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EXTENSION OF CR STRUCTURES ON PSEUDOCONVEX
CR MANIFOLDSWITH ONE DEGENERATE EIGENVALUE
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Abstract. Let M be a smoothly bounded orientable pseudoconvex CR manifold of
finite type with at most one degenerate eigdne. Then we extend the given CR structure
on M to an integrable almost complex structure on the concave sidie. dtherefore we may
regardM as the boundary of a complex manifold.

1. Introduction. Suppose thad/ is an abstract smoothly bounded orientable CR
manifold of dimension 2 — 1 with a given integrable CR structu& of dimensionn — 1.
SinceM is orientable, there are a smooth real nonvanishing 1-foamd a smooth real vector
field Xo on M so thatp(X) = 0 for all X € S andn(Xo) = 1. We define the Levi form of
onM byin((X’, X"]), X', X" € S. We may assume thaf C M, in C* sense, wheré/ is
a smooth manifold.

In [5], Catlin has studied an extension problem of a given CR structur&do an
integrable almost complex structure on/admensional manifold2 with boundaryb$2, so
that the extension is smooth up to the boundary and dies inb£2. Under certain conditions
on the Leviform (cf. [5, Theorem 1.1, Theorem 1.3]), this shows that an abstract CR manifold
can be locally embedded @©" [1, 13, 16].

In this paper, we study an extension problem of a given CR structund arhenM is
a pseudoconvex CR manifold of finite type with one degenerate eigenvalue apd/din
2n — 1. For a given positive continuous functigron M, whereg = 0 onbM, the boundary
of M, we define

Sy ={(x,1) e M x[0,00); 0<1<g(x)}.
Then our main result is the following theorem:

THEOREM 1.1. Let (M, S) beasmoothly bounded pseudoconvex CR manifold of finite
type with at most one degenerate eigenvalue and dimrM = 2n — 1. Then there exists a
positive continuous function g on M and a smooth integrable almost complex structure £ on
S such that for all x € M, L0 NCTM = S;. Furthermore, if 7; : TS} — TS;
is the map associated with the complex structure £, then dt(J,(Xo)) < 0 at all points of
Mo ={(x,0); x € M}.
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Note that we extend the given CR structureMrto the concave side (instead of convex
side) of M. When dinkM = 3, the author proved the same result witéis a pseudoconvex
CR manifold of finite type [8]. We also note thatif is strongly pseudoconvex, this case was
handled in [5, Theorem 1.1].

In general, Theorem 1.1 does not imply that the given CR structure can be locally em-
bedded inC” [12]. On the other hand, a theorem of Newlander-Nirenberg [14] shows that an
integrable almost complex manifold icamplex manifold. Therefore, if we |€M, S) be as
in Theorem 1.1, then we have the following corollaries.

COROLLARY 1.2. Wemay regard (M, S) as a boundary of a complex manifold.

COROLLARY 1.3. Let D beacomplex manifold with C°° boundary bD, anddim¢c D =
n. Suppose that the almost complex structure on D extends smoothly to a manifold M C b D,
where M is a smoothly bounded pseudoconvex CR manifold of finite type and the Levi-form
of M has one degenerate eigenvalue and dimg M = 21 — 1. Then D can be embedded into a
larger complex manifold 2 so that M liesin theinterior of 2 asareal hypersurface.

REMARK 1.4. In[6], the author showed that any smooth compact pseudoconvex com-
plex manifoldD of finite type with dine D = n, n > 2, can be embeded into a larger complex
manifold$2. Corollary 1.3 is a generalization of this result to some special non-compact com-
plex manifolds.

REMARK 1.5. If(M,S) has atleast three positive eigenvalues, Catlin [5] has extended
the given CR structure af to the pseudoconvex side #f [5, Theorem 1.1]. IfM is also
pseudoconvex, this result implies the local embedding of CR structuf@s.in

In [5], Catlin has introduced certain nonlinear equations which stem from deformation
theory of an almost complex structure (SectignThe linearized forms of these equations are
simply thed-operator fromA%! @ 710 to A%2 ® 710 (Section 2). To overcome difficulties
in subelliptic estimates fa¥ nearbM, we choose a Hermitian metric cﬂj o] tha’rSér takes
on the formS, = M x [0, ¢]. To this end, we choose, for eagh € M, a noneuclidean
ball that is of sizes = ¢(xp) in the transverse holomorphic direction and of s32€ in
strongly pseudoconvex tangential holomorphic directions, and ofcgizg §) in the weakly
pseudoconvex tangential holomorphic direction. We choose the metric so that the unit ball
aboutxg € M corresponds to the above noneuclidean ball With ¢ (xo).

To show thatr (xg, 8) is invariantly defined (i.e., independent of coordinate functions),
we choose special coordinates defined ngae M (Proposition 3.1). These change of coor-
dinates shall have an independent interest in studying weakly pseudoconvex CR manifolds of
finite type. In terms of these special coordinates, the weakly pseudoconvex tangential holo-
morphic vector fieldL; has a special representation so that we can define another quantity
u(x, 8), which is a smooth function &f andx and it is obtained by taking sucessive brackets
of L1 andL1 and hence defined invariantly. A technical difficulty is to show that the brackets
mixed with L1 and the strongly pseudoconvex tangential vector fields are not major terms
in determiningu(x, §). Then we show that (x, §) ~ w(x, §) (Proposition 3.5), and hence
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7(x, 8) is defined invariantly. To get an & ¢ < 1/2 subelliptic estimates (other than 1/2
estimates of Catlin [5]), we also need some precise estimateg([fbt, L;]), 2 < k < n.
This difficulty comes from the fact that we have a Dirichlet conditionMg and hence we
need to control the boundary integral terms, which were not occured in dimension three case,
on My (In usuald-estimates we deal with forms which vanish &g and hence there are no
boundary integral terms). Section 3, 4 and 5 contain these estimates in detail.

After this, we technically construct a family of plurisubharmonic functions with large
Hessian using the properties ofx, §) andu(x, 8). In performing the subelliptic estimates,
we use(n — 2)-positive eigenvalue conditions a¥, to handle the boundary integral terms
on M,, and we use the existance of a family of plurisubharmonic functions with large Hes-
sian to handle the components vanishingds. This will give us uniform ¥m subelliptic
estimates fod on each non-euclidean ball. Then we get the estimates, so-called “tame esti-
mates”, which are required in the Nash-Moser theorem [14] for the approximate solution to
the linearized equation.

2. Deformation of almost complex structures. Let (M, S) be a CR manifold as in
Section 1 and se® = M x (—1, 1). In this section we extend the given CR structSren
M to an almost complex manifol@?2, £), and study a deformation problem of the almost
complex structureC on §2 so that the new (deformed) amost complex structure is integrable
(or close to be integrable).

Assume thatC is an almost complex structure gi. Let A be a smooth section of
rt) = A%4(L) @ £, whereA%1(£) denotes the set ab, 1) forms with respect tcC.
Observe that ifd is sufficiently small, then the bundig* = {L + A(L) ; L € L } defines
a new almost complex structure andZif and L” are sections of, thenL’ + A(L') and
L” + A(L") are sections ofA. Similarly, if » is a section 0fA20(£), thenw — A*w is a
section ofA19(£4), where the adjoin#* maps fromA-9(£) to A%1(£) and is defined by

2.1 (A*w)(L) = w(A(L))
forall L € £ andw € A0, We want to choosd so that
(w— A*w)([L'+ A(L), L" + A(L"]) = 0.
By linearizing, i.e., by ignoring terms whereor A* appear more than once, we obtain
(2.2) o(L', AL + w([AL), L"]) = A%o([L', L"]) = —o([L', L"]).

Let L = L' + L” denote the decomposition of a vecloe CT, whereL’ € £, andL” € L..
For sectiond.1, L, of £, we define

(2.3 (D2A)(L1, L2) = [L1, A(L2)]' — [L2, A(L1)] — A(IL1, L2]") .

Note that this definition is linear i1 andL», and hencé-,A is a section of 2 = A%2(L)®
L. It follows from (2.1) and (2.3) that (2.2) is equivalent to the equation

(2.4) DoA=—-F,
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whereF is a section of "2 defined by
(2.5 F(L1, L) =[L1, L2]'.

Note thatF measures to what exteftfails to be integrable. I defines a CR structure on
M and if we wantL 4 to define the same CR structure oy then this means that must
satisfyA(L’) = 0 onM whenevell’ is a section of that is tangent ta/. This is a Dirichlet
condition on some of the components of the solution (2.4).

If we defineD3 : I'2 — I'® = A%3(£) ® L by

D3B(L1, Lp, L3) = [L1, B(L2, L3)]' — [L2, B(L1, L3)]' + [L3, B(L1, L2)]

2.6 _ _ _ _ _ _
(2:0) — B([L1, L21", L3) + B([L1, L3]", L) — B([L2, L3]", L1)

for B € I'?, then it follows thatD3F = 0 [5, Lemma 3.2]. Then we have the following
formal solution of the extension problem [5, Theorem 4.1].

THEOREM 2.1. Suppose that M is an orientable CR manifold of dimension 2n — 1
such that the CR dimension equals n — 1. Then there exists an almost complex structure £*
on 2 = M x (-1, 1) suchthat £* is an extension of the CR structure on M, and such that it
isintegrable to infinite order at M in the sense that if w is a section of AL%(£*) and L1, Lo
are sections of £*, then w([L1, L»]) vanishesto infinite order along M.

Let M and 2 be as in Theorem 2.1. The next theorem shows that the above formal
extension is essentially unique [5, Theorem 4.2].

THEOREM 2.2. Supposethat £ and X are almost complex structures on §2 that extend
the CR-structure on Mo = {(x, 0) ; x € M}, and that are integrable to infinite order on Mo.
Then there exists a diffeomorphism G of §2 onto itself that isthe identity when ¢+ = 0 and such
that G.X approximates £ to infinite order near My in the sense that if X is a section of £,
then G, X differs from a section of £ by a vector field which vanishesto infinite order on Mo.

By Theorem 2.1, we have an almost complex structfiteon §2, that is integrable to
infinite order alongMy = {(x,0); x € M}. Letn be a smooth non-vanishing one form on
M that satisfies)(L) = O for all L € Sy, x € M, and that defines the Levi form aff
as in Section 1. We can clearly extendo all of £2 so that it still annihilatesS, ;) for all
(x,1) € 2, whereS, ;) now denotes the space of vectorsdf, ,, that are tangent to the
level set of the auxiliary coordinate Then we have the following theorem which is a formal
solution of local embedding problem. One aafer a proof to, for example, [3, Proposition
3]

THEOREM 2.3. Let xo € M. Then there are a small neighborhood U of xg and
a constant ¢ > 0 so that for each x € M N U, there are almost holomorphic functions
fi,..., f, definedon U sothat if F, = (f1, ..., f»), then Fy(x) = Oand

(@ |dFc|>conU,and

(b) ij vanishesto infinite order at xo for each L € L.
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REMARK 2.4. Supposé&.cS( o). Then(F,y.L differs from a section oTl*O(Fxo(M))
by a vector field which vanishes to infinite order at 0. Therefore the infigg@/) is a smooth
real hypersurface i€" with defining function given by (w) =7 o F;ol(w).

In order to define the type ofp € M, we use the (almost) holomorphic functidh
constructed in Theorem 2.3.

DEFINITION 2.5. Let(xo, U, Fy,) be as in Theorem 2.3. Then we define the type of
xo is equal to the type of, (xg) = 0 € C" in the sense of D’Angelo [9].

SetT (xg) = the type ofxg € M, and set
T(M)=maxXT (xo): xo€ M} =m.

