Tohoku Math. J.
53 (2001), 479-490

BANDO-CALABI-FUTAKI CHARACTER OF COMPACT TORIC
MANIFOLDS

Dedicated to Professor Tadao Oda on his sixtieth birthday

YASUHIRO NAKAGAWA

(Received November 24, 1999, revised August 28, 2000)

Abstract. The Bando-Calabi-Futaki character of a compact Kéhler manifold is an ob-
struction to the existence of K&hler metrics with constant scalar curvature, which is a gen-
eralization of the Futaki character of a Fano manifold. In this paper, we study the Bando-
Calabi-Futaki character of a compact toric rifiald. In particular, we shall prove that the
Bando-Calabi-Futaki character of a compact toric manifold vanishes on the Lie algebra of the
unipotent radical of the automorphism group.

1. Introduction. Let X be a compact connecteddimensional complex manifold
andn € H3(X; R). We assume that is positive, that is, there exists a Kahler metgjon X
such that its Kéhler form

r
wg =+—1 Z gﬁdzi Adz)

i,j=1

represents 2, in the de Rham cohomology groupgR(X; R), where(z!, 72, ... ,7") is a
local holomorphic coordinate oK. We denote by Aut(X) the identity component of the
group AutX) of holomorphic automorphisms of, whose Lie algebra is identified with
the Lie algebrat®(X; O(T1°X)) of holomorphic vector fields oX. Here7T10X is the
holomorphic vector bundle of tangent vectors of tyfe0) on X. Recall that the Albanese
map of X to the Albanese variety AltX) naturally induces a Lie group homomorphism

ax: Aut’(X) — Aut°(Alb(X)) = Alb(X).

Let G x be the identity component of the kernel of the homomorphigmandgy the corre-
sponding Lie subalgebra ¢1°(X; O(T1°X)). Then, by a theorem of Fujiki [6 17 x has a
natural structure of a linear algebraic group (defined @)eiWe denote by/x the unipotent
radical ofGx. More generally, we consider a linear algebraic gréufdefined ovelC) and
a homomorphism: G — Aut(X) of algebraic groups. By,: g — H°(X; O(T+9X)), we
denote the Lie algebra homomorphism induced frgmwhereg := Lie(G) is the Lie algebra
of G.
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REMARK 1.1. (i) If X is Fano, i.e., the first Chern clasg X) of X is positive, then
Gx = Aut®(X).

(i) If X is anr-dimensional compact toric manifold, that i, is anr-dimensional
compact irreducible non-singular variety defined o®ewith an almost-homogeneous alge-
braic action of am-dimensional algebraic tordg := (C*)", thenGx = Aut®(X).

By Ricy ands,, we denote thdRicci form and thescalar curvature of g, respectively,
namely, we put

r
Ricy = v=1 ) Riydz ndzl := —/~133 logde(y;) .

i,j=1
r —
5g 1= Z 9" Ri7,
i,j=1
where(¢’") is the inverse matrix ofg;7). By means of the harmonic integration theory, there
exists a real-valued*® function f € C°°(X)r such that
Sg—rig =Ugfy,

whered, := Z{j:l g/ (32/8zi8z_/) is the complex Laplacian for functions on the Kéahler

manifold (X, g), andu, € Ris the constant defined by

g\
r—1 / SQ<_>
(1.2) = (X Un™HIXT _ Jx "\2r _cR.
)
X 2

Bando [ 2], Calabi[4] and Futaki [ 9] defined an obstruction to the existence of Kéhler
metrics with constant scalar curvature as follows:

DEFINITION 1.3 (Bando [2], Calabi [4] and Futaki [9]). A linear functional
Fy: HO(X; O(T1°X)) — C defined by

1 r
FY(V) = s fx (%)(3—5) . Ve H(X; O(T0X)),

is called theBando-Calabi-Futaki character of (X, n).

