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Abstract. We introduce a new class of selfadjoint compact pseudodifferential opera-
tors, which is analogous to a class of elliptic unbounded pseudodifferential operators and is,
therefore, suitable for obtaining upper and lower estimates on the eigenvalues of operators in
this class. We prove such estimates and, as an application, we show that any operator from
this class belongs to the Schatten-von Neuman class if and only if its symbol belongs to the
Lorentz space.

1. Introduction. For a symbolo € C*®(R*¥) having derivatives with a common
polynomial growth, we define pseudodifferential operator o (D, x), according to the Weyl
calculus, to be

o (D.x)f(x) = / ez”“”)fo(s, %)f(y)dyds

for f belonging to the Schwartz clasgR?). Thuso (D, x) is a continuous operator from
S(R%) to S(R?) and extends to a continuous operator fr§fR?) to §'(R?) (see [F]), where
S'(R%) denotes the space of tempered distributions:. i§ real, thens (D, x) is a symmetric
operator. Moreover, certain growth restrictions on the symbehsure that the closure of
o (D, x) is a selfadjoint operator (see [G]).

There are two ways to guarantee that a selfadjoint opesdatbr x) has a discrete spec-
trum. If o has bounded derivatives and |im.«, o (z) = 0, theno (D, x) is compact, there-
fore diagonalizable (see [H]). The other way is to assume thatlim, o (z) = oo, and that
o is elliptic, that is, it satisfies certain conditions on the growth of its derivatives (see the
next section for details). In this case we obtain an unbounded diagonalizable operator, which
can be thought of as an inverse of a compact operator. The theory of such unbounded pseu-
dodifferential operators is well developed (see for example [F], [H2]). In particular, many
researchers obtained estimates on eigenvalues of such operators, which permitted studies of
the asymptotic behavior of their spectra. A standard example is the Weyl asymptotic formula,
which approximates the number of eigenvalues @, x) smaller thari by the area of a set
(zeR¥: o5(z) < Ak
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N :/ dz4+0(\"),
o<\

wherep > 0 depends on the symbel(see [H1], [G], [CR1]).

Another approximation of eigenvalues @{D, x) can be achieved with the use of a
non-decreasing rearrangemen{@fam, bn), , .za}, wherea, b > 0 (see [T], [RT], [CR2]).

The case of compact pseudodifferential operators was approached in a slightly different
manner. Mostly, singular values instead of eigenvalues were studied. Moreover, researchers
were looking for minimal conditions on the symhs| which would allow estimates from
above of the singular values of(D, x) (see [R], [HRT], [RT]). This theme is very strong
and goes back to the Calderén-Vaillancourt theorem and the problem of finding the weakest
possible conditions oa that ensure that (D, x) is bounded orL2(RY) (see [HRTY).

In this note we introduce a class of elliptic compact selfadjoint pseudodifferential oper-
ators which originates from a class of elliptic unimded selfadjoint pseudodifferential oper-
ators. Then we use Beals’s theory on powers of pseudodifferential operators (see [B], [CR1])
to translate already known results about spectral asymptotics for the latter class to the new
setting. As an application of such estimates on eigenvaluesf x) we show that, within
the introduced class; (D, x) belongs to the Schatten-von Neumann clgsg if and only if
o belongs to the Lorentz spaée”? (R*).

We would like to mention that the result on spectral estimates of pseudodifferential op-
erators (Theorem 3.1) depends on the Gabor expansions of their symbols. That is, we use
collections of the fornig,, , (x) = e=2*4™ g(x — bn); m, n € Z}, whereg € L2(R?), and
a, b > 0. For more details on this subject we refer the reader to [FS] and [G1].

This paper was written while the authors were graduate students at Washington Univer-
sity in St. Louis. We would like to express our gratitude to professors Richard Rochberg, and
Kazuya Tachizawa, for introducing us to this subject, and for helpful discussions. We are also
thankful to professors Hans Georg Feichtinger and Karlheinz Grdochenig for being interested
in this work, and for letting us know about related results.

