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Abstract. We prove sharp weighted norm inequalities for vector-valued singular inte-
gral operators and commutators. We first consider the stfpng) case withp > 1 and then
the weak-typé1, 1) estimate. Our results do not assume any condition on the weight function
and involve iterations of the classical Hardy-Littlewood maximal function.

1. Introduction and Main Results. The purpose of this paper is to sharpen the re-
sults obtained in [5] for vector valued singular integral operators. Indeed, the method consid-
ered in that paper is based on extrapolaticasl This method is very general and the results
hold for any kind of operators. Furthermore, it is not possible to derive better results with such
a generality. However, we are going to show that for vector valued singular integral operators
we can improve those results.

To be more precise, we 16t be a classical Calderén-Zygmund operator with kerel
(see Section 2.2), and I&}, g > 0, be the vector-valued singular integral operator associated
toT by

oo 1/q
Ty f(0) = Tf @)y = (Z |Tfj(x>|q) ,
j=1

where, by abuse of notation, we also denotefTbthe vector valued extension of the scalar
operatorT. For any Calderon-Zygmund singular integral operdtcahe first author proved
in [11] that whenevep > 1 ande > 0O,

/R ATFOPw(ndy = € /R SO M gogLyp-tse (W) () -

See Section 2.3 for the definition and main properties of the maximal operatbr @k 7.)«,

« > 0. On the other hand, it is not hard to see that if we apply the extrapolation method from
[5, Theorem 1.4] to the vector-valued singular operdigrwe obtain, forp > ¢ > 1 and

e >0,

D) /R T, F O wdy < € /R FONEM, g 21020 @Y

where| f (x)lg = 52 1f; (01D 4.
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We show in this paper that this estimate can be improved by using different techniques.
Our result on(p, p)-type weighted estimates is the following.

THEOREM 1.1. Letl < p,q < oo, w(x) be a weight and 7, be a vector-valued
singular integral operator. Suppose that A(z) is a Young function satisfying the condition

00 p-1
1.2 / <;) ﬂ < 00
c A(r) t

for some c > 0. Then there exists a constant C > 0 such that
(1.3 /Rn(qu(x))”w(x)dx < C/Rn Lf O Ma(w)(x)dx .

Observe that (1.2) is independenigoénd this is not the case of (1.1).
As a corollary we have the following result.

COROLLARY 1.2. Letl < p,g < oo, w(x) beaweight and 7, be a vector-valued
singular integral operator.
a) Lete > 0. Thenthereexists a constant C > 0 such that

(1.4 /Rn(qu(x))”w(X)dx =< C/Rn | f (g ML og yp—t+e (w) (x)dx .

b) Asa consequence, we have that there exists a constant C > 0 such that
(15) / (T, f ()P w(x)dx < C / £ 01§ M (w) (x)dx .
er Rn

Estimates (1.5) and (1.4) are sharp becausg tloincide with the corresponding scalar
results, where the results are already optimal [11].
We remark that the first author obtained in [15] an estimate similar to (1.5) (also to (1.4))
for the vector-valued maximal operator
(e.¢]

My f(x) = (Z

j=1

1/q
(Mf; (x))") .

The main result from [15] is
/ (M, () w(x)dx < C / |12 M ) () dx
R” R”

Observe that the operataf!?11 is replaced by the pointwise smaller operatst?/41+1,
This result is also sharp, but is different from the corresponding scalar result, namely the
celebrated Fefferman and Stein weighted estimate

/ (Mf)Pwx)dx < C/ Lf )P Mw(x)dx .
Rn Rll

As in the scalar situation, the proof of Theorem 1.1 is based on the Calderén-Zygmund
classical principle which establishes the control of the singular integral operator by the Hardy-
Littlewood maximal operator (see Theorem 1.3 below). Also our approach makes use of a
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pointwise estimate between the maximal operaMfsandM :

(1.6) ME(T, f)(x) < CM(|fly)(x),

where 0< § < 1 (see Lemma 3.1 for details). Whén= 1, estimate (1.6) is false and the
right hand side should be repIacedM;(|f|;)(x)l/r, r > 1. In this case we believe that this
estimate was known, but it is not sharp enough to derive our results.

As a consequence of (1.6), we deduce the following vector-valued version of the classical
estimate of Coifman [2] which is esl in the proof of Theorem 1.1.

THEOREM 1.3. Letl<g <ocoand0 < p < oco. Let w(x) bea weight satisfying the
Ao condition. Then the following a priori estimate holds: there exists a constant C > 0 such
that

1.7 /R”(qu(X))”w(X)dx < Clwl}_ /Rn (M1 flg) ()P w(x)dx

for any smooth function f for which the left hand side is finite. Smilarly, we have that there
exists a constant C > 0 such that

(1.8 ITg fllzroow)y < CUIMUS g ILroow)
for any smooth vector function f for which the left hand sideisfinite.