We now recall the following fundamental facts about the Bando-Calabi-Futaki charac-
ters:

FACT 1.4 (Bando [2], Calabi [4] and Futaki [9]).Let X and » be as above. Then
we have the following:
@ F}’} does not depend on the choice of ¢ satisfying [wy] = 27n.
(i) If X admits a Kahler metric ¢ with constant scalar curvature satisfying
[wg] = 27, then Fy} vanishes.
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(i) Fy isaLiealgebracharacter of HO(X; O(T10X)), that is,

F;]( |[H°(X:O(TLOX)),HO(X:O(Tl’oX))] =0.
REMARK 1.5. Ifnis the first Chern class; (X) of X, then the Bando-Calabi-Futaki
characte|F§1(X) coincides with the original Futaki character, which was introduced in[ 8] as

an obstruction to the existence of Einstein-Kéhler metrics.

DEFINITION 1.6. Letrg: E — X be a holomorphic vector bundle of raklover X.
We say that¥ is (G, p)-linearized if G acts onE biregularly in such a way that
() mgoy =p(y)ongforanyy e G,
(i) foranyy € G andp € X,

YIE,: Ep = Ep(p)

is aC-linear map, wheré, := nEl(p) is the fiber ofrg atp € X.
Furthermore, ifG is a subgroup of AyiX) andp is the inclusion map, then we simply
say thatE is G-linearized.

In [15], the author proved the following:

FacT 1.7 (Nakagawa [15]). Let X and n be as above. We assume that there exists a
holomorphic line bundle L over X suchthat L is G x-linearized and c1(L) = n, where c1(L)
isthefirst Chern classof L. Then

F;Z |ux =0,
whereuy := Lie(Uy) isthe Liealgebra of Uy.
The main purpose of this paper is to generalize this fact to the case of a more general
situation, that is, we shall prove the following theorem:

THEOREM 1.8. Let X, n, G and p be as above. We assume that there exists a holo-
morphic line bundle L over X suchthat L is (G, p)-linearized and c1(L) = . Then

(Fyop)lu=0
for any unipotent subgroup U € G with Liealgebrau := Lie(U).
As an application of this theorem, we shall also prove the following theorem:

THEOREM 1.9. Let X be an r-dimensional compact toric manifold. By definition,
an r-dimensional algebraic torus 7, := (C*)" acts on X biholomorphically; hence the Lie
algebra t. := Lie(7}) of T, is regarded as a Lie subalgebra of Ho(X; O(T19X)). If n €
H?(X; Z) is positive, then the following are equivalent, without any assumptions concerning
a linearization of the natural action of Aut(X) on X:

(i) Fy vanishesidentically on HO(X; O(T19X)).

(i) Fy vanishesont,.
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2. Bando-Calabi-Futaki characters as holomorphic invariants (Proof of Theorem
1.8). Throughout this section, we fix a compact connectaimensional complex manifold
X, a positive clasg € H2(X; R), a linear algebraic groug (defined overC) and a homo-
morphismp: G — Aut(X) of algebraic groups. Letr: E — X be a holomorphic vector
bundle of rankk over X. We assume thak is (G, p)-linearized. Then, forany € g, a
holomorphic action (see [3])

AL A%E) - A%E),

of V on E is induced, that isA€ satisfies the following properties:
(i) AEisaC-linear map.
(i) Forally € C*®°(X)c ands € A%(E),

AL (s) = (0 V)P)s + Y AT s,

(i) AE commutes withd, i.e.,0AL = AL 3.
Here we denote by\? (E) the space of-valuedp-forms onX for p =0,1,...,r.

ExampLE 2.1. E = T10X is canonically Au¢X)-linearized. In this casej,l‘T,l’OX
is the Lie differentiationLy of vector fields with respect to a holomorphic vector fi®lde
HOX; O(T1%X)) on X.