Under the assumption that the Levi-form &f has(n — 2)-positive eigenvalues, we may
assume that is an even integer.

Let us take($2, £*) constructed in Theorem 2.1. Choose a smooth real vectorXigld
on £2 that satisfiesXor = 0 andn(Xp) = 1 in 2. SetYy = —J,+(Xo) so thatXp + i Yp is
a section of£* that is transverse to the level setrofLet G : 2 — 2 be a diffeomorphism
such thatG fixes My and

9
G:Yo) 0 = — , XeM.

ot (x.0)

SinceM is orientable, we may assume th&ai7,+(Xo)) < 0. Thusdr(Yp) > 0 alongMo,
which shows thaG preserves the sides #fp, i.e.,G maps2™ = {(x,1); 0 <t < 1} into

itself. If we set£® = G.L*, then clearlyZ = —iG.(Xo + i Yo) is a section of2% such that
alongMo,
7= —iXo+ i .
ot

We writeZ = X + ¢(x,1)d/dr whereXt = 0, and set.,, = ¢~ 1Z. ThenL, = 8/dr + X,
whereX = 0. We fix a smooth metri¢, )o that is Hermitian with respect to the structut®
on$2. Note that along/, we havel.,, = 9/dr—i Xoanddt = (1/2)(dt+in)+(1/2)(dt—in),
which implies thatt = (1/2)(dr + in). Hencedt (L) = (1/2)dt (L) + (i/2)n(L) and

- i _
0t ([ X1, X2]) = Eﬁ([Xl, X2])
forall X1, X2 € S(x1), alongM.

3. Construction of plurisubharmonic functions. Let M, £2, Xo and £° be as in
Section 2. In this section, we will construct a family of plurisubharmonic functions with
large Hessian (Theorem 3.6). For this purpose, we first construct special coordinate func-
tions defined in a neighborhood of € M so that the coefficients of the weakly pseudocon-
vex tangential holomorphic vector fields satisfy some necessary estimates in new coordinates
(Lemma 3.7 and Proposition 3.8).
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Assume thattg € M. Then there are coordinate functioms ... , x», defined on a
neighborhood/ of %o with the property that,, = ¢ and that
x (', ) =x(x",0), k<2n,

for (x’, 1) € U, and that

9 X
=—Xo
0x2,—1
at all points ofyU N M. We take an orthonormal fran{é 1, . .. , L,} of £° defined onlJ. Let

x0 € MNU be fixed foramoment. I£ ; is replaced by.; = Y7 ~1 U ;s Ly whereU = (Uj)
is a suitably chosen unitary matrix so that

3.1) %n([L i LD (o) = 8jxd;(x0) == djx(x0), 1< jk<n-—1,

where 0< dy < dp < --- < d,_1, andd,(xo) is a smooth function defined dn satisfying
do>(x) > do > 0 onU for a uniform constaniy > O, whiled j; is a Dirac delta function.

There is an affine transformatiafy,, : R* — R?" such that if(x’, 0) € R?" are the
coordinates ok € M, then

Cro(X', 1) = (Pry(x" — x0), 1) := (u1, ... ,u2) = u,
where the(2n — 1) x (2n — 1) constant matrixPy, is chosen so that in terms sfcoordinates,
ad d
Lk|xo:8—_ia , 1<k=z=n,
3.2) M2k51 U2k
Xolyy = — .
0lxg Ouzn—1

Note that the second equality of (3.2) actually implies tKiglfi,' o) = —9/9u2,—1 at all
points ofM N U, and hence that

a a

L, = —i +
" duop_1 = Ot

alongM N U.

We also note that the matriR,, is uniquely determined by the condition (3.2) and
uniformly non-singular ori/, and depends smoothly for alp € M N U. In terms ofu-
coordinates, the vector fields,, 1 < k < n — 1, can be written as

2n—-2

9 N 9
L, = ; —_—
k (3u2kl + ]X_; aj(u) ou; + a(u) 3u2n1)

(3.3) _—

3 3 3
—i — bE(u)— + b ,
l<8u2k + ; ](u)auj + bi(u) )

uy—1

whereaf., b’j‘., ay, by are smooth real valued functions which vanish at 0. In the sequal we let
97, 1 <[ < n, denote the holomorphic partial derivatives in tkté variable of local complex
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valued coordinates. When wearge the local coordinate futhens, this partial derivative
operator will be written in new coordinates. We alsodgtienotesis or dg.

PrRoOPOSITION 3.1. For each xg € M N U and positive integer m, there are smooth

complex valued coordinates ¢ = (¢1, ..., ¢n)s &n =t + ix2,—1, defined near xg such that in
¢-coordinates, the vector fields L1, ... , L,—1 can bewritten as
n—1 n—1
0 d d 0
Li=—+ a(0)— + bi(Z)— + | e(?) +id ,
. 1= ; 1O l; 15z ( ©) (;)) r—
3.4 - -

’

0x2n-1

n—1 n—1
0 o 9 o i |
L= g+ > aj O+ ;bl @)azl + <€a(€) +lda(s“)>

=1

where2 < o < n — 1. Also, the coefficient functions satisfy

3J3kby(0) = 83kaf (0) = 0J3fbF(0) =0, j+k<m, 2<l<n-—1,
(35)  350{#fe@ =0, i=01, i+j+k=m, 2<p=n-1,
(31— 31)°d(0) = (01 — 01)*eq (0) = (01 — 01)°de(0) =0, s <m.

PrROOF. Letus take the vector fieldsy, . .. , L, and smooth coordinatesdefined near
xo SO that the vector fields;, 1 < k < n — 1, have the representation as in (3.3). Therefore
(3.4) and (3.5) hold fom = p = 0.

Assume by induction that there are smooth complex valued coordinategs, . . . , ¢,)
defined nearg € M so that in terms ot -coordinates, we can write the vector fiells,
1<v <n-—1,asin(3.4) where the coefficients satisfy the estimates in (3. feplaced
by p > 0. Set

X2j_1=¢j+ &), x2j =—i(¢j—¢), 1<j<n,
Xop—1 = —1({n — 511)7 Xop =1,
and set
d
Dp=—, 1l<k<2n-1.
0Xk
In x = (x1,...,x2,_1, 1) coordinates, each vector field,, 1 < v < n — 1, can be
written as

) 2n—2 ) 9
L, = + -V — 4+
v (Mul lgcl ()5 + () )

0x2,-1

) 2n—2 9 P
—i + Y d ) —+d :
1 <8X2U L 1 (x) 3, v (x) ax2n1>
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wherec/, d}, e,, d, are smooth real valued functions. Set

Xi=xi, =12,

X =x - Z 3" —[D{DSc} (O)x{xkxay_1+ D] D5} (0)x{xkxz]
v=2 j+k= p+l
forl =3,...,2n — 2, and set

- 1 +1 &
Xon—1 = Xon—1 — E — D] Dke1(0)x] x4
7
ks U+ DI

1
— E E D,gD 'D el(O)x{Jr X5x8]
1!
T p(]+1)k

n—1
1 1 1 1 1 1
- [ G e O a4 o DO oz
~ ! !

et o

If we set

1. . . L
wjzé(X2j—1+IX2j), l<j=n-1, wnzé(t""x%—l)’

then inw-coordinates, the vector fielclsx 1<« <n -1, can be written as

n—1

9 0
L= F + Zaz(w)7 + Zbl(w)— + (e(w) + ’d(w))

—1

al (w)— + Z (w)
=1

where for 2< [, «, ,3 <n—1, we have
3J35b1(0) =0, 3p385¢(0) =0, j+k<p,
9l okaz(0) = o] 8kbr(0) = 3/ 3ke(0) =0, j+k<p+1,
(01— 01)°d(0) = (81 — 31)*2(0) = (31 — 01)°dx(0) =0, s <p+1.

We perform the following change of coordinates:

f1=w1,
1 j+1
a=w— Y. ————[d]ofbOn i, 2<i<n-1.
jimpia U T D
Then in terms of -coordinates, we may write the vector fields, ... , L,—1 asin (3.4) and

the coefficients ofL,, 1 < @ < n — 1, satisfy (3.5) wheren is replaced byp + 1. If we
proceed up tar-steps, we will get a proof of the proposition. m]
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For eachwg € M N U ands > 0, we want to define a quantity(xg, §) in such a way
that the sucessive derivatives of the coefficientd gf1 < k < n — 1, up to a certain order
(less than or equal ta), change by no more thanon a nonisotropic ball abouf. We use
the special coordinates= (¢1, ¢2, ..., ;) defined neaxg as in Proposition 3.1.
Assumexg € M NU. In terms of¢-coordinates, we writé;, 1 <k <n—1,asin (3.4)
such that the coefficient functions satisfy the estimates in (3.5). Note that we may assume that
m is an even integer. Lét(¢) = e(¢) + id(¢) be the coefficient function df/dx2,—1 in L1,
and set

bn-1() = 2i Re( > PRl d‘) = ) b0t
1<j+k<m—1 1<jtk<m—1
Then, by virtue of the estimates in (3.5), we may write:

n—1
) be)= bjk(xo)c{Ef+iRe<Z 3 bf‘,k(xo)cﬁfiﬂ)

1<j+k<m-1 B=2 j+k<m/2-1
+03l™ + 1216l + 1512 + 1aal)
where:’ = (0, &2, ... ,u_1, &p). FOr2< v < n — 1, let us write
3.7 a@) =Y aldg+oqar?+ic).
1<j+k<m/2-1
wherea,’s are coordinate functions @f/do¢, in Ly. Letx = (x1,...,x2,-1,1) be the real

coordinates of and setD; = 9/0x;, 1 <k <2n — 1.
Note that—ib,,—1(¢) is a smooth real valued function which is & — 1)-th order
polynomial inz; andz;. We leta(¢) be a real valued function defined by

a d - S
(3.8) a() := —(—iby-1) =1m [_bmlj| = Z aj,kflj{f«
dxy 91 0<j+h<m—2
Using the coefficient functionlsf,k, a;’k anda; ;. defined in (3.6)—(3.8), we set
Aj(xg) = max{lajil; j+k=1}, 1=012...,m—-2,
Ep(xo) = max{lal, |, b8 |1 j+k=0.Bv=2....n—1}, 0<l'<m/2-1,
and for eachd > 0 we define

(3.9) t(x0,8) = _min _{(8/Axo)Y 2, (8Y2/ Ep(x0)V DY
O<i<m-2
0<l'sm/2-1
Sett(xg, §) = t for a convenience. Then it follows from (3.9) that
(3.10) 10/3ka(0)] < 8t~ UHFD ik <m—2,
and for 2< 8,v < n — 1, we have
(3.11) 18]85a, (0)] < 827~ UHk+D

(3.12) 1850] 35b(0)| < §Y/2¢~UHHD 4k <m/2—1.
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If we combine the estimates in (3.10) with the fact tii¥t,, 1(0) = 0, s < m (because
(01 — 31)°d(0) = 0, s < m), we obtain, from the expression @f¢) in (3.8), that

313 350{05b(O)] < 82U i =01, iemj2+j+k<m—1.

From the estimates in (3.10)—(3.13) together with the factilat) = 0 it follows, by
induction, that

(3.14)

. 9 .
a{a§n<a—€l>(0)‘ <§Y2=UFR 4k <mj2-1,

because)(9/9¢,)(0) =0,1<a <n — 1, ands¥? < 7.
Setw" = 1/2(dt + in). SincesS is integrable it follows tha®" ([L1, Ly]) = 0 alongM
and hence we have

(3.15 3ok (L1, La)©) =0, j+k<m.