We remark that it is not clear how to prove (1.7) adapting the goodkquality derived
in [2].

The weighted weak-typél, 1) estimate version of (1.3) is the following.

THEOREM 1.4. Letl < g < ooande > 0. Then there exists a constant C > 0 such
that for any weight w and A > 0

C
wily € RIT 00 = 2 = 5 [ 1F 0l Mugapir o))
where f isan arbitrary smooth vector function.

REMARK 1.5. As above this result is a vector valued extension of the corresponding
scalar result [11]. Whe is replaced byM, the weight on the right hand side is the best
possible, namelyf/w ([15]). The result can be sharpened by replacing the maximal operator
Mrpaog1): Dy the maximal operatab/, whereA is any Young function satisfying (1.2) for
all p > 1.

We also consider in this paper vector-valiextensions of the by now classical commu-
tator of Coifman-Rochberg-Wei$s, T'] defined by the formula

(A, T1f(x) = h()T f(x) = T(hf)(x) = /Rn (h(x) = h(Y) K (x, y) f(y)dy.

Heren is a locally integrable function and is usually called the symbol of the operatas.
any Calder6n-Zygmund operator with kerriél The main result from [3] establishes that,
whenever the symbdl is a B.M.O. function, the commutator is boundediot(R"), p > 1.
Later on this result was extended to the cag¢w), w € A,. The first author has shown in
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[14] that there is a version of Coifman’s estite [2] where the role played by the maximal
function M is replaced byM? = M o M. This is also the point of view of [12], where it
is shown that commutators with B.M.O. functions are not of weak tip&) but that they
satisfy aL (log L) type estimate. These results show that somehow commutators with B.M.O.
functions carry a higher degree of singularity. We will extend these estimates to the vector-
valued context.

As above, for a sequeng(x) = { f; (x)}fj"z1 of functions, the vector—valued version of
the commutatofh, T'] is given by the expression

o0 1/q
[, Tlg f(x) = [[h, T1f(x)lg = <Z (7, T]f,,'(x)lq) ,

j=1
As in the case of singular integrals, we first need an appropriate version of the Calderon-
Zygmund principle. The precise estimate is given as follows.

THEOREM 1.6. Letl<g <00,0< p <00, we€ A andh € BMO. Then there
exists a constant C > 0 such that

(1.9 /Rn([h, Tlg f () w(x)dx < C[w]iiollhllﬁMo /R” (MLiogr(1fg)(x)Pw(x)dx

for any smooth vector function f such that the left hand side isfinite.

The proof of this theorem is also based on a pointwise estimate very much in the spirit
of the pointwise estimate (1.6) required for the proof of Theorem 1.3, namely

(1.10 M ([h, Tlg £)(x) < Cllkl Byo (Me(Ty £)(x) + MLiogL(| 1) (X)),

where 0< § < ¢ (see Lemma 3.2). This time there is an extra term involving the maximal
operatorM, jog 1., Which is pointwise comparable ®2. This is optimal and explains why
commutators have a higher degree of singularity.

By arguing as in [14, Theorem 2], we obtain the sharp two-weight estimates where no
assumption is assumed on the weight

THEOREMM 1.7. Letl < p,g < 00,8 > 0andh € BMO. Then there exists a
constant C > 0 such that for each weight w

(11 fR (U Tl fe)Pw0dx = CllalGy, /R NS M ogyzr-1ss () (x)dx

where f = {fi}72, isany sequence of bounded functions with compact support.

As in the singular integral operator case, (1.11) improves the result obtaingd ol
as an application of the general extrapolation theorem from [5] derived from the scalar esti-
mate given in [14, Theorem 2].

The weighted weak-typél, 1) estimate version of (1.11) is the following.
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THEOREM 1.8. Letl < g < o00,¢& > 0andi € BMO. Then there exists a constant
C > Osuch that for any weight w and » > 0

Lf()lg

w(fx € R A, Tl f(0)] > A) < C /R ) ¢(|IhIIBM0 )ML(logL)Hg(w)(x)dx,

where @ (1) = t log(e + t). The constant C isindependent of theweight w, f and A > O.

This result is a vector valued version of the main result proved in [16].

2. Preliminaries. In this section we introduce the basic tools needed for the proof of
the main results.

2.1. A, weights and maximal operators. By a weight we mean a positive and locally
integrable function. We say that a weightoelongs to the class,, 1 < p < oo, if there is a
constaniC such that

<i/ w(y)d )(1/w()ll”d>p_l<c
011, ) ol o)y =

for each cubg) and where as usualp + 1/p’ = 1. A weightw belongs to the clasd; if
there is a constar@ such that

1
— | wi)dy <Cinfw.
|Q|/Q V=57

We will denote the infimum of the constartsby [wla,- Observe tha{tw]Ap > 1 by Hdlder’s
inequality.