Let 4 be a Hermitian metric ot andVv”: A%(E) — Al(E) the Hermitian connection
of h (see for instance [12, p. 12]). We define the curvatageof V" by

O = 9(h"*3h) € A2(End(E)),

where EndE) is the endomorphism bundle @f over X. For eachV € g, we putLE/E’h) =
VZ*V — AL € AYEnd(E)). Letl e Z>q be a non-negative integer agda GL(k, C)-
invariant symmetric polynomial of degree+ [ on gl(k, C) (see [10, p. 21]). For example,
eyt = ((V=1/2m) )"+ is aGL(k, C)-invariant symmetric polynomial of degreet- I on
gl(k, C). We now define amag} : g — C by

ctv) ::/ oL + o), Veg.
X

For this map’,’g, we can prove the following facts:

FacT 2.2 (cf. Futaki and Morita [11]). Let X, (E, h) and ¢ be asabove. Then we have
the following:
(i) Cﬁ dose not depend on the choice of a Hermitian metric 2 on E, i.e, Cﬁ isa
holomorphic invariant of (X, E).
(D] Cﬁ isa G-invariant symmetric polynomial of degreel on g. In particular, if I = 1,
then Cfg’ isa character of the Liealgebra g.
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(i) ForanyV e HO(X; O(T1%X)),

N r+1 r+1
FOW) = === Clho (V) = —r—Cj;_l(V),

where 710X and K ;1 := detTl’OX = N\ 710X areregarded as Aut(X)-linearized bundles
over X interms of the canonical Aut(X)-actions on them.
Let ¢’ be an arbitrary Hermitian metric axi. ForV € g, if a pointp € X is a zero point

1,0 N . .
of p.V € HO(X; O(T10X)), thenﬁ(piv *.97 induces the linear map

9%, g'
L = —(Lpv)p: Ty0X — THOX .

V € gis said to benon-degenerate if the following two conditions hold:
(i) The zero set Zer, V) of p, V is finite.
(i) For each zero poinp € Zero(p, V) of p, V, the linear map
E;T;O;f 90, TR0y, 710k
is non-singular.
The following localization formula foC? allows us to calculate explicitly the Bando-
Calabi-Futaki character of a compact toric manifold (see Corollary 4.6):

FacTt 2.3 (Bott[3]). Let X, (E,h) and ¢ be asabove, and V € g a non-degenerate
element. Then we have

#(2)
E Z \/ 1[:(7“1 OX g)

peZeraV) det o Vop

where ¢’ is an arbitrary Hermitian metric on X.

Now, we assume that there exists a holomorphic line buhdterer X such thatlL is
(G, p)-linearized ancc1(L) = n. Under this assumption, an argument similar to that in
[17, Section 6] allows us to prove the following Tian’s formula for the Bando-Calabi-Futaki
character (see also [15, Section 3]):

THEOREM 2.4 (Tian [17]). Let X, n, G, p and L be as above. Then, for any integer
deZandV € g, wehave

Fy(peV) == 5 +1>'Z( 1)/() ; rgpsrr2 (V)

iy ot
27|48 C V),
+ ( + 1) s W)
where LO+7=2/ .= [®06+r=2)) jsthe (§ + r — 2j)-th tensor power of L. Here we regard
K)}l@ L3+7=27 j =0,1,...,r, as(G, p)-linearized line bundles by the canonical Aut(X)-
actionon K *.
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Together with this Tian’s formula, the following fact implies Theorem 1.8 by the same
argument as that in [15, Section 4]:

FacT 2.5 (Mabuchi [13]). Let X, G, p and L be as above. Then, for any unipotent

n+1

subgroup U of G, C,Cf vanisheson the Liealgebrau := Lie(U) of U.

3. Bando-Calabi-Futaki character of compact toric manifolds (Proof of Theorem
1.9). First, we recall some basic notions and faaiaeerning toric manifolds (see [16] for
more details). Lefl, := (C*)" be anr-dimensional algebraic torus. We piit := Z" and
M := Homz(N, Z)(= Z"), where we regard elements §fand M asr-dimensional column
vectors and row vectors, respectively. Bebe acomplete non-singular fanin N (see [16] for
the definition of a complete non-singular fan) abdi) the set ofi-dimensional cones iw
fori =0,1,...,r. We denote byX 5, ther-dimensional compact toric manifold associated
with ¥. ThenT, acts onX s biholomorphically, andX s has an open densg-orbit O 5
isomorphic to7;.