Combining the estimates in (3.5), (3.10)—(3.15) with the fact #igt1, L,])(0) = 0, 2 <
a <n — 1, one obtains that

10/05d, (0)1, 10788 eq(0)] S 84271, j+k <1,

and hence that

i 3
a{a’{n<§)(0)‘ <§YV2el jyk<1.
o

If we use again the estimates in (3.5), (3.10)—(3.15) together with the fac)thal = O,
1 <« <n—1,we obtain, by induction, that

. 9 .
(3.16) a3kl — )y < 82U | i>1 j4+k<m/2-1,
1%1 8{
o
(3.17) 18] 3 da (O], 18] ea(0)] S 8Y20~UF | j>1 jrk<=m/2-1
1%1 191 ~

for 2 < @ < n — 1. To obtain the estimates for the derivatives of the fétnfor / > 2, we
note, from the estimates in (3.5), that

(319 (01— 3)°dy(0) = (01 — 3)*eq(0) =0, s<m, 2<a<n-—1.
Since we can write
s—1
(01— 01)° = 93 + Z cjs0; 70,
j=1

wherec; ;'s are integers, we conclude, from the estimates in (3.16)—(3.18), that

(3.19)

. 9 .
8ﬁﬁ<&jwﬂsﬁ%*ﬁ“,j+k5mﬂ—L
o

(3.20) 1085d, (0)], 10788 eq(0)] S 842U | j 1k <m/2—-1
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for2 <« < n—1. By virtue of the estimates in (3.11)—(3.13) together with (3.19) and (3.20),
we obtain by induction that

(3.2

. 9 . )
3/'331’3'1‘71(@)(0)‘551’/27<J+k+1>, i=01, i-m/2+j+k<m-—1.
1

These estimates are essential ingredients to obtain a uniform subelliptic estimaieis for
dilated coordinates.
Sett (xo, 8) = t for convenience and let

Rs(xo) ={¢ €C"; a1l <7, Igpl <8Y5x 712 p=2,....n—1, || <8},
and define a dilation map; : C* — C" by
Ds(¢) = (t 711,872, o 67200, 8710 = (w, . wa) = w0
Define
Qs5(x0) = Ds(Rs(x0)) = {w € C" 5 Jwa| < 1, |wgl < 7Y%, B=2,....n—1 |w,| <1
and setL‘i = t(Ds)«L1. Then, from the expression éf in (3.4), we have

n—1

0 0 0 0
LS = D — 4+ by(D — § V24D (w)) —
1= Gor + D5 @)+ b a(w>)awl+lzzzr a (D5 w) 7o

0
yon—1

n—1
d
-1/2 -1 -1 -1
—i—?_z:ré /2by(D; ()77 + 76 b(DF W)

wherew, = yz, + iy2,_1. Setns = §~1n. Thereforeys(3/0y2,—1) =1lonM N U.
SetB(w) = b(D;l(w)). Recall the expression df(w) defined in (3.6). So we can
write:

6 IBw) = Y bi(xo)s e ik
1<j+k<m-1
n—1
+i Re< >y b’ik(xo)é_l/zr-’+k+lw112)1w,3> +0(1).
B=2 j+k<m/2-1

Then as in Section 2 of [7], the non-negative conditionif®ns([L3, L{]) on Qs(xo) N M
forces that

(322 672 o) ST <1 jAks T -1

wherey = (10 x (m/2)!)~L. Therefore thd)f)k’s, in the Taylor expansion df(¢), are not
the major terms in the definition af(xg, §) in (3.9), and the estimates in (3.22) show that

(323 [9p3 kb (0) < 8Y2rUTKHDYY ik <mj2-1, 2<B<n-1.
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By using the estimates in (3.5), (3.14), (3.15), (3.22) and (3.23) together with the fact that
n(L,) =0,1<v <n—1, we can also show, by the method leading to (3.19) and (3.20), that

. 9
a{aﬁn(@>(0)

3.25) 187 3, (0)], 19108 eq (0)] < 8Y2r =0~k | j 4k <m/2—1.
1Y1 1

(3.24) < §Y2pikty

Using the estimates in (3.5) and (3.23)—(3.25), we can also show that
(3.26) 18{8{n(IL1, LaD(0)] S 8Y2c~ UKD ik <m2—1, 2<e<n-—1.
Now we want to show that the coefficients(¢) of L1 satisfy the estimates similar to

those in (3.26). Recalling the expression/afin ¢ coordinates as in (3.4), we set

n—1
1:1=L1—Zau(C)Lv, Zloz:Loz’ 2<a<n-1.
v=2

ThenLj can be written as:

0
dxop—1

_ ) n—1 ) nfl~ 9 _
Li=—+) a(0)—+ ) b@)—=+b
1= 9 ;al(s“)ag ; z(C)aQ ©)

where, from the estimates in (3.5), (3.11) and (3.23)—(3.26), we have

(3.27) aloka;(0) = 8]3kb(0) =0, j+k<m—1, 2<l<n-1,
(3.28) 10J05b(0)| < 8T UKD 4k <m—1,
(3.29) 1050] 35B(0)| < Y2 ~UHHDEY Lk <my2—1

for 2<B<n-1.
If we combine the estimates in (3.27)—(3.29) and apply the methods leading to the esti-
mates in (3.26), we obtain that

(3.30) [0{350(IL1. La)(O)] < 8Y2r =G DHY ik <m2—1, 2<a<n—1.

Note that

. . . n—1
%W([ZL Ly)) = %TI([LL Ly)) - %Zau(omuv, L)),
v=2

where

’én([La, LaD)(0) = cu(x0) >do >0, 2<a<n—1,

for an independent constady > 0. If we use the fact that/2n ([ L, l-,/g])(O) =0fora # 8
together with the estimates in (3.11) and (3.26)—(3.30), we obtain that

(3.30) 0]0ka, (0) < 8Y2c~UHk+D+Y - ik <m/2-1, 2<v<n-1.
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Now set
2n—2
_ 0
T'=Li+Li=_—+ E aj(x) — + azn—1(x)
i dx;

0x1 dxon—1
Then from the estimates a$,_1 in (3.5), and ofy;, 3 <1 < 2n — 2, in (3.31), it follows that
(3.32 10]0kay(0)] < 8Y2r~ UKDy iy <mj2—1, 3<i<2u-1.

From (3.31), we conclude that the functians¢) are also not the major terms in the definition
of T(xg, 8) in (3.9). Therefore we conclude from (3.23) and (3.32) that

(3.33 T(x0,8) = min {(8/A;(xo)Y'*?; 0<l<m—2},
and hence it follows that'/2 < ¢ < 81/, and ifs’ < §”, then
(3.34) (818 %1 (x0,8") < t(x0,8") < (8781 (x0,8") .

In order to study how (xo, §) depends ony, it is convenient to introduce an analogous
quantity . (x, 8) that is defined more intrinsically. Let us cov&f by a finite number of
neighborhood$/,, v = 1,..., N, in £2 so that in eact/,,, Proposition 3.1 holds. Lty,}
be a partion of unity subordinated to the coordinate neighborh@dégdsof $2, and letn be a
given positive integer.

Foranyj,k >0, > 1, we define

L@ = SL{ Lin(Ly, LD, x € Uy,

and set

Cl =Y L mmP, 1<i<m-1,
j+k=l
and

N
Cr(x) =Y xCl ().
v=1

SetM = (m + 1)!, and for eacld > 0, define
m —-1/2M
(3.35) (x, 8) = (Z ClM/l+l(x)8—2M/l+1> _
1=1

Note that)_";" ; C;(x) > O if the type atx is less than or equal ta. Thereforew(x, §) is
defined intrinsically as a smooth function®f- 0 andx, for x satisfying) ;. ; Ci(x) > 0.
Let us fixxg € M N U and take the smooth complex valued coordingtes (¢1, ... , ¢n)
defined oM N U as in Proposition 3.1, where
1 1
é’j:E(xzj_l—Fixzj), 1§j§n—1, é-n:E(t+ix2n—l)~
For eachs > 0, setr; = 12 = t(xg, §) andtx = §¥/2, 3 < k < 2n — 2, and define

(3.36) Ps(xo) ={x eR¥'; |x;| <7, 1<i<2n—2 |x2,-1]| <86, |t| <8).
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Without loss of generality we may assume that thergis {1, 2, ... , N} such thato € Uy,
andy,, > 1/N on Ps(xg). Recall thatL, can be written, irt coordinates, as

a

0x2n-1

9 n—1 P n—1 9
Li= g+ ;‘”(“a_gk + ;bz(i)a—zl +b(2)
where, from the estimates in (3.5), (3.23) and (3.31), we have
10785a;(0)], 13504 95b(0)| < 8Y2¢—UHk+D+Y i pk <mj2 -1,
(3.37) 10785b(0)] < 8T UKD 4k <m -1,
kb0 =0, j+k<m, 2<l,p<n-1.

Therefore we may write

@39 L) = —afléf[lm<8%5(;)>n ( axi_lﬂ B

whereE ; ; satisfies, from the estimates in (3.37), that

(3.39 1850107 E j4 (0)] S 8271/2g = Ukttt Dty

fori =0,1,andi -m/2+ j +k+ 11+ 12 <m — 1. From (3.37)—(3.39) it follows that
(3.40) |5f9811512£j,k77(0)| < §1-i/2 = (j+k+ia+io+1)

fori =0,1,andi -m/2+ j+k+11+12 <m—1. By (3.39), (3.40) combined with a simple
Taylor’'s theorem argument, we then have

(3.41) ILjan(@] S8t~V ¢ e P(xo) .
By virtue of the definition ofu(x, §) in (3.35), (3.41) implies that
(342 u(x,8) 2 t(x0,8), x € Ps(xo).

Conversely, let us show that(x, §) < t(xo, 8) for x € Ps(xp). Recall that (xo, ) is actually
defined as in (3.33). Set

(343 T (x0,8) = min{l ; (8/A;(x0))""*? = 7(x0, )}
Therefore there must exist integeies ko with (jo — 1) + ko = T (xg, 8) such that

. _ 1 . _ 0 -
87071550 ,0)| = | ——— 907155 1m L5 [0
v O = |G T My ©

= spJoko=1,

3.44) | Go— Dlko!

Assuming thaty,, > 1/N, we obtain from the estimates in (3.38), (3.39) and (3.44) that

1 .
Vo T (in —Jjo—ko—1
132 1 1(x0)| = 5 (o — DIKIST (0, §) Pt

provided thats is sufficiently small. Again, by using the estimates in (3.38)—(3.44) and the
Taylor series method, we obtain that

(3.45) 1£30 00| % 8T (x0,8) 07 x € Ps(x0).
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If we combine (3.45) and the definition pf(x, §), we obtain that
(3.46) p(x,8) S t(x0,8), x € Ps(xo).
Combining (3.42) and (3.46), we have proved the following proposition.

ProPOSITION 3.2. If x € Ps(xg), then

(3.47) 7(x0,98) ~ u(x,9).
COROLLARY 3.3. Supposex € Ps(xp). Then

(3.48) 7(x0,68) ~ t(x,96).

PrROOF. If we setx = xgin (3.47), we see thai(x, §) ~ t(xg, 8). Since this holds for
xo0 = x, it follows thatu(x, 8) ~ 7(x, §). Hence (3.48) follows. O

REMARK 3.4. u(x,d)is definedintrinsically. That s, it does not depend on the choice
of a specific coordinates. Propositions 3.2 and Corollary 3.3 show that the quantity) is
also defined invariantly, up to a universal constant, with respect to the coordinate functions.