Since thed , classes are increasing with respecpidhe A, class of weights is defined
in a natural way byA, = Up>1 A,. However, the following characterization is more inter-
esting in applications: there are positive constarasd p such that for any cub@ and any

measurable sdf contained inQ
w(E) _ ( |E| )
w(Q) ~ \|Q|

We recall now the definitions of classical maximal operators. If, as ustidenotes the
Hardy-Littlewood maximal operator, we consider fox O

Msf(x) = M(f1°)(x)Y° = (sup@/wy)rS ) ,

M*(f)(x) = supmf—/ |f(y) —cldy = SUD—/ lf()—(Heldy,
Qsx ¢ Q>5x | O]

where as usualf)o denotes the average ¢fon Q, and a variant of this sharp maximal
operator, which will become the main tool in our sched.f (x) = M*(| f1%)(x)/°.

The main inequality between these operators to be used is a version of the classical one
due to Fefferman and Stein (see [6], [[9]).
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THEOREM 2.1. Let0O < p,8 < oo andw € Ax. There exists a positive constant C
such that

(2.1 / M;s f(x)Pw(x)dx < C[w]ﬁm/ Mff(x)”w(x)dx
Rn Rll

for every function f such that the left hand side isfinite.

2.2. Calderén-Zygmund operators. By a kerfelin R” x R” we mean a locally
integrable function defined away from the diagonal. We say thaatisfies the standard
estimates if there exist positive and finite constanamdC such that, for all distinct, y € R”
and allz with 2|x — z| < |x — y|, it verifies

) K&, )| <Clx—yl™,

. x—z| .

i) |K(x,y) =K@ <C|——| |x—y|™,
x—y

x—z| .

i) 1Ky, x) = K(y. )l = C|——| [ —yI™".

We define a linear and continuous operafor C3°(R") — D’'(R") associated to the
kernelK by

Tf(x)= /Rn K(x,y)f(y)dy,

where f € C3°(R") andx is not in the support off. T is called a Calderon-Zygmund
operator ifK satisfies the standard estimates and if it extends to a bounded linear operator on
L2(R™). Itis well known that under these conditiofizan be extended to a bounded operator
onL?(R™"), 1< p < oo and is of weak type-(1, 1). For more information on this subject see
[1], [4], [6] or [9].

We next define the vector-valued singular operdjoassociated to the operatbrby

oo

T, f () = Tf(x0)lg = (Z

j=1

1/q
ITfj(x)Iq) .

It is well-known that, for 1< ¢ < oo, T, is of type{p, p), 1 < p < oo, and weak
type-(1, 1). Moreover, thel, condition also implies the corresponding weighted estimate.
For a complete study on these results see [8, Chapter V].

2.3. Orlicz maximal functions. By a Young functioh(z) we shall mean a contin-
uous, nonnegative, strictly increasing and convex functiofGmno) with A(0) = 0 and
A({t) — oo ast — oo. In this paper any Young functiod will be doubling, namely
A(2t) < CA() forr > 0.

We define theA-averages of a functiofi over a cube) by

I fllao = inf{x - 0; |—;| 4 ('fi’“)')dx - 1} .




SHARP WEIGHTED ESTIMATES 115

An equivalent norm, which is often useful in calculations, is (see [10, p. 92] or [17, p.
69]):

22 Illa.c < inf {w a1/, ('%) dx} <2lfla0-

If A, B andC are Young functions such that
0B < ),
then
Ifgllc,r =201 farllglB.R-
The examples to be considered in our study wilde (r) = log(1+1), B~1(r) = t/log(e +

1) andC~1(r) = 1. ThenA(r) = ¢' andB(r) ~ t log(e +1), which gives the Hélder inequality
1
(2.3) @/Qlfgldx < Cllfllexpr.ollgllL10gL.0 -

For these examples we recall thatziE BM O and(h) o denotes its average on the cube
Q, then

(2.4) lh = (W) gllexpr,0 = ClihllBmo

by the classical John-Nirenberg inequality.
Associate to this average, for any Young functibfi) we can define a maximal operator
M 4 given by

Maf(x) = supllflla,o,
O>x

where the supremum is taken over all the cubes containing
The following result from [13] will be very useful.

THEOREM 2.2. Letl < p < oo. Suppose that A is a Young function. Then the
following are equivalent:
i) Thereexists a positive constant ¢ such that

o5 o\
(25) / <A(t)) r o

ii) Thereexistsa constant C such that
w(x) w(x)
26 / ’ / ’
(2.6) f()MA()()Pl f() )pl
for all non-negative, locally integrable functions f and all WelghtSw and u.

3. Pointwiseestimates. In this section we prove the basic pointwise estimates for the
vector-valued singular integral operator and commutator.

