on a
finite number of parameters.

4. Examples.

EXAMPLE 4.1 (Generic deformations). Let, f be deformations of each other and
let n be the corresponding infinitesimal deformation. According to the notation of Corollary
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2.8, we say that the deformationdeneric if wiwy is nowhere vanishing. In this case, there
exist local parameter@:, v) on M such that the canonicabframe takes the form

ot = Y W) du, o = Y (P)2dv,
wherey : M2 — R is a smooth function. Th&-transforms of isothermic anb-isothermic
nets are examples of generic deformations.

REMARK 4.2. In the case of an isothermic, respectivélyisothermic surfaces? is
the Calapso, respectively, the Blaschke pt&nThis can be seen by applying the reduction
procedure recalled in Section 1 to their respective conformal and Laguerre canonical frames.
For this we need to assume the nondegeneracy condftica 0O, v, # 0.

A direct computation shows that theconnectioro = () is given by

03 =0f=0, o3=—a'=-YW)Hdu, 0f=a?=¥YV.(Y)%

and

1_ ﬂ' Viuu 21/fuv 2%1) 1s”vv
61_3(1/fu+1//v)d+ <w )

2 g 1//uu 21//141) 2‘ﬁuv Wuv
62_3(%+ v )d” <wu )
O_3 - _ 2 <1ﬁuvv _ 1;01)1)1//1w>dv

LY @om \ e )2 )
0_3 — 2 (I/fuuv _ I/IMuI/fuv>du
R AN A AL

w:,m 2‘#uv 21//141) I//‘U‘U

%= < Ve W )d” i ( Ve W )d”

It is a computational matter to verify that the parallel seciior P associated tq is given
by
(51) w = VW) ™4 W0) 72, =¥ W) 720) 4 200) "2 (W) "2 )’ -
REMARK 4.3. Note thatw?, w? # 0, which characterizes such surfaces. Moreover,

in the case of isothermic anb-isothermic netsw originates the one-parameter family of
non-trivial deformations considered in Examples 2.11 and 2.12.

EXAMPLE 4.4 (Special deformations). A deformation is said tospecial if wiw>
vanishes identically. Deformable surfacesiethadmit a special deformation play the role
of the Rg surfaces in projective differential geometry. Lete P, be the parallel section
associated to the deformation. Thehw? andw?® vanish identically. Two cases may occur:
eitherw! = 0, or elsew? = 0. Without loss of generality, we may assume that= 0. From
the structure equations of the canonical frame, it follows yhatimits a special deformation
with w2 = 0 if and only if p = 1. The degree of generality of this class of Legendre
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immersions will be clear in the last section; we will see that they are rather special. Notice
that onM? there exist local parametes, v) with respect to which the canonical coframe is
given by

ol = v2Bau, o? = v

for a smooth functiony such thatw! = 4 y—2/3,

ExamMPLE 4.5 (Legendre surfaces with 3-parameter families of deformations). Inthis
example we consider the Legendre immersions withoflabnnection. This example has been
discussed by Ferapontov in [14] (see also Finikov [15]). From (50) we se&that O if and
only if p1 = p2 = ¢, for a constant. According to Remark 1.4, we have

ProOPOSITION 4.6. The 3-web defined by the canonical coframe is flat if and only if
p1=p2.

REMARK 4.7. From this we infer that deformable diagonally cyclidic surfaces are
characterized by havingy = p2 = const.

Since the web-connection is flat, then there exist local coordiiates such that
(52) ot =eVdu, o?=evdv,
whereys is a smooth function. From this we see that
(53) q1=—vyue V. qa=1ne V.
This implies

54) { S = 2y, du + Yydv,

ai = Yudu + 2yrdv .
From the structure equation we deduce thas a solution of the Liouville equation
(55) Yuw = (L—c)e?” .

The other compatibility conditions arising from the structure equations are:

doz% = —a% A a%,
0 0 0
(56) dag = —ag A ag,
docg = —(018 +ot%) A 012,
where

ag = Adu + ceVdv,
(57) a% = ceydu + Bdv,
ag = —Bdu + Adv,
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for two suitable smooth functions, B (essentially the invariany andrz). It is now a com-
putational matter to verify that (56) and (57) can be written as follows:

Ay = =AYy +3ce Y,
(58) By = =By, + 3ce’

Ay, + By = —3Ay, — 3By, .
We may rewrite (58) in the form

59) { dA = (R — 3AY,)du + (3ceV ¥, — Ayr)dv,
dB = (3ceVyr, — BYr,)du — (R + 3Byr,)dv ,
whereR is a suitable smooth function. Differentiating (59), we get
Ry = =Ry, — 2(1— c)e? B — 3ceV (Y + 492,
{ Ry = —Ryry +2(1 — ©)e?V A + 3ce¥ (Yuu + 492) .
The compatibility conditionsf this system imply

