
Tohoku Math. J.
56 (2004), 445–466

CONFORMAL INVARIANTS OF QED DOMAINS
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Abstract. Given a Jordan domainΩ in the extended complex planēC, denote by
Mb(Ω),M(Ω) andR(Ω) the boundary quasiextremal distance constant, quasiextremal dis-
tance constant and quasiconformal reflection constant ofΩ, respectively. It is known that
Mb(Ω) ≤ M(Ω) ≤ R(Ω) + 1. In this paper, we will give some further relations among
Mb(Ω),M(Ω) andR(Ω) by introducing and studying some other closely related constants.
Particularly, we will give a necessary and sufficient condition forMb(Ω) = R(Ω) + 1 and
show thatM(Ω) < R(Ω)+ 1 for all asymptotically conformal extension domains other than
disks. This gives an affirmative answer to a question asked by Yang, showing that the con-
jectureM(Ω) = R(Ω)+ 1 by Garnett and Yang is not true for all asymptotically conformal
extension domains other than disks. Our discussion relies heavily on the theory of extremal
quasiconformal mappings, which in turn gives some interesting results in the extremal quasi-
conformal mapping theory as well.

1. Introduction. LetΩ be a domain in the extended complex planeC̄. Given a pair of
disjoint nondegenerate continuaA andB in Ω̄, let mod(A,B;Ω) denote the modulus of the
family Γ (A,B;Ω) of curves that joinA andB in Ω . The following so-called quasiextremal
distance constant (or QED constant) was introduced in [Y1]:

(1.1) M(Ω) = sup

{
mod(A,B; C)
mod(A,B;Ω) ; for all pairsA andB in Ω̄

}
.

The domainΩ is a QED domain if its QED constantM(Ω) is finite. QED domains were
introduced by Gehring and Martio [GM] as a useful class of domains in the study of quasi-
conformal mappings.

In this paper, we will always assume thatΩ is a Jordan domain. It was proved in [GM]
thatΩ is a QED domain if and only ifΩ is a quasidisk, meaning as usual thatΩ is the image
of the unit diskD = {|z| < 1} under a quasiconformal self-mapping of the extended complex
planeC̄, or equivalently, there exists a quasiconformal reflection in∂Ω which interchanges
Ω andΩ∗ = C̄ − Ω̄ and keeps every point of∂Ω fixed. Thus, a QED domainΩ determines
the quasiconformal reflection constantR(Ω), defined as

(1.2) R(Ω) = inf{K[f ] ; for all quasiconformal reflectionsf in ∂Ω} ,
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whereK[f ] is the maximal dilatation off . Clearly,R(Ω) = R(Ω∗). The two constants
M(Ω) andR(Ω) are closely related to one another. For example, it was proved in [Y1] that

(1.3) M(Ω) ≤ R(Ω)+ 1 ,

and it was conjectured by Garnett and Yang [GY] that the equality in (1.3) holds for all QED
domains. But this was disproved by Yang [Y3] for ellipses. In [Y3] the following boundary
quasiextremal distance constant (or BQED constant)Mb(Ω) was also introduced:

(1.4) Mb(Ω) = sup

{
mod(A,B; C)
mod(A,B;Ω) ; for all pairsA andB in ∂Ω

}
.

Clearly,Mb(Ω) ≤ M(Ω). However, the question whetherMb(Ω) = M(Ω) still remains
open.

We say a Jordan domainΩ is an asymptotically conformal extension domain if the Rie-
mann mapping fromD toΩ has a quasiconformal extension to a neighborhood ofD whose
complex dilatationµ satisfies|µ(z)| → 0 as |z| → 1+. Ω is a disk if it is the image
of D under a Möbius transformation. Clearly, a smooth domain is always an asymptoti-
cally conformal extension domain, but the converse is not true. Very recently, Yang [Y4]
proved thatM(Ω) < R(Ω) + 1 for all smooth domains other than disks and asked whether
M(Ω) < R(Ω)+ 1 for all asypmtotically conformal extension domains other than disks. On
the other hand, Wu and Yang [WY] proved thatMb(Ω) < R(Ω) + 1 for all asypmtotically
conformal extension domains other than disks.

In this paper, we will continue to investigate the relations amongMb(Ω),M(Ω) and
R(Ω) by introducing and studying some other closely related constants associated to a qua-
sisymmetric homeomorphism. In particular, we will give a necessary and sufficient condition
for Mb(Ω) = R(Ω) + 1 (Theorem 2) and show thatM(Ω) < R(Ω) + 1 for all asypmtot-
ically conformal extension domains other than disks (Theorem 5). This contains the above-
mentioned results obtained by Wu and Yang and gives an affirmative answer to the question
of Yang as well. Consequently, the Garnett-Yang conjecture is not true for all asypmtotically
conformal extension domains other than disks. On the other hand, as will be seen, our discus-
sion relies heavily on the theory of extremal quasiconformal mappings, which in turn gives
some interesting results in the extremal quasiconformal mapping theory as well (see Sections
2 and 3).