Now we want to construct a family of plurisubharmonic functions with large Hessian.
The existence of these functions will be a crucial ingredient in the subelliptic estimates for
d-type equation. Note that we are free to chosgses M ands > 0. Now assume that
x" € M. Let us take the special coordinates= ({1, ...¢,) defined neax” and write the
vector fieldsL1, ... , L, as in (3.4) satisfying (3.5). Also, l&t(xo, §) be defined in (3.43).
Letx = (x/, 1) be the real coordinates fgr, where(x”,0) = x" € M. Setr; = t(x", §),
15 =8Y2,2< B <n—1,andry, = 4§, and put = (1, . . . ap).

PROPOSITION 3.5. Supposex” € M NU. Thenthereexist a small constanta > 0 and
a smooth function £,v s on M N U which satisfy the following:
(i) |hws(x)] <landhy s € C3(Ps(xY)).
(i) If|¢] < aé andif hyv s isnot plurisubharmonic at x = (x', 1), then

T, a8) < T(x",$).
(i) Ifx e Pis(xY), |t| < aé, andif theinequality
n
00w s (X)L, L) 2 [ [ 21612
k=1

failstoholdat x = (x',¢) for L = Z;f:lbij, then T (x', ad) < T(x",§).
(iv) Forall x e Ps(xV)andall L = Z?:lbij at x,

n
00h 5 (L, DI S | [ 7 210xl?.
k=1

(V) D%y 5(x)] < Co [T5oa 7 %, where DY = aflélyl o aPE i = Bi + i
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ProOOF. We use the definitions gf (x, ), 7(x, 8), T (x, §) and the fact that (x", §) ~
u(x,8) forx € Ps(x"). Then the proof of (i) through (v) follow the same lines as in the proof
of Proposition 3.1 in [7]. a

For eache > 0, we set2, = M x (—1,¢) andS(e) = M x (—e¢, ¢). By adding up the
functionsh,v s constructed in Proposition 3.5, we can construct bounded plurisubharmonic
weight functions so that the Hessian of these functions satisfy certain essentially maximal
bounds in a thin strig(¢) of Mp. The heart of these construction is the so-called “doubling
property" of Ps(xp), which comes from the relation in (3.48). For a detailed proof of the
following theorem, one can refer to Section 3 of [4]. For each small 0, we setr;(x) =
7(x,8), 2(x) = - - T,_1(x) = 82 andt, (x) = § as before.

THEOREM 3.6. For all small §>0, there is a plurisubharmonic function s €
C°°(£2s) which satisfies the following.
() s <1, xeUn 2.
(i) ForalL = Z’}zlbij atx € UNS(S),

(3.49 00ys(x)(L, L) ~ Y |bj(x)[r;(x), and
j=1

(iiiy  1DYs(x)| < Co [Thoy 7 “ (x), where DY = 0150 ... 9P )" o = B + v

In Dy-equation, we will assign a Dirichlet condition on one sidebsg, and the Neu-
mann condition on the other side b.ﬁ;f. This fact leads us to another difficulty which was
not occurred in 1/2-subelliptic estimates of Catlin in [5]. To overcome this difficulty, we need
the following Lemma 3.7 and Proposition 3.8hieh will be used in the proof of subelliptic
estimates foD»-equation in Section 5.

LEMMA 3.7. Letx” €e M NU and set cf, = o"([L1, LD, 1 < k < n. Then for each
small § > 0, we have
(3.50) e ()] S 8T(x", 872, x € Ps(x"),
11
(3.51) e (0] S 82V, )Y x e P(x"), 2<k <n,

wherey = (10 x (m/2)!)~ L.

PrROOF. AlongM N U, we havedt = 1/2(dt +in) + 1/2(dt — in) andL, = 9/dr —
i9/dx2,—1, which imply thatdr = 1/2(dt + in). Hence (3.50) follows from (3.41). Sina®
is integrable to infinite order alon¥o, it follows that

i} _ i o - _ 9 9
(352 931(L1, L) = 93¢ (Li+ L1, Lp) = =y (| L1+ L1, — +i
2 ot 0X2,—1

alongMNU. Note thatwe can writé1+L1 = T = T1+1T>+x2,_1T3, Where the coefficient
functions of771 does not depend anor x2,—1. From (3.5) together with the estimates of the
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coefficient functions in (3.37) it follows that

L 9 .
3] ok n(T1)(0)| S 82 ~Utkity
0x27-1

—
3] a’fgn(m (0)

bl

(3.53)
j+k<m/2—1.

Sincen(L1 + L1) = n(T) = 0, we have

9 - a
(3.54) 8{8’1‘517@)(0) =a{a{<8 n(T)©0) =0, j+k<m-—1.

X2n—1
Combining (3.53) and (3.54), we obtain that
18] 85 n(T2)(0)], 18{85n(T3)(0)] < 620~ UHFD®Y 4k <mj2—1.
191 191

Therefore it folows that
- d
o |T. —+i
1 177([ o ¢

and this proves (3.51) fdr = n.
When 2< k < n — 1, we use the estimates in (3.26). i

ax ])(0)‘ 5 61/2_’:7(‘]'+k+1)+)/ , ]+k S m/z_ 1,
2n—1

Foreachs > 0, letys be the function constructed in Theorem 3.6. We need the following
proposition which will be used to prove Lemma 5.6 that is necessary for the estimates of (5.39)
and (5.40) in the subelliptic estimates$ operator in Section 5.

PropPosITION 3.8. For all small § > Oand for eacha = (a1, . .. «;) we have

(3.54) | () D Ys(0)] < Codr(x, )2 [ [ wax, )7,
k=1
(3.55) e () D Ys (0)] < CodM P (e, )T [ ] wae(x, )7
k=1

for x € S(8) NU. Hereti(x, 8) = t(x,8), te(x,8) = 8Y2, 2 <k <n—1landt,(x,8) = 4.

PROOF. Note that the functiong;s in Theorem 3.6 were constructed by adding up func-
tionsh,v 5, x” € M NU, constructed in Proposition 3.5, with supp s C Ps(x"). By virtue
of (3.48), there is a smalt > 0, independent 0§ > 0, so that we can arrange points
x"'=x"@)eMnNU,v e I, satisfying

S@)NU CUyerPs(x¥), and Pis(x")NPesx*)y=0 if v#£u.

Then, as in the proof of Lemma 3.3 in [4], there is a fixed integdindependent of) such
that any(N + 1) intersection ofPs(x")’s are empty.

Now assume that € S(§) N U. Then there are1,...,v € I,l < N, such that
x € Ps(xY), 1< j <I. By virtue of (3.48) again, it follows that

t(x, ) ~tx", 8~ ~r@x",§),
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independent of. If we express the vector fieldss, ... , L, in terms of the special coordi-
nates in each neighborhood ofi,i = 1,...,1, then (3.54) and (3.55) follow from (3.50)
and (3.51), respectively. a

4. Special frames for almost complex structures. AssumeM C M and lety €
C>®(M) be a smooth real-valued function such thgt) > 0 forx € M, andg(x) = 0,
do(x) # 0forx € bM. We can exteng to £2 by requiring that it be independent of Let
us denote by, the type at a poinp M and define

T(M)=maxXT,; pe M}.

Since the type condition is an open condition, it follows tii&i/) is well-defined and is
finite. In the sequal, we assume thatM) = m < oo. We definer € C*®(£2) by r(x,t) =
1(¢(x))~2" and for anye, o, 0 < ¢ <o < 1, define

4.1 Seo ={(x,1) € 2 ; p(x) >0 and 0< r(x,1) < ec?"}.

REMARK 4.1. The quantities ando will be fixed later. If we sey(x) = & - 02" -
@(x)?", theng is the required positive function in the definition S);‘ in Section 1 and;
equals toSg.

We define a subbundle @ on Se,o by lettingR .y = {L € E?x,t) ; Lr = 0}. Clearly,
the mapH defined byH (L) = L — (Lr)(L,r) 1L, defines an isomorphism & ontoR

(at all points ofS, ;). Setui(x) = w(x, ep(x)?), ua(x) = ..., pp1(x) = e¥%px)",
wn(x) = g¢p(x)2". We define a weighted metric, ) on £° by the relations:

(H(Lj), HLO) = 11;0) ) YL Lido. 1<jk<n—1
(Ln. L) = £ 2p(x) %",
(LﬂaH(Ll)>:Oa 1515’1_17

whereL; € §,1 <1 <n — 1. Sinceu(x, §) is a smooth function of ands, it follows that
(, ) is a smooth Hermitian metric 06°. Now, using Proposition 3.1, we shall covir,
by special (dialated) coordinate neighboods such that on each of them, there is a frdme
satisfying required good estimates.

PROPOSITION 4.2. There exist constants eg and og such that if 0 < ¢ < ggand 0 <
o < oo, thenon S, , there exists for all xo € M with ¢(xg) > 0 a neighborhood W (xg) C
Se.o With the following properties:
(i) On W(xo) there are smooth coordinates y1, ... , y2, so that W(xg) = {y; |y/| <
0,0 < yo, < 02"}, where y’ = (y1, y2, . .. , y2,—1) isindependent of + and the function y2,
is defined by yo, = e 1p(x)~2"¢. Thus, Mo N W (xp) and M, N W (xg) correspond to the
pointsin W (xg) where y», = 0 and 62", respectively. Moreover, the point (xg, 0) € £2,
which we identify with xo, corresponds to the origin.



EXTENSION OF CR STRUCTURES 339

(i) The above coordinate charts are uniformly smoothly related in the sense that if
W (po) and W (xo) intersect, and if § and yg are the associated coordinates, then

ID*(5 0 (yo) M| < Cla

holds on that portion of R?* where § o (yo)~* is defined. The constant C, isindependent of
g, o, and xg,

(i) OnW(xo), thereexistsasmoothframe{L1, ..., L,}for £ suchthatif {l, ..., "}
isthe dual frame, and if L, and o arewritten as Y-5; by, d/dy; and Y5, di;dy;, then

sup {|Dbkj ()| + IDFdkj (M} < Clay s
yeW (x0)

where Cy| isindependent of xo, j, k, e ando.
(iv) WIth the frames asin (iii), set ¢}, = " ([L1, LD, =2,...,n Thenthereisa
constant C > 0 independent of xg, ¢ and o such that

(4.2) sup ¢, (| < Ca?™.
yeW (xo)

(v) There are constants ¢ > 0 and C > 0 independent of xo, ¢ and o such that if
By, (x) denotes the ball of radius b about x € S. » with respect to the metric (, ), then

(4.3) By (x0) C W(xo) C Bco(x0)

andif Vol By (xp) denotes the volume of By, (xg) with respect to ( , ), then

(4.4) cb? 152" < Vol By (xg) < Cb? 162"
PROOF. We first coverM by a finite number of neighborhoods, v =1,... , N, in 2
such that in eacly, there exist coordinate®, . . . , uz,) with the property that, = ¢ and

thatuy (u', t) = ux(u’, 0), k < 2n, for (u’, t) € V,,, and thatd/duz,_1 = — X at all points of
M NV,. Also, we can arrange the neighborhodtiso that Proposition 3.1 holds on eakch

For any pointxo € M NV, we take coordinate functions = (¢, ... , ;) constructed
as in Proposition 3.1. Let us sgt = ¢ and denote by.;, the vector fieldd.;, 1 < k < n,
written in ¢¥-coordinates, and let = (x1, ..., x2,—1, ) be the real coordinates @gf In

¢-coordinates, we may write:

P n—1

n—1
d 9 3
L= g k b5z di(@)——, l=<k=n,
k a€k+;a,<4)ag+l§1(¢>3§l+(ek<¢)+lk(g))axzn_l <k<n

where the coefficientsf, bf, ek, di satisfy the estimates in (3.5) and (3.37).