LEMMA 3.1. Letl < g < ooand0 < § < 1. Then there exists a constant C > 0
such that

3.7 M(T, f)(x) < CM(If],)(x)
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for any smooth vector function f = { f j}°° , and for every x € R".

PROOF. Let f = {f;} be any smooth vector function. Fixe R" and letB be a ball
centered at of radiusr. Decomposef = f1+ f2, wheref! = fx25 = {fjx25}. As usual,
2B denotes the ball concentric with and radius two times the radius Bf Set

00 1/q
c=|(Tf%ply = (Z |(Tf,-2)B|Q) .
j=1
Since for any O< r < oo it follows
(3.8 la" = B"| < Crla — BI"

for anya, B € Cwith C, = max1, 21}, we can estimate

; 1/8
<|B|/ Ty fDI° —c IdY>

1/8 1
< (ﬁ f ||Tf(y>|q—|<Tf2>B|q|5dy> < <|B| f ITf ) = (T2, dy)

1/s 1 , o\
C T d — T —(T d
< [<|B|/| Lo y) +<|B|/B| 25) — (T2 y) ]

1/8

=1+1I.
For I we recall thaqu is weak type-(1, 1). Then by Kolmogorov's inequality ([18, p. 104]),
C
3.9 I<C—T i~ —/ DMgdy < CM(| flg)(x).
|B|” FHipe 28] 2Blf Wlgdy | flg

To estimate/ I we will use Jensen’s inequality, the definition®fthe basic estimates of
the kernelk and Minkowski’s inequality to obtain the following:

1< ﬁ/ ITF2(0) — (Tf)5l4dy

1/q
- m/l; <Z ITfP) ~ (Tf,2)3|q> dy
j=1

C =1 2 20 q 1/qd
_E/B<;‘m/3< [ = Tf7(2)dz ) y

¢ | 1 g\ 1/q
:—/(Z‘_// (K(y, w) — K(z, w)) fj(w)dwdz ) dy

|B| JB = 1B| Jp Jrm28

1/q
(3.10) =5 |B|///H\ZB<Z|K(y,w) K(z, w)|q|f,(w)|q) dwdzdy

IBI |19|//_/n\23<i i

j=1

—Z

1/q
m |fj(w>|q> dwdzdy

y—w Iy—
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o X or2r\" 1 1/q

= CZ//\ <|w— k+1 (Z <%> W'fj(w)lq) dw
k=1 Y 2r<lw—x|<2tr ]
=1 1 1/q

<€ g g fyy (Z ) dw

= CM(|f|q (x).

Finally, (3.7) follows from (3.9) and (3.10) and the proof of the lemma is concluded.
As mentioned in the introduction, we need a similar estimate for the commutator.

LEMMA 3.2. Leth € BMO andlet0 < § < ¢. Then there exists a constant C > 0
such that

(311 M([h, T1g f)(x) < CllhllBao (Me(Ty £)(x) + Mriog(|.f 1) (x))

for any smooth vector function f = { f j}j‘;l and for every x € R".

PrROOFE Observe that for any constant

(A, T1f(x) = (h(x) =T f(x) = T((h —21)f)(x).
As above we fixx € R" and letB be a ball centered at of radiusr > 0. We split f =
fL+ 2, wherefl = fxop = {fjx2B}. Letx be a constant and= {c,} ° , asequence of

constants to be fixed along the proof.
By (3.8) we have

1/8
)
(|B|/ 8, Ty £ = el |dy)
1/ . 1/
<|B|f 8, T1F )l — Iely] dy) <c <|BI/ th, T1F () — cl? dy)
1/
e <ﬁ [ 1650 =270 = 7= ) —c|§dy)
1 5\ 1
C — h - T d T((h— A d
5[<|B|/B|( () = DTFOI y) (|B|/| (=0 fHP y)

1 1/s
+(|B|/IT((h—k)f () — c|2dy> }

=I1+11+11I.

1/5

IA

To deal with1, we first fixA = (h)2p, the average ok on 2B. Then, forany 1< p <
£/8, we have
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1 1/5
I=Cs (ﬁ / Ih(y)—(h)zBI‘Sle(y)lf,dy>
B

(3.12) —1 h h P8y e pig o
. <C — T
< 5(|23|/23| (y) — (h)28] y) <|B|/( SO y)

< CllhllBmoMsp(Ty f)(x)
< ClhllpmoM:(T, f)(x).

For 11 we make use of Kolmogorov's inequality again. Then

(3.13) = |B|/| () — (W28l Fr(gdy < IZBI/ [ (y) — (W2l f (¥)lgdy

< Cllh — (W)2Bllexpr,2B Il flgllL1ogL,2B < CllhllBMoMLiogL (1 f1g)(x),

where we have used (2.3) and (2.4).