FAcT 3.1 (Cox[5]). Let X beacomplete non-singular fanin N and dy := #X (1)
the number of the one-dimensional conesin X. Then:
() There exists a (ds — r)-dimensional algebraic subtorus Hs of (C*)?= and an
Hx-invariant open subset Wy of C?z suchthat Hx acts freely on Wy and

Xy =Ws/Hy .

Herethe Hx-action on C?z jsinduced from the canonical (C*)?=-action on C¢=.
(i) Let Gy bethecentralizer of Hy in AutOWVy). Then

Aut°(Xs) = Gx/Hs .

(iii) Gy and Aut°(X 5) are connected linear algebraic groups (defined over C). Let
Ux and Ux be the unipotent radicals of G x and Aut®(X x), respectively. Then

pxlg,: Us - Us

isanisomorphism, where o : G » — Aut°(Xy) isthenatural projection induced by theiso-
morphism Aut®(Xx) = Gx/Hy. Furthermore, there exists a reductive algebraic subgroup
Ry of Aut®°(X x) with T, asa maximal algebraic torus such that

Aut’(Xs) = Ry x Us .
ExamMpPLE 3.2. A typical example of an-dimensional compact toric manifold is the
r-dimensional complex projective spae&C). If Xy = P'(C), then we have:
ds =r+1,
Hs ={(t,1,...,1) e (CY*L, reCy=C*,
Wy =C*\ (0},
Gs=GL(r +1,0),
Aut’(Xs) = Aut(Xsx) = PGL(r +1,C).
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To eachv € X (1), there corresponds®-invariant Weil divisorD,, on X 5. More gen-
erally, amapy: X(1) — Z defines a-invariant Weil divisorD () := — 3, 5(1) (V) Dy,
and we denote by, the T,-linearized holomorphic line bundle ovérs corresponding to
D(a), i.e.,Ly = O(D(c)).

ExamMpLE 3.3. LetX be acomplete non-singular fanMandX x the compact toric
manifold associated witly'. Then the anti-canonical line bund&é;; of X » corresponds to
the map

ap: XD svi—> —-1leZ,

that is,K;; corresponds to the, -invariant Weil divisor) . 5.1y Dy.

If Ly is ample, thatis¢1(Ly) € H?(X 5; Z) is positive, then we say thatis ample. Let
Y1) = {v1,v2,...,vgs} and pute; := a(v;) € Zfori =1,2,...,ds. Then we define a
characten, : (C*)¥2 — C* of (C*)9* by Ay (s1, 52, - - ., Sds) 1= 571552 - 'SX—Z' Hy acts on
Wz x C by

k:(z,&) > (k-z, Ao (k)7LE),

wherek € Hx, z € Wy and€ € C.
FACT 3.4 (cf. Audin [1, Chapter VI]). The projection/s — X5 is a principal
Hyx-bundle. Furthermore, thE -linearized holomorphic line bundle, over X 5 is given by

Ly =Ws x3,C:=Wgx xC)/Hs .

PropPosITION 3.5. For a asabove, L, isthe (5;, px)-linearized holomorphic line
bundle over X 5.

PROOF The naturalG s-action onWWs commutes with thed s-action onWs. Then,
by means of Fact 3.45 » acts onL, = Wx x;, CandL, is (G s, px)-linearized. O

For anyn € H%(Xx; Z), in view of [ 7, Section 3.4], there exists a map: ¥ (1) - Z
suchthati(Le,) = n. Therefore, Theorem 1.8 together with Fact 3.1 (iii) and Proposition 3.5
implies the following theorem:

THEOREM 3.6. Let ¥ be a complete non-singular fanin N and n € H2(Xx;Z) a
positive class. Then the Bando-Calabi-Futaki character F,’}Z of (Xy, n) vanisheson the Lie
algebrauy := Lie(Uy) of Uy.