The author would like to thank the referee for his (her) valuable suggestions.

2. Related quantities. In this section, we will define and discuss some constants as-
sociated with a quasisymmetric homeomorphism. The results will be used in the next section
to prove some properties of the boundary quasiextremal distance constant.

For a Jordan domainΩ in the extended complex planēC, let f1 andf2 mapΩ andΩ∗
conformally ontoD andD∗, respectively. Extendf1 andf2 to the boundary∂Ω = ∂Ω∗
and definehΩ = f2 ◦ f−1

1 |∂D, which is known as the sewing mapping of the domains
Ω andΩ∗. ThenΩ is a QED domain, or equivalently, a quasidisk, if and only ifhΩ is
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a quasisymmetric homeomorphism of the unit circle onto itself in the sense of Beurling-
Ahlfors [BA]. Conversely, a quasisymmetric homeomorphismh also determines a pair of
complementary Jordan domains, which we denote byΩh andΩ∗

h , respectively.
Given a quasisymmetric homeomorphismh of the unit circle onto itself, we denote by

Q(h) the class of all quasiconformal mappings of the unit diskD with boundary valuesh.
The homeomorphismh then determines the extremal maximal dilatationK∗(h), defined as

(2.1) K∗(h) = inf
f∈Q(h)K[f ] .

Clearly,K∗(h−1) = K∗(h). f ∈ Q(h) is called extremal ifK[f ] = K∗(h) (see [St3]). It is
well-known that there always exists at least one extremal mapping in the classQ(h). h also
determines the boundary dilatationH(h) (see [St3]), defined as

(2.2) H(h) = inf{K[f |D − E] ; for all f ∈ Q(h) and all compact subsetsE ⊂ D} ,
whereK[f |D − E] is the maximal dilatation off onD − E. Then,H(h) = H(h−1) and
H(h) ≤ K∗(h). The set of all normalized (fixing three boundary points on∂D) quasisym-
metric homeomorphisms of the unit circle onto itself is known as the universal Teichmüller
spaceT of Bers (see [Le], [Na]). Following Earle-Li [EL], a pointh is called a Strebel point
if H(h) < K∗(h). Then, by a result of Lakic [La], the set of Strebel points is open and dense
in the universal Teichmüller spaceT .

Now the maximal dilatationK(h) of h is defined as

(2.3) K(h) = sup

{
mod(h(A), h(B);D)

mod(A,B;D) ; for all pairsA andB in ∂D

}
.

Clearly,K(h−1) = K(h). By the quasi-invariance property of modulus under quasiconformal
mappings, it follows thatK(h) ≤ K∗(h). It was an open question for a long time to determine
whether or notK(h) = K∗(h) always holds before Anderson and Hinkkanen disproved this
by giving concrete examples of a family of affine mappings of some parallelograms (see
[AH]). Later, a necessary condition forK(h) = K∗(h) was obtained independently by Wu
[Wu] and Yang [Y2]. We sayh is induced by affine mappings if it is the restriction to∂D
of a map of the formφ2 ◦ fK ◦ φ−1

1 , wherefK(x + iy) = x + iKy, while φ1 andφ2 are
conformal mappings from a rectangle{x + iy; 0 < x < a,0 < y < b} and its image
{u + iv; 0 < u < a,0 < v < Kb} underfK ontoD, respectively. Then the necessary
condition forK(h) = K∗(h) obtained by Wu [Wu] and Yang [Y2] can be stated as follows.

THEOREM A ([Wu], [Y2]). Let h : ∂D → ∂D be a quasisymmetric homeomorphism.
If K(h) = K∗(h), then either h is induced by an affine mapping or H(h) = K∗(h).

In their papers [Wu] and [Y2], Wu and Yang also asked whether the converse of Theorem
A was true. Recently, the author [S2] proved that there exists a family of quasisymmetric
homeomorphismsh such thatK(h) < K∗(h) = H(h), which gives a negative answer to the
question. So the necessary condition in Theorem A is not sufficient forK(h) = K∗(h).
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EXAMPLE 1 ([S2]). For convenience sake we use the upper half planeH = {z ; Imz >
0} instead of the unit diskD. For anyK > 1, we consider the quasisymmetric homeomor-
phismh of Strebel (see [St1], [St2]), namely,h = hK : ∂H → ∂H that is defined to be
h(x) = x for x ≤ 0 andh(x) = Kx for x > 0. It is easily computed from [St1] that

H(h) = K∗(h) = 1 + 1

2π2 log2K + 1

π
logK

√
1 + 1

4π2 log2K .

In fact, let
f (z) = K1−1/π argzz .