Finally, for 111 we first fix the value ot by takinge = {(T'((h — (h)zg)fz))g}] "1
the average of each((h — (h)zg)sz) on B. Then, by Jensen and Minkowski’s inequalities,
respectively, and the basic estimates of the kekheke have

csm f IT((h — ) f2) () — clgdy

1 1/q
=ci | (Z IT((h = (h2p) £ (3) = T((h - (h)zg)f,2)3|q> dy

Cr (
:8_
1B1 /s

f {T((h — (h)2) fA)(y)

— T((h — (h)2p) f)(2)}dz

1
—// (K(y, w) — K(z, w))
B JR"\2B

X (h(w) — (h)2p) fj(w)dwdz

g\ 1/q
) o

C/<°"
|B| Jg =t
aq~ 1/q
) @

y—2z
—w

(3149 IBI 1Bl / / /"\23 <§: ly —1w|"‘1

j=1

1/q
x |(h(w) — (h)zg)fj(w)l") dwdzdy
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z T_1 h h d
/;kr<|w x| <2k+1p (Zkr) (Zkr)nl (w) = (M2l f (w)lgdw

1 1
Tmfzk " |h(w) — (h)2B|| f (w)lgdw

Il
aQ

I M8 TT%EZ TTMEE

IA
aQ

1 1
. 3 @iy Jyay 10 = gl gt

> 1
ij |(R)at1 = (28| g /ZHlBIf(w)quw

1

Mg

=C Z oky Ih — (W)or+1pllexpr,2+18 1 flgll L 109z, 26418
=k
C”h”BMOM('f'q)(x)(Z 2’<_V)
k=1

< CllhllBMmoMLiogL(| flg)(x),

where in the last inequality we have used thtalx+15 — (h)2p| < 2k||hlBmo-
From (3.12), (3.13) and (3.14) we get (3.11) and the proof is finished. O

4. Proof of thetheorems.
4.1. Proof of Theorem1.3. In order to prove
(4.15 /Rn(qu(x))”w(x)dx < C/Rn(M(Iflq)(x))”w(x)dx,

we make some reductions. First, we assume that the right hand side of (4.15) is finite, since
otherwise there is nothing to prove. Next we restrict to a finite humber of elenfgnts

(f1, f2, ..., fm,0,...) and prove (4.15) with a constant independent:ofThen we letn
go tooo. To apply Theorem 2.1, take it for granted that
(4.16) /R (Ms(Ty (fm))(xX)Pw(x)dx < oo.

Then, sincaw € A, we can combine Theorem 2.1 together with Lemma 3.1 withd< 1
to get

/R Ty fn ()P w(x)dx < fR (M5(Ty fn) @) w(x)dx
<C / (ME(Ty f) (X))Pw(x)dx
Rn

¢ [ MUl wed.
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It only remains to show (4.16). Indeed, sineece A, there exists: > 1 such that
w € A, and we can choosé small enough so thgt/§ > r. Then, by Muckenhoupt’s
theorem, all is reduced to checking thd, f,|l2»w) < co. Now, by the classical Coifman
[2] estimate we have

m r/q m
/(ZIU;‘(X)I") w(x)dXECmZ/ ITf; () w(x)dx
Rn j:]_ j:]_ Rn
<Cn) /R (M) w(x)dx
Jj=1

<G [ AR 0.
The proof of the theorem is complete. O

4.2. Proof of Theorem 1.1. We want to show that the vector valued extensioisof
a bounded operator from; (M, w(x)) into L), (w) (the definition ofL}, () is standard, see
[8, Chapter V]). A simple duality argument shows that this is equivalent to see that the adjoint

operatorT* is bounded frorrLl’:/(wlfl") into Ll’:, (Maw(x)P).
So, the estimate to be established is

(4.17) f (T f ()P (Maw(x)' P dx < € f £ COIL w7 dx.
R" R"

As above we may restrict to a finite number of elemefyts= (f1, f2,..., fm,0,...) and
show the estimate with a constant independent offFirst, we note thatM w(x)1 7 ¢

A (see [11, p. 300]). Thus, sind&" is also a Calder6n-Zygmund operator, we can apply
Theorem 1.3 combined with Theorem 2.2 to deduce

/I;n(Tq*/f(x))P’(MAw(x))lfp’dx§C/l;)l (M| 1) )P (Maw(x)¥ 7 dx

=C / |F I w7 dx,
Rll
whenever
/ (T} f )P (Maw(x))*P'dx < o0.
Rll

To show this we use an argument similar to the proof of Theorem 1.3, where now we make
use of the scalar version of (1.3) derived in [11], since we are assuming that

%\l
[ Ga) T

4.3. Proofof Theorem1.4. Fix> 0andlet{Q;} be the standard family of nonover-
lapping dyadic cubes satisfying

d

(4.18 A< L | f(x)|gdx < 2",
191 Jo,
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maximal with respect to left hand side inequality. Denotezpyndr; the center and side-
length of eachp ;, respectively. As usual, if we denafe = Uj Qj, then|f(x)|, < ra.e.
x € R\ 2.