Recall that, for a reductive algebraic groRp
(3.7) Lie(R) = Lie(Cente(R)) + [Lie(R), Lie(R)],

and LigCentetR)) € Lie(T) for every maximal algebraic torug of R, where CentdR)
is the center oRR. SinceRy is reductive, Theorem 3.6 together with Fact 3.1 (iii) and (3.7)
immediately implies Theorem 1.9.
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4. A combinatorial formula for the Bando-Calabi-Futaki character of compact
toricmanifolds. In [14], the author established a combinatorial formula for the Futaki char-
acter of a toric Fano manifold. In this section, we shall also establish a combinatorial formula
for the Bando-Calabi-Futaki character of a compact toric manifold by the same argument as
in [14].

Throughout this section, we fix a complete non-singularXaim N := Z" and a positive
classn € H%(X 5; Z). We shall use the same notation as that in Section 3.

We define a basir; := ¢/(3/9r)); i = 1,2,...,r} of the Lie algebra, of T, where

(t1,+2,...,1") is the standard coordinate f6f = (C*)". Note that we can regargl as a
complex Lie subalgebra di®(X 5; O(T1%X 5)). For eachv € X (r) andS € GL(r, C), let
at(o) al(o)
a2(o) a?(o)
ai(o) = . s, ar(0) = . eN
ay (o) a.(o)

be the generator af. We put

A(o) :=(a1(0), az(0), ..., ar(0))
at(e) a(o) ... al(o)

_ a%@ ag@ ... dXo) 6L D)
aj(oc) ay(o) ... a(o)

andQ(S;o0) = (q§(S; 0)) := A(0)~1S € GL(r, C). A non-singular matrixs € GL(r, C) is
said to benon-degenerateif S satisfieSqu.(S; o)#0foralli,j =1,2,...,r,ando € X (7).

ExamMpPLE 4.1. For example, a non-singular matrix

1 1 1
b4 w2 "
2 4 2r
So=| 7 ” e T € GL(r,C)
ol 220-D -1
is non-degenerate.
For S = (sij) € GL(r,C)andi = 1,2,...,r, we define a holomorphic vector field

Vi(S) = Zlesijtj on Xx. Then{V;(S); i=1,2,...,r} is a basis oft,. For a map
a: X (1) — Z, we define constan$ (S; o, ), i =1,2,...,r, by
Bi(S;0,@) =Y a(laj(@)g](S; o),
j=1
where (a;(0)) € X(1) is the one-dimensional cone generateddpgs) € N. We put
bi(o,a) := B(,; o,a), wherel, € GL(r, C) is the identity matrix.
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In terms of the notation as above, we can establish the following combinatorial formula

Cr+[
for CLfy (Vi (9)):

THEOREM 4.2. Let Xy bean r-dimensional compact toric manifold associated with
a complete non-singular fan X and S € GL(r, C) a non-degenerate non-singular matrix.
Then we have

r+l
«/—_1)1 3 Bi(S; o, )"

ot
CrL, (Vi(s) = (7 ;
i B CACTS
j=1

foranya: ¥(1) - Z,l e Zsgandi = 1,2,...,r, wherewe regard L, asa T,-linearized
holomorphic line bundle over X 5.

PrRoOOF For eachv € X(r), there exists & -invariant open subsé¥, of Xy such
thatW, = C" andXy = Uyep Wo. Let (112, ... 1) and(z1(0). 2%(0). ..., 2" (0))
be the coordinate systems Oy = 7, = (C*)" andW, = C’, respectively. The following
system of identities is the coordinate transformation between these coordinates:

r .
tizl_[z-/(a)a}(c), i=212,...,r.
j=1
From these identities, for evesye X (r) andi = 1,2, ..., r, we have
- ]
() — kg Nk 9
Vi(S) =Y qf(S;0)z @) 3%

k=1
on W,. In view of this expression of; (S) and the non-degeneracy 8fwe obtain

Zera(V;(S)) = {the origino(c) of W, =C"; o € X(r)}

fori =1,2,...,r. Foreachy € X(r), theT,-linearized holomorphic line bundlg, over
X x is trivialized onW,,. In terms of this trivialization, th&,-action onLy|w, = W, x Cis
given by

t: Wo xC> (z,6) > (t -z, ]‘[(ﬂ)bi(mg) € Wo x C,

i=1

wherer = (¢11,12,...,1") € T, (see [16, p. 69]). Hence, fer € X(r) andi = 1,2,...,r,
we have