Sets = ep(x0)?", and let us writéh(¢) = e1(¢) + id1(¢), wheree1(¢) anddy(¢) are
smooth real valued functions. Recall the Taylor expansiob(oj at xg (i.e., at¢ = 0) in
(3.6). We then take the quantityxg, §) and the corresponding quantityx, §) defined in
(3.9) and (3.35), respectively. By Proposition 3.5, it follows théto, §) ~ t(xo, §), and
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hence the estimates in (3.37) imply that

(4.5) 10]9b(0)] S Sp(xo, T, j+k=m—1,

(4.6) 19501 35b(0)| < 8Y2u(x0,8)"UTKHDHY ik <mj2—1,

whereds = dg ordg, 2 < g <n—1,andy = /3¢, 1 < k < n,andy = (10x (m/2)!)~™.

Setu = p(xop, 8) for a convenience. We define new coordinates= D; ,,(x) =
(Y1, .- - , y20) by means of dilation map; ,, : R** — R?" given by

1

4.7 y=(uw e, g, 7Y 2x, 0 87200, 0, 87 o1, e Lo (x) TP x0,)

wherep (x) is the functiony expressed in the-coordinates ofg. In terms of they-coordinates
we define an open sét), (xo) by

(4.8)  Wp(x0) ={x € iy N Seo i I(®)| <b, 1<k <21 —1,0< yz(x) < 02"},

Note that inWp(x0), y2, = 0 andy,, = 2" coincide withr = 0 andr = 02",
respectively, on the boundaries$f,. We define aframéL1, ..., L,} in W;(xo) by setting

Ly =pu(x,8)(L] —ril)) = u(x,8)H(LY),
4.9  Le=e"Ppx)" (L} — reL)) = ePp(x)"H(L)), 2<k<n-1,
Ly = ep(x)*"L)
wherer; = (L;r)(L,”,r)*l, andL} is the vector fieldL; written in x-coordinates o¥/,. Set

2n—1 2n—1

d d d
v o__ . _ v _ _
Ly = Zekl(x)(')xl’ l1<k<n-1, and Ln_8t+Zenl(x)8x1.
=1 =1
In terms of dilated coordinates in W,(xg), we SetEy = ey - D;}O, Ry = r - D;}O,
® =g¢- D} and®d; = (0p/0x;) - Dy 5.
By a direct calculation, one obtains that
2em Y2 E, 0271
4.10) R = m Zl:]é lv,l 1y2n C l<k<n-—1.
1+ 2em Zliz En,lézn_l(ﬁlyzn
We set

Lfle,wyxy = SUP{IDS fF(WI; y € Wp(x0), || <k},

and extend this norm to vector fields and 1-forms by using the coefficiedgof or dy;.
By virtue of Proposition 3.2, it follows that for all € W, (x0), we have

(4.11) w(x, 8) ~ t(xo, 8) < 8Y™M = e/ p(x0)2.

Combining (4.10) with (4.11), we conclude that for each 0 there are”; independent
of xg ands such that

(412 1871 (x, 8) Rils.wyg) < Csbe¥™, 1<k <n—1.
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ThereforeL, can be written, iry—coordinates, as
212

_ p(x,9) 12 0
4.13 LG i e Po(xp)™ Y E11—
(449 " @0, 9) Z v 12; o

-1 —2m 0 r
+ u(x,8)e ~p(xo) " E12n-1 + O(E),
0y2,—

where
(4.14) [E11 — s, wyrg) < Ct(x0,8), s =<m,

|E12 +ils,wyxg) < Ci(x0,8), s=<m,
andE satisfies, from the estimates in (4.12), that
(4.19 |Els.wyxp) < CeY™, s <m,
for an independent constantit> 0. By virtue of the estimates in (3.31), we also have
(4.16) |u(x, 8)e M 20(x0) " Evile.wyp) < CT(x0,8)", k<m+1, 3<1<2n-2.

Observe that the diameter in thecoordinates oW, (xo) is O(bu(xo, 8)) K @(xo) by
(4.11). Hence itis clear that(x, 8)u(xo, 8) "L and®¢(xp) 1 are very close to 1 (independent
of xg ands) in W (xg) if b is small. We also observe thaix, §) is defined independently
of coordinate functions and thatxg, §) ~ 7(x,8) ~ u(x,d) if x € Wyp(xg). Therefore it
follows thatu (xg, 8) ~ wu(po, §) ande(xo) ~ ¢(po) if Wp(x0) N Wy(po) # 0. These facts
prove (ii).

Now set

1 1
wkz—()’Zk—l_i)’Zk)» l<k<n-1, and wn:_(.VZn_i)’anl)y

and defineD; = 9/9y;, 1 <1 < 2n, andBy,—1(y) = bp—10 D, xo(y) whereb,,,_1 is the

(m — 1)-th order polynomial ob(¢) in ¢1 and¢; as in (3.6). We recall that the real part
e(¢) of the coefficient function 06/9x2,—1 in L1 satisfies the estimates in (3.5). Hence, by
combining (4.12)—(4.16), we obtain that

0 _
(4.17) Ly = — + n(x0, 8)8 *Bpu-1(y) +O(E),
w1 0y2u—1
- 0
(4.18) X=Li+Li=—+O(),
dy1
where
(4.19 |E|S,Wb(x0) = Cssy/m » lu(xo, 8)8_le—1|s,Wb(xo) <Cs

for an independent constafit> 0. Combining (4.17)—(4.19), we conclude thabik /o,

=0, s<m+1.
s, Wi (x0)

lim

o—0

d B 0
Ly — <— + w(x0, 8)8 1 Bpu-1(y) )
w1 0y2n-1

SettingW (xp) = W, (xp) for sufficiently smallo, we obtain (i) and (iii).
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To prove (iv), we recall thaL,, = 9/dy2, — i3/dy2,—1 + y2,.T, WhereTy,, = 0, and
that L is integrable to infinite order alon¥o. Hence

_ - 9 d
(4.20) ct, = o"([L1, Ly]) = " ([Ll + Ly, — —i D + OOz -
dy2n 0y2n—1
Combining (4.18)—(4.20), we conclude that
(4.21) sup e}, (M| < Ca(e?/™ + o),
yeW (xo)

wherey = (10 x (m/2)!)~1.

For the estimates of];,, [ = 2,...,n — 1, we need the estimates in (3.26). Then it
follows that|cf,(y)| < C1e7/™, alongMy. SinceL; andL; are tangential vector fields, for
2 <1l <n-1,itfollows that

(4.22 I (0] < C1(e”/™ + [yzal) < C1(e”/™ + 02"y, y € W(xo),

Now we assume that< ¢2">7 ", Then (4.2) follows from (4.21) and (4.22).

By Proposition 3.5, it follows that(xg, §) ~ u(x, 8) forx € W(xp). Since{L1, ..., L,}
is orthonormal with respect tp, ), we conclude that (4.3) and (4.4) holdvifis sufficiently
small. O

Using the special coordinates, ... , y2, and the special framesy, ... , L, defined
in (4.9), we want to definé.?-operators with mixed boundary conditions. In the process of
subelliptic estimates fob,-operator, we will see that certain boundary integral termafgn
occur. To handle these boundary integral terms, we need the following lemma.

LEMMA 4.3. Thereareaframe{Xq, ..., X,} for £ anditsdual frame {2, ..., n"}
sothatif weset ¢} = 1" ([ Xk, Xx1), 1 <k <n — 1, then

g, =0o0n Wxo), k=2,...,n—1,

(4.23)
|CX,1|S,W(X0) = CsUzm .
PrROOF. With the framed.y, ..., L, andw?, ... , »" defined onW (xo) in (4.9), we let
br(y), 2 < k <n — 1, be the smooth function satisfying
- n_l - -
(4.29 " ([Li, LD (y) + sz(y)w"([Lk, LiD(y)=0, ye W(xo).
1=2
Since the Levi-form of_p, ... , L,_1 is always positive definite, (4.24) is solvable B(xo).
Set
n—1
Xp=Ly, k=1...n-1 and X,=L,+ Y b(yL.
=2
Then its dual frames*, k = 1, ... , n, are given by

nkza)k—bk(y)a)”, k=1,...,n—1, and " =o".
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In terms of the new frames it follows from (4.24) that

n—1
tp =" [Xk, Xu]) = " ([L, L)) + Zl_?zw"([Lk, L,)=0, 2<k=<n-1,

1=2

on W(xp) and
- - n_l - -
(4.25) c1, = o"([X1, Xn]) = ©"([L1, La]) + sz(y)w"([Ll, Li]).
=2

Therefore (4.23) follows from (4.25) and (4.2). i

Recall that a deformation af° is a sectionA of the bundlel" (S, ). In terms of the
special frames itW (xp), we write A = Z’}le Aj,c?)’ ® L, and then define

Al =D D IDIA)I,

la|<s j,l=1

[Als,w(xg) = SURIA(Y)]s 5 ¥y € W(x0)}.
We suppose that satisfies
(4.26) | Al 2043, W(xg) =< €0

for a sufficiently smalkg > O.

We defineA(S; ) to be the space of sectious Fo’l(Sm; 0) such that along\o,
A(L) = 0 whenever. € T%1 N CT Mp. From now on, we assume thate A(S..,). Then
we can define a deformatiaty* of £° by

ZAz{i+A(£), Z,EE_(Z),ZESS,U}-

In terms of the frame&1, ... , X,,, and its dual frames?, ... , 5 in W(xp) constructed in
Lemma 4.3, we define

X;‘:Xj+/i(xj), j=1....n,

and Ietni be the dual frames. Set

(4.27) L} =X - XXX, 1<j<n-1, L}=X}
and
. . n_l .
(4.28) a)ﬁ = (7_1/47& . 1l<j<n-1, o= <772 + Z(X;‘r)(X,‘?r)_lnﬁ> .
j=1

Obviously, theframe@i, forj=1,...,n,aredual toLj.*, andL;*r =0forl<j<n-1.
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Note that we can writd.,, = 3/0y2, —i3/0y2,—1 + y2,. T, whereT y», = 0. Assuming
that A satisfies (4.26) for sufficiently smalp < 02’"2'?’_1, it follows from Lemma 4.3 that

(4.29) sup |w4(LE, LA ()| < Co™ AL, 2<k<n-1,
yeW (xo)
(4.30) sup w4 (ILY, LaD(y)] < Co®mHH/4,
yeW (xo)
where the constart > 0 is independent ofg, o ande.
In order to measure howf, j=12,...,n,depend o, we define
N
P(y; A= Y A, -
..... kn v=1

k1
[y |++lky <k
In the sequel, we assume thasatisfies (4.26) for sufficiently smadp.

LEMMA 4.4. For y € W(xo), the following pointwise estimates hold:

(431 IL — oMLyl < CoPy(vi A),  |ofy — o V| < Coo VAP (y; A)
forl<k<n-1and
(4.32 |L;:‘ —Lyls < CsPs(y; A), |wz _wn|s < CsPs(y; A).

PROOF. From the expression clf,? anda)’;\ in (4.27) and (4.28), the error terms are the
finite product of derivatives as in (4.31) and (4.32). |

For the subelliptic estimates on the non-euclidean B&llsp), we still have to construct
a family of plurisubharmonic functions with maximal Hessian in dilated coordinatiegined
in (4.7). By virtue of Theorem 3.6 there is a family of plurisubharmonic funct{gn$x)}s-o
defined on2s N U = {(x',r) ; t+ < 8§} N U. We may assume that there is an open set
W(x0) = Wce(x0), for someC > 1, such thatW(xg) = W, (xg) € W(xo) € Pas(x0),
providedo is sufficiently small. We define

Sp={ye2,NU;|yxnl < p},
and setg = §(xg) = e¢ (x0)2" and
(433)  p1(x) = p(x,80), m(x) =e"2p@)", 2<k<n—1, p,(x)=ep(x)*".
For anyp > 0 we set
434 pf00) = px, pd0), up(x) = (ps0)"?, 2<k<n—1, uf(x)=pdo.