Now we proceed to construct an slightly different version of the classical Calderén-
Zygmund decomposition. Split as f = g + b, whereg = {g,}72, is given by

| fitx) for x eR"\ £2,
gl(X)_{(ﬁ)QJ for.erj,

(fi)o; being, as usual, the average fon the cubeD ;, and

o0

b(x) = {bi (D)}, = { Zb,-,-m}
Qj

i=1

with b;j (x) = (fi(x) — (fi)o,;) x0, (). Let2 = Uj 20 . We then have

w({y e R T, fO)] > A) < w({y € R\ 2 [T,9 (»)] > 1/2}) + w(82)

(4.19) .
+w({y e R"\ £2; |T,b(y)| > 1/2}).

For the first term we invoke Theorem 1.1. leet- 0. By choosing 1< p < 1+ &, we
have thatd.(r) = ¢ logf (1 + ¢) satisfies (1.2). Thus,

w({y € R"\ 2 |T,9(»)| > 2/2})

C
Q(qu(y))”w(y)dy <= 19§ MLaogLy: (Xgm g w)(¥)dy

= =
AP Jrny AP IR

C
<= | FOIE MLgogry: w)()dy + —/ |9 g MLiogLy: (X g w) () dy
=I1+1I.

The estimate of is immediate; sincg¢f (x)|; <1 a.e.x € R"\ £,

C
=< /R 1Oy Megogry () ().

For 11, taking into account that for any

M ogrye (XRm\20; W) (¥) = ML(log L) (XRmM\20; w)(2)

forall y,z € Q; (see[11, p. 303]), we have by Minkowski's inequality
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C
= Z/Q lg ()15 MLgog L (Xrm gw)(¥)dy
0Q; 7

C 00 r/q
= —piQ_ (Z|(fi)Qj|q) MLgogLy (Xgm W) (¥)dy

o0

o2 (Xl

Q; =1

fi(Z)dZ

rlq
i |nf M & n .
) IQ,;Iyer LdogL)® (XrRm 20, W) (¥)

101

C P .
(4.20) 5)\— (|Q, / If(Z)quZ) |Q,~|yl€n5/_ML<|ogL>s(w>(y)

C .
x QZ (IQ | / o (Z)'qdz> 1)1 inf Miogry (w)(»)

IA

C
=2 f | £ @)lg MLog Ly (w)(2)dz
Q; Qj

C
x/ | f(2)|gMLogLye (w)(2)dz .
Rn

IA

where the fifth inequality follows by (4.18).
For the second term of (4.19) we proceed as follows. Again by (4.18)

w(2Q ;) w(2Qj)/
2 C d
w(2) < Z 20, 12211 < *QZ,- 20, Qj|f(y)|q y

(4.21) .
=5 ; fQ T OgMue)dy < /R 1 F g Mragryw(y)dy

sinceMw(y) < ML (ogLyw().
Finally, for the third term of (4.19) we recall that edglh has zero average @;. Hence,
if z; denotes the center @ ;, we have

w({y € R"\ 2 |T,b(y)| > 1/2})

c 1/q
<= a T,b(y)w(y)dy = —/ |:Z |sz(y)|qj| w(y)dy

A
(2], oo
R”\.Q 1 Qj Qj

1/q
} w(y)dy

1/q
} w(y)dy

o
R™\$2 [2;

ZfQ (K (y,2) = K(y,2))bij(x)dz
j J
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C 0 1/q
A /Rn\fz <Z/Q, [g K. 2) = KO z.,')|‘i|b,~j(z)|q} dz>w(y)dy

C 1/q
(4.22) =<— f < [ IK(y,z)—K(y,z,')lqlbfj(z)lq} w(y)dy)dz
A R"\20; L
00 1/q
C z—z;|" )|: }
< — d bi; q d
< x%:/ < rm20, | 2= |x_ylnw(y) y ;I i (2)] z
C 21’j Y 1
= XQZ/ < -1 2/‘r,<|y z,\<2"+1r, <2k—r1> (Zkrj)n w(y)dy)
00 1/q
x [Zw,,(z)w} dz
i=1
C 00 1/q
=< / [Zlbu(z)lq} M (xrm20,w)(2)dz
0, "% Liza
C
EXZ[ |f(Z)|qM(XR”\2ij)(Z)dZ+/ |g(Z)|qM(XR”\2ij)(Z)de|
Q J
= +1V
Trivially,
C
111 < x/Rn | f(@)gMLogryw(z)dz .
On the other hand,
C 00 1 1/q
1V < — i(2)d M (xRrr . d
=72 [; 01 ), # } /Q,. (R0, w)(V)dy
gzi/ |f@)gdz]Q;l inf M( w)(y)
rig 1241 g, DRI g, MRN20 I
i,
<— | f(2)]qdz] Q; | Inf M(w)(y)
(4.23) A ; 19l B
C
=< f £ @)y M (w)(2)dz
Q; Qj
<

f/ | f (@) |gM (w)(z)dz
Rn

IA

C
x/ | f(@|gMLogrys (w)(2)dz,
Rn

concluding the proof of the theorem. O
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4.4, Proof of Theorem 1.6. As in the proof of Theorem 1.3, wefiix= f,, =
(f1, f2, ..., fm,0,...) with a finite amount of smooth functions components with compact
support. We also assume that the right hand side of (1.9) is finite, since otherwise there is
nothing to prove.