2. Preliminaries. A positive continuous functiom on R?? is called aweight if
w(z+7) < CA+ D w(z)

for everyz, z/ € R and some positive constar@s y. Furthermore, we say that a weight

is smooth if w € C*°(R*). The set of weights is a group under multiplication. Moreover, if
B € Randw is a weight, therw? is also a weight. For a fixed weight, we defineS(w) to

be the set of all functiong € C>(R?’) such that for every € N3, there exist<, > 0
such that

10% f(2)] < Cow(z)
for all z € R?. (In our convention, the set of natural numbBisloes not contain zero, and
No = N U {0}.) For multiindicesy, 8 € N3¢, we say thap < « if i < «; for all i. We also
define the length o to beja| = ), o;.
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DEFINITION 2.1. LetO< t < 1. We say that a smooth weight is ¢~ -dlliptic if
lim ;|- o w(z) = oo and for every € Ngd \ {0}, there is aC,, > 0 such that

18%w(z)| < Cow(z)¥™"

for all z € R¥. Similarly, for 0 < t < 1 we say that a smooth weight is  "-elliptic if
lim ;|- w(z) = 0 and for everyr € N(Z)d \ {0}, there is aC, > 0 such that

10%w(2)| < Cow(x)™T
forall z € R¥.
The following proposition explains the origin of the classcdtelliptic weights.
PrRoPOSITION 2.1 A smooth weight w is t~-€llipticif and onlyif 1/w istT-€elliptic.

PROOF Letw be ar~-elliptic weight. We will use induction ovetr = |«| to prove
that J/w is t*-elliptic. Lety € N3¢ such thaty| = 1. We have

(1 wlT 1\

w
for someC, > 0. Let us assume tha&d*(1/w)| < Co(1/w)** forall 0 < || < n. We
claim that for suchu,
1
()

In fact, to validate (2.1), we use the Leibniz rule:

1 1 1 1 2421 1 2+t 1
8“(—2) E Z Cﬂ‘aﬂ(—> 8“’3(—> S Ca<<_) + (_> > E Ca_z )

w 0<p<a w w w w w
where the last inequality follows from the fact that Jim, . w(z) = co. Therefore, by (2.1),

we obtain forje| = n and|y| = 1:
wl—r 1 1+t
<Co—5 =Ca| — .
w

1 v w 1
%Y = )| = 9% — || < CaloP Y w)ge=B( =
(@)|=l () = Dl (52) z

0<B=<a
Thus, by induction, the weight/1v is =+ -elliptic.

To prove the other implication we denot¢ul by u and repeat the above reasoning to
show that Ju is T ~-elliptic. For|y| = 1 we obtaind” (1/u)| < Cy(l/u)l". If we assume
that [9%(1/u)| < Co(1/u)}~7 for 0 < |a| < n, then from the Leibniz rule it follows that,
for sucha, we have|d®(1/u?)| < Cq(1/u®), since liM;>o0cu(z) = 0. Thus, forja| = n
and|y| = 1, we obtain|d*d” (1/u)| < C,(1/u)X~7, and, by induction, the weight/i is
7~ -elliptic. O

7w

w2

2.1 < Cq

1
w2’

For the purpose of this note, we will arrange the eigenvalugsn of a compact selfad-
joint operator in a decreasing order of their absolute values|ig.> |A2| > --- . However,
the eigenvalue$\; }rcn Of an unbounded selfadjoint operator with discrete spectrum, which
is bounded below, will be arranged in a non-decreasing order, thatis,\o < - - -.
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For a measurable real-valued functipron R?, we define itsion-increasing rearrange-
ment f* by
X =inf{h e Ry [{x € R¥; | f(x)] > A}| <1}
forO <1t < oo.
The Lorentz space L?9(R%?), where 0< p < o0, 0 < ¢ < oo, is the set of all
measurable functiong on R% that satisfy

o0
/ 1P (1)9dt < 00, g <00,
0

and
suptY? (1) < 0o, g =00.
t>0
If {cm,i},, 122 IS @ sequence of real numbers, then we denote the non-increasing re-
arrangement Otlcm’[”m,lezd, if it exists, by {c{}xen. FOr0 < p < 00,0 < ¢ < o0,
we define a discrete version of the Lorentz spdc;’ef’ (Z%), to be the set of all sequences
{em.1},, 1cz¢ that satisfy

o0
Zk"/”_l(c:)q <00, g <00,
k=1
and
supkPcf < 00, g =o0.
keN
We say that a compact selfadjoint operator belongs t&theatten-von Neumann class
Sp.q» Where O< p < 00, 0 < g < oo, if its eigenvaluegi}ien Satisfy
o0
qu/p_llkkr’ <0, g <00,
k=1
and