(4.3) cie =Y bijo.wsi = i(Sio.w),
j=1

whereh is an arbitrary Hermitian metric oh,. Moreover we also have, for € X' (r) and
i=12,...,r,
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1
q;(S; o)
g _ qiz(S; o) O

Vi($).0(0) = - ’

0 S

(4.4) c

with respect to a bas'(s{a/azl(cr))o(o), ..., (0/32"(0))o(o)} OF Tol(f)Xp, whereg’ is an arbi-

trary Hermitian metric onX s;. Together with (4.3) and (4.4), Fact 2.3 immediately implies
the theorem. O

As a corollary of this theorem, we obtain the following:

COROLLARY 4.5. Let Xy be an r-dimensional compact toric manifold associated
with a complete non-singular fan X', S € GL(r, C) a non-degenerate non-singular matrix,
og: X)) —> Z,a=1,2,...,k,and b1, by, ...,bp e Nwithb1 + by + ---+ by = r. Then
we have

(c1(La)?t Ue1(Lay)?2 U Ucr(Lg )P [X 5]

k
[]8i(S: 0, )

(4.5.1) B Z ael
oeX(r) l_[q"j(S' o)
1 9
j=1
foranyi =1,2,...,r. Inparticular,for«: ¥(1) > Zandi =1,2,...,r, wehave
r .
Bi(S;0,a) Y g/ (S;0)
j=1
> T
ceX(r) 1_[ qij(S; o)
=1
(452) I’Lcl(La) = J

Bi(S; 0, )"
> T
oeX(r) qu(Sv O')

j=1
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PROOF  Applying Theorem4.21¢"% 1 (Vi(8)), we obtain
Lay®Lay®®Ly

r! b b
> MM @e) U UaLe)™) [X5]
by+-+by=r r ks

k r
(Z AafBi(S; 0, Ola))
— Z a=1 )

=
oeX(r) l_lqu(S7 O_)
j=1

By comparing the coefficients dflilxgz . -AZ" in the equation above, we obtain the for-

mula (4.5.1). The formula (4.5.2) is straightforward from the definition (1.2},0&nd the
formula (4.5.1). O

In view of Theorems 2.4 and 4.2 and Corollary 4.5 combined with the equalities

- il ok 0 if k=0,1,....,.r—1,r+1,
2%(D Q)U 2/) _{ZW!ifk:r,
j=

we can prove the following combinatorial fortaufor the Bando-Calabi-Futaki character of a
compact toric manifold:

COROLLARY 4.6. Let Xy be an r-dimensional compact toric manifold associated
with a completenon-singular fan X and S € G L (r, C) a hon-degenerate non-singular matrix.
Ifa: X (1) —> Zisample then,fori =1, 2,...,r, wehave

Bi(Sio. @) Y q](S:0)
VR sy = Y —=
oeX(r) HCI,I(S’ O_)
j=1

Bi(Sio.a) 1Y gl (S:0)

)3 =

7
oeX(r) Jrq.
q; (S;0)
r ,Ell ’ Bi(S; 0, a)
BEE — -
,Bi(S, o, a) oeX(r) l_[ql/(s’ O,)
j=1

=
oeX(r) l_lql/(S, O')
j=1
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REMARK 4.7. (i) LetXy,a andS be asin Corollary 4.6. Then we have

(F @, Fi @, ., FE @)
= (B s, BRI Was), o BER V()57
Therefore, in view of Corollary 4.6, we can calcul&tgL“)(r,») foralli =1,2,...,r.

(i) Let Xy anda be asin Corollary 4.6. Then by means of Theorem 1.9, Corollary 4.6
and the identity in (i), we can obtain the entirdarmation about the Bando-Calabi-Futaki
characterFf(lZ(L") of (Xx, c1(La))-
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