THEOREM 4.5. For each small p > 0, there exists a C* plurisubharmonic function
A, defined on W (xg) © W (xo) satisfying the following:
(i) 12l < 1in W(xo).
(i) ForallyesS,NW(xo),and LA =>"_; b;L%, wehave

n
001, (LA, L) ~ Y bk P () 2.
k=1
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(ii)) |LA%p1? < 991, (LA, LA).

(V) 1Dp| < Ca TTjoq g () ()™, where D = 97201 0" 3", o = i+ .

PROOF. Let {55} ps,~0 be the family of plurisubharmonic functions constructed in
Theorem 3.6. Set,(y) = Yps © D;Ol(y), where D,, is the dilation function defined in
(4.8). Itis clear that, is plurisubharmonic and satisfies (i). Note that the orthonormal frame
{L1,...,L,}definedin (4.9) can be written ds = ;Lj(x)(L; —rjL}),1<j<n-1, and
Ly =y (X)L;:.

IfweletL = 37_, b;L;, then it follows by functoriality that

992 ()(L, L) = 03Yrps0(x)(d D, L, d D L)

n n
= 90V p50(x) ( D bl Y l;kl/«kiz>
k=1

j=1

j=1k=1

(4 35) n—=1 n ~ _ ~
' - ZR{ZZr,-b,-bkujukaawpso(x)(L;, L;)}
n—1

+ Y rifh b kddY s, (X (L, L)
jok=1

From the expression of (x) in (4.10) and (4.12) it follows that
(4.36) ()] < e (p80) - pwlx, 80) " for |r] < pdo.

If we combine (4.36) with the properties (ii) and (iii) of Theorem 3.6, we conclude that
(4.37) 0010 (L. L) ~ ) 1belPug(u)) 2.
k=1

Note that the vector fieldsf’s and its dual frame@j"s were written in terms of;’s,
andny’'s asin (4.27) and (4.28). By virtue of the expressions in (4.31) and (4.32) we can write
438 00k,(NALA, LY =002, ()(L, L) + O(A%p ™2 + Ap~¥P)|LP.

Recall thatA = 0 alongM and satisfies (4.26). Hendd|o < sop? provided|yz,| < p.
Therefore it follows from (4.37) and (4.38) that

Ak, (NELA, LY = Y b P () () 2.
k=1

This proves (ii). (iii) follows from the estimate

n n
L2212 S I PILE AP S 1kl Pun ()P (uf) 2 &~ 904, () (LA, LY) .
k=1 k=1

(iv) follows from the property (iii) of Theorem 3.6. O
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Next, we show that there exists a smooth Hermitian metri§.gnsuch that for alkg €
M the framesL{, ..., L2 given by (4.27) are orthonormal. Fére £°andA € A(S; )
satisfying (4.26), define a bundle isomorphigm: £° — £4 by P4(L) = L+ A(L). Define
a homomorphisni, : £4 — R4, whereRA = {L € £ ; Lr =0}, by
Lr Ly,
Xitr Ly
ThenHy o P4 is an isomorphism oR ontoRA. We define a metri¢, )4 on£4 by
((Hp o Pa)L1, (Hpo Pa)L2)a = (L1,L2), Li,L2€R,
(L Liya=1,
(Hpo PA)L1,LYY4 =0, LieR.

Ha(L) =L XA =1L LA,

Note thatL2 is actually globally defined, so that the above conditions determine a metric on
LA SinceL;, j =1,2,... ,n—1, defined in (4.9), are an orthonormal basi<oft follows
thath = (Hpao Py)L;,j=1,2,...,n—1, are an orthonormal basis 6f* with respect
to(, )a.

Let dV denote the volume form associated with the Riemannian metri¢. In the
coordinategy1, ... , y2,) in W(xg) we can writedV = V(y)dy, wheredy = dy1 - --dyz,,
and whereV satisfies

Viswae <Cs and infV(y)>c>0,
YEW (x0)
wherec is independent of, ¢ andxg. We will define the inner product for two functiogs
h € C®(Sg.0) by

.= [ ghav.
Let A%9(S, ,; A) denote the space 09, ¢)-forms with respect t€* on S, ,, and set
r%4(Seq: A) = A%(Se0: A) @ L.

Now let us define, for a given structufe, whereA satisfying (4.26) for smalko, the L2-
operators corresponding 1, : I'%¢ — %4+1 and its adjoint. We defin€>? (8.0 A) to
be the set of smooth sectiotisof '%9(S; ,; A) such that support df’ is a compact subset of
Se.or- Letgg’q(Sg,(,; A) denote the set of sections&ﬁ"’(Sg,a; A) with compact support in the
interior of S . Suppose thal/ = >/ ; 3"/, U/ @7 - L is an element of %4 (S, »; A)
with compact support iV (xo). We define

(4.39 wiz= [ 3 Y i rav.,

o 1=1|J|=¢

wheredV is the volume form given by the metric @P. Since(L, ..., LA} is an orthonor-
mal frame, the quantity in (4.39) is independent of the frame neighboriitiad). Thus, by
using a partition of unity, it follows that the norm in (4.39) extends to all'8f (S, ,; A).
Let L2(Sc.q. T+ denote the set of sections 64 (S; ,; A) such that (4.39) is finite.
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DefineB? (S:.»; A) to be the set of forms iﬁco’q(Sg,(,; A) such thaty;’ vanishes oo
whenevem ¢ J. (This is also independent of the frame neighborh@6@.0).) Similarly,
define B%.(Ss,0; A) to be the set of forms itﬁco’q(sg,g; A) such thatU;y vanishes onV,

whenevem € J. We now define the formal adjoirﬂ’; of D, on 5?"’(58,0; A) by D;U =
G € EX97Y(S, 5 A)ifforall V e E397 (S 0; A),
(Ua D(] V) - (G7 V) ’

where( , ) corresponds to the norm in (4.39). By combining (2.3) with (2.6) together with
integration by parts, it follows that i/ = 3" U, L4 € I'%k(S,; A) is supported i (xo),
then

(4.40) DU=Y" (5*UV IR ig‘)(ijﬂuu))LA
v w j
where

U =- ) Z(L Ul +e;Ul”)ar

|J|k1/l

Z Z ZwA( LA LA Ut/K lK

|K|=k=2 =1 i<j

(4.41)

We now extend the definition of the operatby and D; to the L?-spaces. Define
L2(S.+; A) to be the set of all sections of I"%k(S, ,; A) for which |U[? < oco. We
define an operator

T:L2 1 (Seos Ty®) = L2(Seo: Ty)
by the condition that/ € Dom(T) andTU = F € L2(S.o; Ty ifforall V € B (S..0: A),
we have
(U, D;V) = (F, V).
Similarly, we can defines Lg(Sw; Tj’o) 1(Sg o) A ) Note that these defini-
tions imply that if U € Dom(T) (or Dom(S)), then TU = DU (or SU = Dq+1U)
as in the sense of distribution theory. LEt : LZ(SM, T ) — L _1(Seos T A ) and

S* +1(Sm, A ) — LZ(SM, j’o) be the Hilbert space adjomts @f and S, respec-
tively. Itfollows thatifU e Dom(T*) andV € Dom(S*), then
(4.42) T*U = D,(U) and $*V =D, ,(V),

as in the sense of distributions. Therefore it follows that
£ (S 03 AYNDOM(T) = B (8,05 A)
6?”(88,0; A) NDOM(T™) = B (Se.01 A).
Similar relations hold fofS. Set
BI(Se.o: A) = B (Se.o: AYNBL(Se0: A).
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Then we can approximaié € Dom(S) N Dom(T*) by U,, € B4(S;,»; A) in the graph norm
of S andT* [5, Lemma 6.4].

LEMMA 4.6. Let U € Dom(S) N Dom(T*). Then thereexists U, € B4(S;,,; A) such
that

Mlilnw(llUu —Ul+ISU, = SUI +IIT*U, — T*UI) = 0.
Finally, suppose that we have proved the estimate
(443 U1 < cAT*UI? + ISUI)

forall U € B9(S:; A). Then Lemma 4.6 shows that (4.43) holds for&@lle DomT* N
DomsS. Then from the usual-Neumann theory it follows that for ali Ls(SM; Tj’o),
there exists an elememG € Dom(7*) N Dom(S) such that

ING| < C?GIl,
and
(G,V)=(T*(NG), T*V)+ (SNG, SV), V € Dom(T*) N Dom(S).
We will call N the Neumann operator associated with
5. Thesubelliptic estimatefor D,. In this section we prove a subelliptic estimate for

the D,-Neumann problem with almost complex structdré. We sety = 2 in this section.
We first define tangential norms that will be used in the estimates. For arfy, set

02'"
|||f|||§=/ / FE vz P+ 1817 dE dyan
0 R~

where f (€, y2,) = Jrei—1 e~ £(y, you)dy'. For any integek > 0 and any € R, set

k

IFI2e ="

j=0

3 £ ]2
j
Yon

s—j
Then, for any integemn > 0 andf € C*° (W (x")), set
12 =D 1Dy fIP.

loe|<m
By using the coefficients df/, we can easily define all of the above norms for any sedtion
of %4, We recall thatA(S; ) is the space of sections € I'%1(S; ,: 0) such that along
Mo, A(L) = 0 whenever. € T%1 N CTMy. We letC > 1 and O< ¢ < 1 be independent
constants which may vary in various estimations. Then the goal of this section is to prove the
following subelliptic estimate:

THEOREM 5.1. Suppose T(M) = m < oo and that A is a section of A(S ). Then
thereexist small positiveconstantsoy and e; sothatife < e1, 0 < o1, and |A 42,043, W(xg) <
e, then the D,-Neumann problemon S, , with coefficient o for the almost complex structure
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LA satisfies the following estimate for all forms U e B9(S,.,; A) that are compactly sup-
portedin W (xo):

(5.1) o BUIP + LAWY + oAU, 1 < CUSUIZ + IT*U ).

where L4 (U) is defined by

n—=1 n n-1 n
LAWY =33 D ILRUM P+ 303 >0 L] I
J
(5.2) ) ) né
Y LA i+ Y LA 1.
I=11J|=q I=11J]=¢
neJ ng¢J

We first state some necessary lemmas for the proof of Theorem 5.1 [5, Lemma 7.5].

LEMMA 5.2, Let X; = >, axd/dxk, j = 1,...,1, be smooth compactly supported
vector fieldsin RY, and suppose that there exist a set K € R? and a constant ¢ > 0 such that
for all x € K,

¢ < inf { S X+ (X, X;DI s n e TF Il = 1} :
J i<j

Then there exists a constant C independent of X1, ..., X; such that for all u € Cgo(Rd) with

suppu C K andanyinteger s > (d +5)/2,

l
cllullf) < C[Z X ull® + el ) ||aj,k||§} :
j=1 Jj.k
If n > 3, then thegn —2) positive eigenvalue condition on the Levi-formMfguarantees
the existence of at least one positive eigenvalue.X3gt1 = ReL{! and Xy = ImLZ for
1<k <n-—1.ThenLemmab’.2 and the expressiorL@fin (4.27) show that

LEMMA 5.3. Assumethatn > 3. Thenfor all f € C3°(W (x0)),

n—1
(5.3 2NIfIIF2 < CY ALEFIP+ILE 1P + CIIP.

k=1

For convenience, in what that follows we omit the notatiofrom the framest, cee

L}, andwl, ..., o%, andL*. Note that inW (xo), we have technically chosen coordinates
in such a way thaty, = 0 andy,, = o2" coincide withr = 0 andr = 52", respectively,
on the boundaries . . Then the following lemma can be proved by modifying the proof
of Lemma 7.7 in [5].