supkYPr <00, g =o00.
keN

3. Estimateson eigenvalues of compact pseudodifferential operators. In his paper
[T], K. Tachizawa showed that a class of elliptic unbounded pseudodifferential operators can
be approximately diagonalized in the Wilson basis. This result was repeated in [RT] for the
same class of operators and local trigonomertic bases. A similar diagonalization was proven
in [CR2] for a more general class of operators (whose symbolsaliptic weights) where
Gabor frames, instead of orthonormal bases, were used. In particular, the approximate diago-
nalization result allows us to estimate the eigenvalues of such operators by a non-decreasing
rearrangement dio (am, bn)},, ,ezd,a,b>0.To be more precise, let us cite the following
result of [CR2]:

THEOREM 3.1. Suppose that the symbol o isa r~-€elliptic weight. Then o (D, x) is
an unbounded selfadjoint operator with discrete spectrum Ay < A2 < ---, and there exist
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positive constants C (a, b) and C(c, d) such that for large enough k € N

T

1-71 . . 1—
p = Ca, by(ud?y T << puSt+ Cle, (ST,

wherea, b, ¢, d arepositiveconstants, satisfyingab < 1,cd > 1, andthesequence{uZ’b}keN
is the non-decreasing rearrangement of {o (am, bn)} and, similarly, {ui’d}keN isthe
non-decreasing rearrangement of {o (cm, dn)}

m,nEZd’
m,nEZd'

The above theorem can be used to prove similar estimates on eigenvalues of operators
whose symbols are*-elliptic weights. In fact, Proposition 2.1 indicates that such oper-
ators can be viewed (at least intuitively) as inverses of elliptic unbounded operators com-
ing from t~-elliptic weights. Therefore, all estimates on eigenvalues of the latter can be
transformed into analogous estimates on the eigenvalues of operators whose symbols are
tT-elliptic weights. However, the formal arguments, which we shall present below, require
Beals’s theory on powers of pseudodifferential operators (see [B] for the Kohn-Nirenberg
calculus, or [CR1] for the Weyl calculus).

THEOREM 3.2. Suppose that the symbol o isa tT-dliptic weight. Then o(D, x) is
a compact selfadjoint operator with eigenvalues {Ax}ren, and there exist positive constants
C(a, b) and C(c, d) suchthat for k € N large enough

Cle, s < n < uf? + Cla, by(ughH
wherea, b, ¢, d arepositive constants, satisfyingab < 1, ¢d > 1, and thesequence{;LZ’b}keN

is the non-increasing rearrangement of {o (am, bn)} and, similarly, {Mi’d}kem isthe
non-increasing rearrangement of {o (cm, dn)}

m,neZd’
m,nezd:

PROOF For the purpose of this proof, given a smooth weightwe will introduce a
new class of symbols, denoted Byw), to be the set of all functions € C*°(R%) such that
forall k € No:

max ||w ™ 19%|| e < 0.
loe] <k

As mentioned before, the fact thatis real and decays to zerd iafinity implies that
o (D, x) is a compact selfadjoint operator. Therefowe will concentrate only on proving the
estimates on its eigenvalues.

By Proposition 2.1 it is immediate that the symbgblsatisfies assumptions of Theorem
3.1, thus, there exist& > 0 such that the operat@l/o)(D, x) + K is positive. Lets =
(1/0) + K. By Corollary 2.4 of [CR1] we obtaif°~* = 1/5 4+ r_1, wherer_1 € S(8~177)
ands°~! denotes the symbol 6D, x) 1.

We claim that

(3.1) s l=0+r,

wherer € S(67177). In fact, we have 1§ = 0 — Ko2/(1+ Ko). Therefore, it is enough to
prove thatv2/(1+ Ko) = /8 € S(872) c S(8~177). Sinceo is ar T -elliptic weight, from
Proposition 2.1 it follows that is at ~-elliptic weight. Thus, using Proposition 2.1 again, we
obtain that %6 is att-elliptic weight, which implies that 15 € S(§~1). Moreover, sincer
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is att-elliptic weight, we haver € S(o) c S(8~1), where the last inclusion follows from
o < M/s for someM > 0. To finish the proof of our claim, we observe thatl/s € S(5~1)
implieso /8 € S(872).