We will prove the estimates with constant independent of the number of elemefits of
By (2.1), sincew € A, it follows from Lemma 3.2 and Lemma 3.1, for08 < ¢ < 1, that

7, T]qf”LP(w) < M5k, Tlg HllLew)
Clwlag 1M (. T1g ) Lr )
C[w]Am||h||BM0(||Me(qu)||LP(w) + IMLiogr (1 FID N Le (w))
< ClwlA_ Ihlsaso (IME(Ty Pl + I1MLioge (1) Lr )
C[w]imIIhIIBMO(IIM(IfIq)IILP(w) + IMLiogL (| flgILrw))
< Clwli _IIhlsaolMLiogL( £l ) -
whenever we are able to prove thiat's ([, Ty f) Il L (w) @Nd|| M (T, )l Lr ) @re both finite
as Theorem 2.1 requires.

Sincew € Ao, there exists > 1 such thatw € A, and we can choostande small
enough so thap/s, p/e > r. Then, by Muckenhoupt's theorem, all is reduced to check
that ([, Ty fllLrw) < o0 and||T, fllLrw) < oo. But this is a consequence of the scalar
situation:||[2, T1gllLrw) < IMrL1ogr(9)lLrw) < oo [14] and||T glirrw) < IMgllLrw) <

oo [2], wheng is a smooth function with compact support, since the amount of elements on
[ is finite. Recall that the right hand side of (1.9) is finite. The theorem is proved. DO

4.5. Proof of Theorem 1.8. A simple homogeneity argument shows that we may as-
sume that|z|| ppro = 1, and with this assumption it suffices to show that

|f()lg
A

w({x € R"; |[h, Tlyf)| > A < C./l;" @( )MLUogL)Hg(w)(x)dx,
where® (1) = tlog(e + t).

We proceed as in the proof of Theorem 1.4, using essentially the same notation. Let
{Q;} be the family of non-overlapping dyadic cubes which are maximal with respect to the
condition

(4.24) / | f(x)|qdx < 2"2
“lojl !
For eachj we letz; andr; be the center and side-length @f;. If we denote2 = {J; 0,
then|f(x)l; <ra.ex e R"\ 2.
Split f asf = g + b, whereg = {g,}2, is given by

filkx) for x e R"\ 2,

9i(x) = {(ﬁ)Qj for x € Q;,
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(fi)o; being, as usual, the averagefpfon the cubeD ;, and
o

b(x) = {bi(x)}72 = { Zln,(x)}
0Q; i=

1
with b (x) = (fi (x) — (fi)g,;) x0; (X). Let2 = U; 20,. We then have
w({y € R"; |[h, Tlg f()| > A}
(4.25) <w({y € R"\ 2:|[h, T1yg ()| > 1/2}) + w(2)
+w({y € R"\ 2: |[h, T1;b(»)| > 1/2}).
Lete > 0. We use Theorem 1.7, with andé§ such that 1< p < 1+ ¢/2 and
§=¢e¢—2(p—1) > 0. Then
w({y € R"\ £2; |[h, Tlgg (»)| > 1/2})

¢ c
= )L_p R”\fz([h’ T]qg(y))pw()’)dy =< X_p /R" |g(y)|,l;ML(|OgL)1+s(XRn\(Zw)(y)dy

C
p p -
= _)LP RI\2 |f(}’)|qML(|ogL)l+8(w)(}’)dy + w /Q |9(y)|q ML(IogL)HS(XRn\gw)(}’)dy

=1+1I.
The estimate of is immediate; sincg¢f (x)|;, <1 a.e.x e R"\ £,

lf(Mlg

C
I < o /I;” L f Dy My iog ryr+s (w)(¥)dy < C/R” CD( )ML(|OQL)1+s(w)(y)dy.
For 11 we proceed as in the proof of (4.20) obtaining
C
I =— /R |f Dlg M og Lyt (w) (y)dy
Lf I
= C_/,;n q)( f)): q)ML(logL)l+s(w)(y)dY~

For the second term of (4.25) we proceed as in the proof of (4.21). Then

~ C
() < = /R 1O gMpgogryre ) ()dy

< C/Rn @<If()):)|q)ML(|ogL)l+s(w)(y)dy'

Finally, taking into account the following decomposition

[h, Tlgb(x) = (Z > (h(x) = (W) )T (bij)(x) — T((h — (h) ,;)bij)(x)

! J

1/q
<Y lh@) - (h)Q,-|(Z |T(b,~,->(x)|‘f)
J i

q>l/q
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991/q
+ [Z ‘T(Z(h - (h>Qj>bi,-)(x) }
i J
= A(x) + B(x),
the third term of (4.25) is estimated by

w({xeR"\fZ;A(x)>%}>+w({xeR"\S~2;B(x)>%}):IV+V.