LEMMA 5.4. Supposethat f € C3°(W(xo)) and f vanishes either on Mo or on M, .
If o issufficiently small, say o < o1, then there exists a constant C independent of ¢, o, and
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xo such that
(5.4) o AP < CUL I m + ULn £117) .
where L, = L, or L,.
To handle the commutator terms, we need the following lemma.

LEMMA 5.5. Assumethatn > 3. Let U € B,(S:,; A) be compactly supported in
W(xo) and assume that |K| = g — 1withn ¢ K andthatl < k <n— 1 Setcp, =
w"([Lg, Ln]) and d”, = &"([Ly, Lr1). Then
(5.6) (el LyUFE UMY < Clo LA (U) + 071U )P,

(5.7) I(d} Ly UMK UMY < CloLA(U) + a7 HU|?).

PROOF. Note thatUX = 0 on Mg andU’* = 0 on M,,. From (4.29) and (4.30), it
follows that

(5.8) lctalos 1djlo < Co®™, 1<k=<n-1.

Let x be aC function defined orW (xg) W (xg) such that 0< x < 1, x = 0 nearMp,
x = 1 nearM,, and satisfies

(5.9 Xl g S Co 2™, s=12,....
Let us write
(5.10) (e LaUE UMY = (f x LaUFE UMY + (e} (L — ) LUK UK.

By integration by parts we get, from the estimates in (5.8), that
(ux La UK UMY = —(UFF, i, x LaU) + 01U |7
So o™X Ly UKIP + o YU P .

Using the fact thagy = 0 on My, UZ”K = 0onM,, and (5.9), we can perform integration
by parts for the functior x L, U;X ||? in a standard way. Then we get

(5.11) Ix Lo U112 = | x La UMK |12 + o~ O UMK |12 + LU)) .
Combining (5.10) and (5.11), we get
[} x LaUFK UMY S o LAWY + a7 HU 2.

Similarly, we can estimate} (1 — x)L,UfX, UK). This proves (5.6). The proof of (5.7)
is similar. m]

For each smalp > 0, we set
Sp={0" yn): Iyaul < p} N W(x0) .

andlet, = s, oDx_ol(y) be the plurisubharmonic weight functions constructed in Theorem
4.5, whereSg = e¢ (x0)2".
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LEMMA 5.6. Foreachk, 1<k <n—1,setdy, = @"([L1, L¢]) andletx = D 1(y).
Thenon S, we have

(5.12) ld5 (Ladp) (0] S o2t (x, 80)2T (x, pdo) 2,
(5.13) |d2 (Laap) )| S 0Y2p7 Y20 (x, S0)T(x, p0) 17, 2<k<n—1.

PROOF. Note thatd}, = @' ([L{, L{]), wherew', andL{’s are defined in (4.27) and
(4.28). Therefore it follows that

(5.14) d (y) = oY2w" (L1, L) (y) + O(Al1) .

Now assume that = (y', y2.) € S,. Thenx = (x', 1) = D; }(y) satisfies

lt] < ped(x0)*™ = pdo.

Let ux (x) be defined as in (4.33). Then, by functoriality, it follows that

" ([L1, L) () (Lakp) ()
= 1 () 70" ([pea(x) H (L), pa (x) H (L)) (0) i (¥) L5 ()
= ()i ()" (LY, LD ) Ly 50 (X) 4+ Ox2a Ly ¥ ps (X))
where we have used the notation in (4.9) and the expressiqnm{4.10).
Note thatr (x, o) ~ w(x, 80) & ju(x, 8¢ (x)?"), andyu (x) ~ 85'> on W (x0). Sincex e

S(pdo) (in x-coordinates), it follows from Propositio3.8 and the property (iii) of Theorem
3.6 that (seb = pdg there)

1 (0)20™ ([LY, LY ) LYo, ()] S T(x, 80)2(pd0) T (x, pSo) ~2(pdo)

5.15
( ) = 1(x, 80)%t(x, pdg) 2,

and for2< k <n — 1, we have
10O e ()@ (ILY, LT () L psy ()]
(5.16) < t(x, 80085 2 - (p80)Y? - T(x, pSo)"H (pdo)
< p Y20 (x, 80)T(x, pS0) "1 .

Assuming that satisfies (4.26), it follows that|; < gop? if y € S,. Also, it follows from
the property (iii) of Theorem 3.6 that

(5.17) Ixon L ¥rpso () S 1, x € S(pdo) .

If we combine (5.14)—(5.17), then (5.12) and (5.13) follow. O

We now want to prove Theorem 5.1. Assubie= > ; Zm:q U/d)f-Ll € BI(Se 55 A)
with suppU C W(xp). Then from (4.40) and (4.41) it follows that

T*U = D,U = BU + C|U|,
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where
n n .

(519 BU=-Y > S wu/5ek L.
I=1|K|=g—1j=1

Also, (2.6) shows that

(5.19 SU = Dg41U = AU +C|U],
where
n n )
(5.20) AU =" S (Liuo' L.
I=1|J|=q j=1

Combining (5.18)—(5.20), we see that
(5.21) IAU|12 + ||BU|1? < 2ISU||? + 2| T*U |1 4+ C|U|1?.

Letus writeU = U’ + U”, where

n n
U=y Y vl L, v'=> > vlo L,
1=11J]=q I=11J1=q
neJ n¢J
and set
n n—1 n
LWY=Y "D ILUI 1P+ > LU/ 17,
I=1k=1|J|=¢ I=1J1=¢
nelJ nelJ
n n-—1 n
LW =Y 3" ALU 1P+ ILU 1D+ Y LU 1P
1=1k=1|J|=¢q I=1|J|=q
n¢lJ n¢lJ

Then we can write
(522 |JAU|I> + |IBU|1? = |AU" > + |BU"|? + |AU'|? + |BU'|> + E(U’, U"),

whereE (U’, U") denotes the (sum of) inner produ¢tstU’, AU"”) and(BU’, BU").

Note that the Levi-form ofM, has at least(n — 2)-positive eigenvalues and
U” = 0 alongMp. Therefore we may proceed in the standard way as in [10, 11¥/for
and we get

(5.23) AU 1% + |BU"|? > c<L(U”) +/ |U”|2dS).

o

A typical term of E(U’, U") looks like

(Ly UMK, L, UMY — (L, UFK LUt
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wheren ¢ K and 1< k < n — 1. SinceU}X = 0 on Mo andU'® = 0 on M, we can

perform the integration by parts and we get

(LUK, LUy = (LUK Leup®) — (e LUK U

(524) = kK nkK r kK nkK
+ (enLkUl U )+ ([Lx, Ln]Ul U, ).

By integration by parts if necessary, the second and the third term of the right side of (5.24)
are bounded by L(U’) + Co 1| U . If we write

n n
(5.25 (Le, LUK, Uy = 3 (e, Liuf™S Uk + ) g, Lot upy
i=1 i=1

wherec;, = o'([Lk, L,]) andd., = & ([L, L;]), then wheni < n, the each term of
right is dominated by L(U’) + o ~1||U ||, by applying integration by parts if necessary. If
i = n, then(d} L,UFX, UX) is bounded by L(U’) + o~ |U|?. The remaining term
(ci LU}, UKy can be handled by using Lemma 5.5. Therefore we conclude that

(5.26) |[EQU',U")| < C(aLU) +o HU|?).

Let € C(W(xg)) with |A| < 1, and forf € C®(W (xo)), we define

112 = / 2 av .
W(x0)

Combining (5.22)—(5.26), we conclude that

IAU|? + |BU|? > cl(L(U”) +f |U”|2dV)

My
1
(5.27) + §(||AU’||§ +I1BU'|1?)
— CoLU) = Co Y U2,

because* > 1/3.
Now let us estimat¢ AU’ (|2 + ||BU’||2. As in (4.2.3) of [11], we get

n n-—1
(528 [|AU'|Z + |BU'2=Ly(U) + > Y (LU, LU= (L Uf", LU ™.,
=1 j,k=1

whereL, (U') = Y7y Y11= 4y ILaU} 12 + Ymg Ya1=g ILa U} 112.
neJ neJ
With the notatiors, = e*Lye™*, 1 < k < n — 1, we have
(5.29) U, 8;,U", = (LUl Lyui™,

n—1
+ 0(01/4||(LA)U/||2 +o'/*y ||LkUlk”||2> :
k=1
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where||(LAU'||? = | SFZ1(Li2) U 2. By the standard integration by parts method, we
obtain that

(5.30) IL UF 12 = | LU )% — / drUF2dS + O(a LUy + o HU")?).
Mo

Asin (5.24), we can write, fork j,k <n—1, as
G U™, 8;U7") = (LUl LeUP™ = (e LU, U™,
+ @8 U U™ + (18, LU U™

By integration by parts, if necessary, the second and third terms of (5.31) are bounded by
CoL(U") + Co~Y|U’|12. To estimate([8, L;1U", U{™);., we write

(5.31)

n n
(5.32) I8k, LU U™ =D (cly LiUf™ U™ + ) (di, Livf™, U™,
i=1 i=1
+ (L (LU U™
wherec,’;j =o' ([Lk, L;j]), andd;;j =& ([Lk, L;]).
If i <n, then(d;;L; uf, U™, is bounded by L(U") + Co~1||U’||2. By integration
by parts, we can write

(5.33 (ch, LU, U™ = (el (LinUF" U™, + O@ LUy + o 74U |?).

If i = n, then(cy; Ln U, U/”)A is bounded by L(U’) + Co~1||U’||2. By integration
by parts again, we can write
@ L, Uk, U™y, = (' (L,yU, U™y, — / dr Uk " e ds
(534) kj=n 1A kj\=n 1A Mo kj 'l I
+O@LWUY+o~ U P .
Combining (5.28)—(5.34), we obtain that

n—1 n—1
IAU'IZ +IBU'IE = ) [(Z,-(ka)U"", U/ + D (e (iUt Ul-’”)x}
Jj.k=1 i=1
n—1

+ Y @ (LU, ui™y,
(5.35) ];::1 /

n—1
- > | @ufrl" + cio i Ut Perds
jik=17Mo

+cL(U") = C1o Y4 @MU’ |2 = co YU |2.

With the notation
n—1
00% =Y A Ak,
Jj.k=1
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the first sum of the right hand side of (5.35) is equaE(;{;il(Ajk Ul-j”, Ulk”)x. Now suppose

that|x| < 1 on W(xp). Let x(r) denote the functiow/4/3C1e’ and seip = x(1). Then
x (1) = C1o~Y*x'(1)?, and we get

n—1 n—1 n—1 2
D ditiie=x"() Y Aptjtc+ x| Y _(Lid)ik
j,k=1 j,k=1 k=1
(5.36) ! /
0_1/4 n—1 B 5 n—1 2
> 5 D hjrtjtk 4+ Cro ™A (02 Y (L)
Jk=1 k=1

SinceMp is pseudoconvex antf, > d > 0for2< k <n — 1, it follows that

-1
(5.37) - / Ut O" + CroV Ay \Uf" e dS = 0,
jk=1YMo

provided thaw is sufficiently small. Thus, if we replaceby ¢, then we conclude from (5.36)
and (5.37) that

1/4 n—-1 ,

o

IAU'IZ + IBU'I = gom 37 GrU7". U™
jk=1

(5.38) it
+ Y @ LU U™y
Jj.k=1

+cL(U") — Co YU )?.