By (3.1) we haves (D, x) = 8§(D,x)"t — r(D, x). From Corollary 2.6 in [CR1], it
follows that there existd > 0 such that

—L8(D,x) 1T <r(D,x) < L8(D,x)" 7.
Therefore
(3.2) S(D,x) Y —Ls(D,x) ™" <o(D,x) <8(D,x)" L+ LD, x)" 7.

From Proposition 2.1 it follows thatsatisfies the assumptions of Theorem 3.1, and hence we
obtain fork € N large enough

WK =Cla b () TN < < ) THKHC e d (e KT

wherey; < y» < --- are the eigenvalues é{ D, x). From the above inequality it follows
that we can enlarge the constaat&:, b), C(c, d) to get

W= C@ )™ < < DT Cle (e THTT
for large enouglt € N. Therefore, for suchk’s, we obtain
(33) ned = Cle, ) (upH™ <yt < uf” + Cla, by (g
Applying the “min-max” principle (see [SW]) to (3.2) yields for large enough N:

1 . _ 1 1
Eyk =¥ — Ly f

which, together with (3.3), gives us the desired estimates:

<A < Vk_l + L)’k_l_r )

Cle,dypf® < < "+ Cla, byl )M . 0

4, Schatten classes. One of the first results concerning the Weyl calculus and the
Hilbert-Schmidt class of operators was proven by J. Pool, [P]. There it is shown that the
operatoro (D, x) belongs to the Hilbert-Schmidt class if and only if its symbobelongs
to L2(R%). Moreover,|o (D, x)|lgs = |loll2. Other results related to pseudodifferential
operators and Schatten classgsor more general Schatten-von Neumann classgs can
be found in [H], [HRT] and [RT]. In particular, from Theorem 5 in [RT] it follows that if
the symbol is at*-elliptic weight ands € L7-4(R%?), theno (D, x) € Sp.q.- We will use
methods similar to those of [RT] to show that, in fact, one has equivalence of these conditions.

PROPOSITION 4.1. Let o beaweight and a, b > 0. If there exists a non-increasing
rearrangement of {o (am, bn)},, 5, then {o(am, bn)} € L7¥(Z*) if and only if o €
LP4(R),

m,ne

PROOF Let {ux}ren denote the non-increasing rearrangemer{odtim, bn)},, nezds
and letmy, ny be defined byuy = o (amy, bny) fork € N¢. Sinceo is a weight, we have, for
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(&, x) satisfying|é — amy| < a/2,|x — bng| < b/2, that

1
oAl <o, x) < Cux

for some positiveC. Therefore, we obtain

> ck

H(é,X);G(S,X) > %Mk}

and
H{E,x); 0, x) > C}l < ck,

wherec is a positive constant depending only @randb. This implies that there exists a
constanC > 0 such that for every € N,

1 *
ol <o7(ck) < Cug.

Now, if 0 < p < g < oo, we have

00 & k+1 o
/ 11/ 1o ()idr = Ay / 117 1o (erylde = A kP Io* (c(k + 1)

0 =0k k=0
o0

o0
> A Z](fz/%lHZJrl > A qu/pflﬂz ,
k=0 k=1

and

o0 o0
/ 11/ (1)dt < Ac*(0)7 + A Z(k + 1)/ P 1g*(ck)?
0 k=1

o0
< Ac* Q) + A kPl

k=1
where A denotes a constant (that may possibly differ from line to line), which depends on
the functions. In the second sequence of inequalities, we have used the faet thad.
Here,o*(0) = lim,_ o+ o*(t). The assumptions that is a weight, and that there exists a
non-increasing rearrangement{ef(am, bn)}, imply thato*(0) < co0. If 0 < ¢ < p < o0,
then

o0 o
/ 1P 1o (1)dt > A Z(k + 1P~ 5% (c(k + 1))4
0 =0

oo o0
2 A DI 2 A R
k=0 k=1
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and

00 1 o
/ 11/P=1a*(1)adr < A/ 1P Yo (1)dt + A Zk"/p_lcr*(ck)"

0 0 k=1

o0
< Ac*(0)7 + A Z kPl
k=1
with the same remarks as aboveg I£ oo, then
suplkY? gy < AsupkYPo*(ck)} < AsuptYPo*(cr)} < AsurYPo* (1)},

keN keN t>0 t>0
and
suptPo* (1)} < AsuptYPo*(ct)} < Ao*(0) + A supk Po*(ck)}
t>0 t>0 keN
< Ac*(0) + A suplkY/P ) . O
keN

THEOREM 4.2. Suppose that the symbol o isa r+-elliptic weight. Then the compact
operator o (D, x) € S, 4 ifandonlyif o € LP9(R).