(61) 36‘611/(1#,4“,4 + Yoo + 101//141#1414 + 10‘#1)1//1)1) + 8(‘#3 + 1//3)) =0.
Two cases may occur: eithee= 0, orc # 0. In the first case the only compatibility condition
is the Liouville equation, which may be viewed as the soliton equation of this class of surfaces;
its solutions depend on two arbitrary functions in one variable. In fact, the general solutions
of the Liouville equation are of the form
2 — 1 A
(62) (1—0) (b4 w)?
2=, if c=1,

(60)

if c#1,

where® = ¢V, A is a function of the variable, andu is a function of the variable. Thus,
if ¢ £ 0, it follows thaty is a solution of the overdetermined system

{ 1ﬁuuu + 1//vvv + 101//141#1414 + 10‘#1)1//1)1) + 8(‘#3 + 1//3) = Oa

(63) Yy = (1 — C)EZW .

If we use the potentiab = ¢V, then (63) means tha? is a function of the form (62) such
that

(64) (%@2@2)”)”) + (%(@2@2)”)1,) =0.
u v
Let first examine the case= 1. We takex andu as a new variable and we think ®fand
1 as a functions of. andyu, respectively. With respect to these new coordinates the equation
(64) is equivalent to
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(65) B +a3,, (13 =0.
This implies that. andu satisfy the ODE

da 3_PA
(27 - v

3
dp\™
<_dv) = Q(u),

whereP andQ are polynomials of ordex 3 with the opposite leading coefficients. One may
proceed in a similar fashion also in the general case. Substituting

1 A
1—c O+ w2

(66)

(67) P2 =

in (65), we obtain

1 d3)\./3 d3 ©3 d2k/3 d2 °3
§(A+u)3(—+ “)—4(}\+u)2( + “)

di3 dus di? du?
(68) W W
d)"/3 dl’L3 /3 .3
+ 2001 + ) + — ) =400 + i1°) = 0.
di du
Applying the operatof)fMMW to (68), we get
d6)\,3 dG[:LS
69 —— 4+ ——=0.
(69) d)r8 + dub

This implies thatr’3 and ;23 are polynomialsP (1) and Q(u) in A and u, respectively, of
order < 6. Such polynomials satisfy (68) if and only@#(7) = —P(—T). Thus,x» andu

satisfy the ODE
AN oy
du o ’

du 3 _
() =

whereP is a polynomial of degree 6.

The 3-parameter family of infinitesimal deformations. We finish this example by
discussing the 3-parameter family of infinitesimal deformations of such surfaceso-The
connection is given by

A, du + 2yr,dv 0 —eVdu
(71) o= 0 2y du + dpdv  eVdv |,
2(c —DeVdv  —2(c —DeVdu  3dy

(70)
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where the potential function is given either by

(72) =i,

or by

1 Y

A= G+ w2

It is now a computational matter to verify that the parallel sections obHtennection are

(73) eV

given by:
(1) Ife=1(.e.,e? =), then
1/) AN AJN
(749 soe | -1/n | +s1e | —u/i | s un | —p/i |
0 eV eV

wheresg, s1 ands3 are real constants.
(2) Ifc#1(.e,e? =1/A—c)-AVi/(h+ wr)?), we have

—1/x AN A2/
_ 1/ _ o - —u?/ [
2y 2y 2y
(75) soe o=V + s1e eV —2) + s2e 2uneV |
At A4 A4+ i

whereso, s1 ands» are real constants.

5. Thedifferential system of adeformation. It was shown in [18] that the problems
of k-th order deformation are equivalent to solving certain exterior differential systems on ap-
propriate spaces. Naturally, for each concrete homogeneous space there is a specific problem
to solve. We shall derive this result in the case at hand.

Let P = (G/Z2) x R® x R® and denote byg1, g2, p1, p2, 1, r2) and (w1, wa, w3)
the coordinates oR® andR3, respectively. Le(wﬂ) be the Maurer-Cartan forms an/Z»

and pute! = w3, «? = w?. On P, we consider the exterior differential 1-forms, ..., n®
defined by
S S -3 78 = o,
(76) =03, PP=wg—o®, ®=of-d,
N =wd, n®=wj,
o 1 = o+ 2t g

10 — w% + qral — 2g002
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't = wf — riat — paa?,

12 1 1 2
(78) N = w; — pra- —raa’,
n13 = a)g + rzal — rlaz s

n'4 = dwy — 2w1(2q10t — goa?) — waat,

(79) nt® = dw, — 2w2(q1011 - 2q2(x2) + w3,
' = dwz + 2w1(p2 — Da? — 2wa(p1 — Vet — 3wa(qret — g20?).