Now we take the family{x,},~0 of plurisubharmonic functions with maximal Hessian
constructed in Theorem 4.5, and replacim (5.38) by these functions. By Lemma 5.6 and
the fact thatr (x, 8) ~ u(x, 8), we have, foty = D,,(x) € S,, that
(5:39) 1@ (Larp) W] S 0 2ulx, 80)%u(x, pdo) 2,

(5.40) @ Larp) NI S 02072 p(x, So)uix, pdo) 7, 2<k<n-—1.

Also, it follows from (4.27) and (4.28) that

(5.41) |} Lk p)D S 0M2p7h, 2<jk<n—1.

By virtue of Theorem 4.5 it follows that (assuming that we first tage< o2” for sufficiently
smallo) there is, for each & p < 02", ) = A, such that

n—1

n—1
(5.42) D h kU T3 2 Y UM O PrE) g (0) 72,y €S,
Jk=1 k=1

whereu (x) andu,f (x) are defined in (4.33) and (4.34), respectively.
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Combining (5.38)—(5.42), we then have that
n—1
IAU'|2 4+ |BU' |1 = ca¥/? Y~ U], U™ + cL(U')
j.k=1
> (@ p ™| U7+ L"),
becausgu(x, 80)%u(x, pdo) 2 > p~ Y™ by (3.34). Then, by the theorem of Catlin [2], the
subelliptic estimates of ordey & holds forU’ and hence we get

(5.43) o PUNE,, + LW < CUAU'IP + |BU'1) + 1U')1%.
Combining (5.21), (5.27) and (5.43), we conclude that

(5.44) |SUI?+T*U|? = c(ol/znw’n@/m +L(U)+f |U”|2dS) — Co MU

o

If n = 2,thenU” = 0onM,, and ifn > 3, then we have at least one positive eigenvalue.
In this case, we apply Lemma 5.3 f¢rreplaced by/” and get

(5.45) o2 U"IE, < CLWU).
Combining (5.4), (5.44) and (5.45), we conclude that
o BN + L) + o Y3||UII13,, < CASUIZ + IT*U1P) .

forall U € B4(S,.»; A), providedos is sufficiently small.
For the estimates of the non-tangential derivativel pive note thal. = 3/dy2, + X,
whereX = Z?’;’ll b;(y)d/dy;. Therefore a standard argument yields the inequality

2 2n—1

af -
< c<1+ 3 |b,,.|§v(xo)!2n+3)(|||f|||§/m +ILa fIP+ 11
j=1

dy2n

a5 ||

—1+1/m

forall f € CSO(W(xo)). This inequality can be applied witfi = U/ to obtain (5.1) from
(5.46). This completes the proof of Theorem 5.1. ]

We now define Sobolev spaces for sectionsFBff(Sg,(,; A). Recall that the open sets
By (xp) satisfy (4.3) and (4.4) for eacty € M. Choose a sel, = {x7 € M ; i € I}
such that the set8.,/2(x7), i € I, coverS.,, and such that no two points’ and x.7
satisfy|x{ — x;’| < co/4,where| | is the distance function o .. It follows that the sets
W(x?), i € I, coverS, , and that there exists an integ@rsuch that no point of; , lies in
more thanV open setd¥ (x7). Furthermore, there exist functions ¢/ (that are independent
of y2,) € C(W(x?)) suchthaly";_, ¢2 = 1, and ifx € suppz;, then

(5.47) ¢/ =1inBu,(x),
and that botly; and¢/ satisfy

(5.48) 1Zilk.w oy + 18 lkwey < Cro ™
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Now, let F' be any section of“oﬂq(Sg,a; A). We define
IFIE A = D NG FIE 4wy -
iel
where .
16 FIIE 4 weey = D D 16 F 1E e -
I=11J]1=¢
and F = Y1 -, /@4 - LY is the decomposition of in terms of the frame of
W(x?). Moreover, the Sobolev norif e, wxo) is taken with respect to the-coordinates
of W(x7). We defineH,?’q(Sg,U; Tj’o) to be the set of all sections of FO"I(SE,J; A) for
which [|Fll.a < oo. If we defineL2(S..q: T;°) to be the set of alF € I'®9(S,q: A)
such that| F||2 < oo, then it is obvious that the normis || and || llo,a are equivalent on
L2(Se.0s Ty'°). SinceA(Se.0) C I'%1(Se.0; 0), we define| Allx = [|Allk.0 for A € A(Se.0),
and Hi (S:.»; A) to be the set oA € A(S;,») such thaf|A|x < oo.
We want to get an estimate in global form. DefiggU, U) = |T*U|? + |SU| 2.

By using the partition of unity as defined above satisfying (5.47) and (5.48), and from the
estimates in Theorem 5.1, we obtain the following

COROLLARY 5.7. There exist a fixed small o and a constant 1 > 0 such that for all
£,0<e <egrandall U e Dom(T*) N Dom(S),

(5.49 U2 < COU,U).

Now let us fixe > 0 satisfying Corollary 5.7, and s@t(xg) = W, (xo). Using Theorem
5.1 and the standard “bootstrap" method, we can get regularity estimates for the linearized
equation. The proof is similar to that in Section 9 of [5]. Here we uge Subelliptic
estimates instead of/2 subellitic estimates. Sét = D, D} + Dy 1Dg+1. In the sequel, we
assume that satisfies

(5.50 [All2n4+3 < €0

THEOREM 5.8. Supposethat U isthesolutionof U = G, whereG € H,?"’(Sg; Tj’o)
for all k > 0. Then

IDZUlIk + 1Dg+1U NIk S IGllk + (L + | Allk+2) G llnt2 -

Now setE = D;;HD(,HU. Then we have the following estimates for the error téfm
[5, Theorem 10.3].

THEOREM 5.9. Supposethat OU = G, where D,1G = 0and G € H,?’q(Sg; Tj’o)
for all k. Then E = D} 1 Dg41U satisfies

IENk-1 S NG FA lna + 1G llarall F4 1k
+ QA+ Al NG g2l F g1 -

Note thatF4 is D3-closed. Since = 2, we immediately obtain

(5.51)
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COROLLARY 5.10. If U isthe solution with respect to £4 of OU = FA, then V/ =
D3U satisfiesforall k =n+1,n+2,...

(5.52 ID2V" — FAllk S IF sl FA lnsa + I Alkssl FAIZ, -

6. Extension of CR structures. In this section we will prove Theorem 1.1 and Theo-
rem 1.4, using the estimates in Section 5. First, we describe the nonlinear extension operator.
For details, one can refer to Section 11 of [5].

If A e A(S.,) is sufficiently small and if we sePa(L) = L + A(L), thenl, =
{Pa(L); L € L}. Ifwe setQa(w) = w — A*o, thenA:®? = (Q4(w) ; w € AYO(L)}. We
define a nonlinear operatdr : A(S;,) — I'%?(S..,) by

(6.1) DAL, L, w) = Qa(w)([Pa(L"), PA(L")]).

Obviously, if@(A) = 0, thenL,4 is an integrable almost complex structurefn; .
Note that there is a natural ma : I'\"? — %2 defined by

(PaB)(L1, L2, ) = B(Pa(L). Pa(L2), Qa(@)), B e Iy?.
Therefore it follows from the definition of 4 in (2.5) that®(A) = P4 (F*). We also note

that if d and A are small sections ofl on S; -, then there exist sectiormj,d and Ay a of
A?{l ® TAl’0 andA?;1 ® T2, respectively, such that

Pata(L) = Pa(L) + A} 4(Pa(L) + A 4(Pa(L)).

Similarly, there exist section&sj{’(S andg, ; of Hom(AkO, Ai’o) and Hom(A}\’O, A?{l), re-

spectively, such that
Qat+d(@) = Qa(w) — 5X)d(QA(CU)) —84.4(0a(w)).

Then it follows thatA® (d) = Af’d both depend linearly od and that the coefficients de-
pend smoothly om, and the mapping — Ax(d) = A} (d) + A, (d) is invertible. Then
@' (A)(d), as an element af %2, satisfies

(6.2) ®'(A)(d) = (Pao Dy 0 A})(d) — Palha(d)(FY),

whereh,(d) : TH0 — T+° denotes the adjoint aff (d) : 41% — 710 Sinced(4) =
Pa(F4), we letUy be the solution of JU4, = —F#, and then seV, = (D$)*U, and

da = A,1(V4). Using the error estimates in Theorem 5.9 and Corollary 5.10, we then obtain
the following good estimates for the approximate solutio®ofi) + @’(A)(d) = O.

THEOREM 6.1. Suppose that A € Hi(S:o,.A) for all k. Then there exists d4 €
H(S:.o, A) for all k suchthatifk > n + 2,
(6.3) ldalle S 12 M)k + | Allk+2ll@(A) ln+2»
(6.4) [®(A) + @' (A)(da)llk-1 S 1P (A) Ik l|P (A)llnt2 + ||A||k+z||¢(A)ll,f+2 .
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Note that properties (6.3) and (6.4) of the nonlinear opexatare the crucial ingredients
in the application of simplified Nash-Moser iteration process [15].

We recall thatF4 vanishes to infinite order alontfo (in x-coordinates!). This can be
stated iny-coordinates as follows. The proof is similar to that of Lemma 6.2 in [5].

LEMMA 6.2. Supposethatthereexistsasection F € I'%2(271), where 2+ = {(x,1) €
£2; 0 <t < 1} suchthat F and all its derivatives vanish to infinite order along M. Then for
allk, N=0,1,2,...,andall xo € M,

(6.5) |FOlw o) < Crve“p(xo)™
where FO means that F is written out in W (xo) according to the frames LY, ..., LY,
a)cl], ,a)g of £0.

We can now prove the main theorems of this paper:

PROOF OF THEOREM 1.1. We will show that|®(0)||p < b for the smallb > 0
and the integeD, which are appeared in the variant of Nash-Moser theorem [15]. The rest
properties for thed (A) in the hypothesis of Nash-Moser theorem can be proved using the
relations in (6.3) and (6.4), and the estimatedfasperator in Section 5.

Note that (5.48) and (6.5) imply that for eack I,

16 FOIZ o < CrveM oMY,

whereg;’s are defined before (5.47). After summing up ov&r we get

(6.6) 1FO1Z 0.0 < Cn D ox)VeV .
iel

Since the choice of points that was made before (5.48) shows that theBhaliéx! ),
i € I, are all disjoint, we can obtain an upper bound(), which is defined to be the
number ofi € I such that 2/~1 < ¢(x?) < 27/ In fact, in terms of the , )o-metric
introduced at the end of Section 2, the volumeBpf s(x7) is roughly bounded below by
8n+lo_2n—l+2m(p(xlq)Zm(n—i-Z) ~ 8n+lo_2n—l+2m . 2—21m(n+2)’ and the( i )o-volume of the
region inS, , with 27/~1 < ¢(x) < 27! is roughly bounded above hy2" . 2-2"/| Thus,
we conclude that

(67) N(l) < 87no_7(2n71)22ml(1’l+l) )
Thus (6.6) and (6.7) imply that ¥ = 2mil(n + 1) + 1, then
12 (A0 Ik = 1 FOllk0 S Cr - &

for sufficiently smalle. In particular, if we sek = D and choose to be sufficiently small,
then it follow that||® (A)||p < b. O

PROOF OFCOROLLARY 1.3. Clearly,M C bD is a CR manifold satisfying all the
conditions of Theorem 1.1. Therefore we can extend the given CR structubé tnthe
outside ofD by Theorem 1.1. Then, by virtue of Theorem 2.2, the extended CR structure can
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be patched smoothly with the given complex structuredom herefore Corollary 1.3 follows
from the Newlander-Nirenberg theorem. ]
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