PROOFE Let {At}ren be the set of eigenvalues of the operat@D, x). For positive
constantsy, b, ¢, d, satisfyingab < 1, cd > 1, let the sequencﬁu,ﬁ’b}keN denote the non-
increasing rearrangement @f (am, bn)},, , .-, and, similarly, Iet{uz’d}keN denote the non-
increasing rearrangementof(cm, dn)},, , -« (note that these rearrangements exist, because
lim;-»« o (z) = 0). Sinces satisfies the assumptions of Theorem 3.2, we have

1
4.1 0< Zui! <= Cug?

for large enougtt € N and some” > 0. Thus, ifo (D, x) € S, 4, we obtain{o (cm, dn)} €

L7 (Z?), which, by Proposition 4.1, implies that € L?9(R?/). On the other hand, if

o € LP4(R*), then from Proposition 4.1 it follows thdt (am, bn)} € L5 (Z%?), and
hence (4.1) implies that(D, x) € S, ;. We would like to remind the reader once again that
this implication has been proved in [RT]. O

Since, for 0< p < oo, we haveL??(R*) = LP(R¥) andS, , = S,, the usual
Schatten class, we obtain the following

COROLLARY 4.3. If the symbol o is a t+-éliptic weight, and 0 < p < oo, then
o (D, x) € S, ifandonlyif o (¢, x) € LP(R*).

Theorem 3.1 and Proposition 4.1 allow us to obtain the following result related to Theo-
rem 4.2, but concerning operators whose symbols arelliptic weights.

THEOREM 4.4. Suppose that symbol o isa t~-elliptic weight. If the unbounded op-
erator o (D, x) isinvertible, theno (D, x)™1 € Sp.qifandonlyif 1/o € LP9(R%).

PrROOF We will use the same notation as in the proof of Theorem 4.2, with the only
difference tha{uﬁ’b}keN and{ui’d}keN shall now denote the non-decreasing rearrangements
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(which exist, since lim|— o o (z) = 0o). From Theorem 3.1 it follows that

1
(4.2) 0< S < b < Cug”

fork € Nlarge enough and son@> 0. Assumethat (D, x) 1 e S, ;. Since{(uz’d)*l}keN

is the non-increasing rearrangement{o:f(cm,dn))‘l}m’nezd, from (4.2) it follows that
{(o(cm,dn))™Y} e LD1(Z%). Clearly Yo is a weight. Therefore, by Proposition 4.1, we
obtain that Yo € L”"9(R%). To prove the other implication assume thatle L”9(R%).
By Proposition 4.1 we haviio (am, bn))~Y} € L9 (Z%). Since{(uZ’b)*l}keN is the non-
increasing rearrangement{dé (am, bn))‘l}m_nezd, we can see that (4.2) givesD, x)~1 €
Sp.q- O

EXAMPLE 4.5. Consider the situation whereta -elliptic symbolo € LP(R%).
Then, by Theorem 4.2, the operatofD, x) € S,. If there existss (D, x)*, then it belongs
to the Schatten clas$,;;. Thus, using Theorem 4.2 again, we easily see that the symbol of
o (D, x)* must belong td.?/s (R%).

EXAMPLE 4.6. Consider the functiom(z) = (2 + |z/2) "% In"2(2 + |z|). Then there
exists 0< t < 1/2d such thais is at*-elliptic symbol. Observe that ¢ L2(R??) for
s > d, whereL2(R?) = {f; f(x)(1 + |x])* e L?%(R?")). Thus, one may not use the
result of Grochenig and Heil (Theorem 1.2, [GH]) to conclude &@®, x) € S1. However,
o € LY(R?), and so, by Theorem 4.2, the operai@iD, x) is a trace-class operator.

Yet, we need to mention that the methods of [GH] may be modified to include function
spaces with logarithmic weights ([G2]).
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