DEFINITION 5.1. Let(Z, a® A «?) be the exterior differential system ghgenerated
by nt, ..., n® with the independence conditiant A o2 # 0. We call(Z, a® A o?) the
differential system of a deformation.

REMARK 5.2. The integral manifolds ofZ, o1 A «?) are 2-dimensional immersed
surfaceq[Al, ¢, p,r, w) : M — P such that

(1) f=[AoAA1]l: M — Aisanondegenerate Legendre immersion,

(2) [A]: M — G/Zisthe canonical frame alony,

(3) ¢.p,r: M — R?x R? x R? are the invariant functions of,

(4) w: M — R3is a parallel section of the-connection off .
Thus, the deformations of a nondegenerate Legendre immersion may be regarded as the inte-
gral manifolds of the differential systetd, a® A «?).

From the Maurer-Cartan equations we obtain ¢juedratic equations of the system,
which are (modul@)

(80) dal = —qzal Aa?, da®= —qlal N

(81) dpt=---=dn®=0,

dn® =2dgi net —dga Ao+ (—1+ p2 — qig2)at Aa?,

2

82
(82) dnt®=dgi Aot — 2dgs A a? + (1 — p1+ qrg2)at Aa?,

dntt = —dri Aot —dpa A a? + (2r192 + 3q1p2)at A a?,

(83) dr}lz = —dp1 A ol —drp A a? + (3p1g2 + 2r2q1)al Aa?,

dr]l3 =dronat —dri A a? + 4(q1r1 — qzrz)al A a2 ,

(84) dn** = —2w1dn®, dn*®= —2w.dn,

dn*® = —wa(dn® + dn'%) + 2widpa A a®— 2wadpy A ol

2

(85)
+3w3(p2 — prat Aa?.
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From this, we see that the differential idealis algebraically generated by the 1-forms
nt, ..., nt8 and by the differential 2-forms

2V =2dg1 Aot —dgo A a® + (=14 p2 — qrg2)at Aa?,

.szdql/\al—2dq2/\ot2+(1—p1+q1q2)otl/\oz2,

2% =drinal +dpr Aa? — (2ri1g2 + 3q1p2)<x1 Aa?,

Q%=dp1 Al +dry Aa? — 3p1gz + 2rag)at A a?,

5= dro A al — dri A a?+ 4(q1r1 — qzrz)al A a? ,

(86)

8= 2widp2 A @l — 2wadp1 A al + 3wsz(p2 — pl)al Aa?.

REMARK 5.3. Notice that the differential systeffi, o A ?) is quasi-linear.

To discuss the involutivity of the system we compute the polar spaces of 1-dimensional
integral elements. OR, we consider the coframe

(87) @, a? nt, .. 0", dgr, dgo, dp1, dpa, dry, dro)
and its dual frame field
d d d d d d d d d d
(88) —lv —27 _11"'7—167_1_7_1_1_1_ .
dat dac In an dq1 dqz2 9dp1 dpz dri dri

The 1-dimensional integral elemerfsof the system are of the form

d d d
+bj—+ci—+d

(89) E=[V(a,b,c,d)], V(a,b,c,d) —
j@q] op; / or;j

=9
Thus, the manifold of 1-dimensional integral elemenis= P x RP’. A 1-dimensional
integral element is admissible if and onlyif;)2 + (a2)? # 0. The polar equations of a given
E €V are

(90) =0, a=1,...,16
and

(91) ivRP=0, p=1,...,6,
which read

2a1dq1 — azdqp = [az(1 — p2 + q192) + 2b1)1a* + [a1(p2 — 192 — 1) — bala?,
b1 —az(1 — p1+ qig2)le’t + [a1(1 — p1+ q1g2) — 2b2la?,
d1 + az(2r1g2 + 3q1p2)let + [c2 — a1(2r1g2 + 3q1p2)1e?
aidpi + azdrz = [c1 + a2(3p1g2 + 2r2q1) 1t + [d2 — a1(3pag2 + 2r2q1)10? |
azdry — ardra = [4az(qir1 — qar2) — dala* + [d1 — 4a1(qir1 — q2r2)le?,

aidq1 — 2azdq2 = |
aidr1 + axdpr = |

3 3
woaidpr — wiazdpr = [wzcl - Eazwg(pl - pz)}oz1 + [Ealw3(Pl — p2) — wlcz}az.
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Therefore, ifaras(wi(a1)? — wa(a2)?) # 0, the polar equations are linearly independent
and the dimension of the polar spali€E) of E is 2. ThusH (E) is the only 2-dimensional
integral element that contains. This shows that the system is in involution and that the
general integral submanifolds depend on six functions in one variable.
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