Using the standard estimates of the kerkiednd the cancellation d@f;; over Q ; we have

C 1/q
v < Zj/"\é |h(x>—(h)Q,.|(Z|T(b,~,~)<x)|q) w(x)dx
J i
C
< — h — ().
= ;/H\ZQ,' () = (g, |
1/q
fo |K(x,y>—K(x,z,~)|<2|b,~,-(y)|q> w(x)dydx
C | . 1/q
< X;/Q_, (lz_wij(yn )
x (/ |K (x, y) — K(x, z)|lh(x) — (h)Q,.|w(x>dx>dy
R™M2Q;
C . 1/q
;;/Qj (Z|bij(y)| )
(Bh
k=1 2krj<|x—zj|<2k4lr; | X — Y
C 1/q
x;(/@(;lbu(y)lq) dy)

00 o—ky
k=1 : < J

To control the sum ok we use again standard estimates together with the generalized Holder
inequality and John-Nirenbesgtheorem. Indeed, if € Q;, we have

IA

—|h(x) — (h)g; Iw(x)dx>dy
lx — yl

IA

W /x zi|<2k+1p o) = (h)Qj |XR”\2Qj (wlxidx
k=1 jl= J

CZ @y /2k Ih(x) (k10 I XRM20; (X)w (x)dx
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—ky

3 2
Worsin — (W) o | ———— . .,
+ k:Zl I( )2k+1Q_/ ( )Q/ | (2k+lrj)n '/2k+1Qj XR™M\2Q; X)w(x)dx

o
< CY 27" h = (Wgrsag,llexpr, 210, IXRM 20, W Llog L 2410,
k=1

o0
+ Y27k + DM (xrv20,w) ()
k=1

o o

< C<ML(|ogL)(XR"\2ij)(y) Z 27k 4 M (xrm\20;w)(y) Z 2"Vk)
k=1 k=1

< CMy jog 11+ (XRM 20, W) (V) -

Thus we have
C 1/q
v=—=>% fQ (Z |b,~,-(y)|q> My (tog 1yt (XRm 20, W) ()Y ,
j J i

and we can continue the estimate/df in the same way as in the proof of (4.22) with
replaced byM/ o4 )1+ We conclude that

C
1V < o /R" |f(}’)|qML(IogL)1+g(w)(y)dy

=¢ /Rn ¢ ('f(;f”q) M (jog 1)1+ (W) (x)dx .

To estimateV we will use Theorem 1.4 for singular integrals:

V:w({x eR"\ 2; B(x) > %})

q941/q
- i| My (og L) (XRn\_(}w)(x)dx

D (h(x) = (h);)bij(x)
J

IA

1/q
C
~2 fQ |h(x>—(h)Q,-|(§:|b,-,;(x>|q) M_ogLy (XRm 20, w) (x)dx
J i i

IA

c .
- 2}: ISJ‘ M (ogL)s (XRm\20,w)(X)

x (/ () = (h)Qj||f(x)|qu+/ () = (h)QjIIg(X)quX>

Qj QJ

=Vi+ Vo.
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To estimateV, we combine the argument to prove (4.23), replagiigpy My og1., tO-
gether with the definition oBM O

v2=C /R 1Ol MLog Ly (w)(r)dx

For V1 we have by the generalized Hélder inequality (2.3)
C .
i=— Zugf ML (og Ly (XRM 20, W) (x) fQ [ (x) = () g; |1 f ()] gdx
j J j
C .
< - Z lgf Mp (ogL)s (XrRm\20,w) ()| Q Il flgllLiogL,0;-
j J
Now, combining formula (2.2) with (4.24) and recalling tl#&at:) = r log(e + ), we have

1 i N [ f()]g
X|Qj|||fq||LlogL,Q_,' < A'Qj'}irl%{ﬂ"i‘ T /;j¢<7ﬂ )dx}

|Qj|+/ (D('f(x)lq>dx
Q; A

1 |f ()]
_X/Qj|f(x)|qu+/Qj<D(_; q)dx

| f(xX)lq
Z/Q_,qj<7)~ )dx.

Vi< C/Q o) <m) Mp(og Ly (XRmM\20,; W) (x)dx

=€ / ? (@) M (jog yt+e (W) (x)dx .

The proof of the theorem is finished. O

A

IA

A

IA

Then
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