Thenf is an extremal mapping inQ(h). It was calculated in [S2] that

K(h) = sup{Λ(Kρ)/Λ(ρ) ; ρ > 0},
whereΛ(ρ) is the conformal module of the quadrilateralQ with domainH and vertices
∞,−1,0 andρ. It was also proved there that, whenK is large,

K(h) < 1 + 1

π
logK + 1

4π2 log2K .

Another approach due to Reich [Re] and developed in [CC] gave a necessary and suffi-
cient condition forK(h) = K∗(h). Recall that for any pair of disjoint nondegenerate continua
A andB in C̄, there exists a unique real-valued functionuA,B , which is continuous in̄C and
harmonic inC̄ − A ∪ B, with constant values 0 and 1 inA andB, respectively, such that
mod(A,B; C) = DC[uA,B]. HereDΩ [u] denotes the Dirichlet integral

DΩ [u] =
∫∫

Ω

|∇u|2 = 2
∫∫

Ω

(|uz|2 + |uz̄|2)dxdy .
In what follows, we will abbreviateDD[u] toD[u] for simplicity. WhenA,B ⊂ ∂D,

(2.4) uA,B |D = 1

2
(φA,B + φ̄A,B) ,

whereφA,B is the conformal mapping ofD onto

RA,B = {w = u+ iv ; 0< u < 1,0< v < mod(A,B;D)}.
Note that for any pairA,B ⊂ ∂D,

mod(A,B;D) =
∫∫

D

|φ′2
A,B | = D[uA,B] .

For the relations between moduli and harmonic functions, we refer the reader to Gerhing [Ge]
or Ahlfors [Ah, Chapter 4].

Under the above notation, we have

THEOREM B ([Re], [CC]). Let h : ∂D → ∂D be a quasisymmetric homeomorphism.
Then K(h) = K∗(h) if and only if Q(h) contains an extremal mapping whose complex di-
latation µ satisfies

(2.5) sup
A,B⊂∂D

Re
∫∫
D µ(z)φ

′2
A,B(z)dxdy∫∫

D
|φ′2

A,B(z)|dxdy
= ‖µ‖∞ .
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Now, letD denote the set of all real-valued functionsu which are harmonic inD with
finite Dirichlet integral. We also denote byAD the set of all functionsφ holomorphic inD
with finite Dirichlet integral. For anyu ∈ D, letP(u◦h) denote the Poission integral ofu◦h.
We define

(2.6) K1(h) = sup
A,B⊂∂D

D[P(uA,B ◦ h)]
D[uA,B] .

Noting that for all pairsA,B ⊂ ∂D, uA,B is the unique harmonic function with the minimal
Dirichlet integral among all harmonic functions on the diskD with boundary values 0 and 1
onA andB, respectively, we conclude that

mod(h−1(A), h−1(B);D) = D[uh−1(A),h−1(B)] ≤ D[P(uA,B ◦ h)] ,
so it follows thatK(h) = K(h−1) ≤ K1(h). We also define

(2.7) K2(h) = sup
u∈D

D[P(u ◦ h)]
D[u] .

Note that the constantK2(h) (more precisely, max(K2(h),K2(h
−1))) was already introduced

by Beurling and Ahlfors in their famous paper [BA] and has been much investigated recently
(see [KP], [NS], [P1–P5], [S1–S4]). In particular, it was pointed by the author [S4] that
K2(h) = K2(h

−1) for all quasisymmetric homeomorphismsh, which implies that Schober’s
domain functionals are actually curve functionals (for more details, see [Sc], P. 379). Clearly,
K1(h) ≤ K2(h). On the other hand, by the quasi-invariance property of the Dirichlet inte-
gral under quasiconformal mappings, it holds thatK2(h) ≤ K∗(h). Consequently, for any
quasisymmetric homeomorphismh, it holds that

K(h) ≤ K1(h) ≤ K2(h) ≤ K∗(h) .

To determine whenK2(h) = K∗(h), the author proved

THEOREM C [S1]. Let h : ∂D → ∂D be a quasisymmetric homeomorphism. Then
K2(h) = K∗(h) if and only if Q(h) contains an extremal quasiconformal mapping whose
Beltrami differential µ satisfies

(2.8) sup
φ∈AD

Re
∫∫
D µ(z)φ

′2(z)dxdy∫∫
D

|φ′2(z)|dxdy = ‖µ‖∞ .

REMARK. Here it should be appropriate to point out a result of Shiga and Tanigawa.
After the paper [S2] was published, the paper [ST] by Shiga and Tanigawa was called to the
author’s attention. In their paper, among other things, Shiga and Tanigawa proved that there
exists a quasisymmetric homeomorphismh such thatH(h) = K∗(h), and that the relation
(2.8) and consequently the relation (2.5) do not hold for any extremal quasiconformal mapping
in Q(h), which implies thatK(h) < K∗(h) by Theorem B. Therefore, this has already given
an exampleh for whichH(h) = K∗(h) but K(h) < K∗(h). However, this example was
abstractly constructed and somewhat complicated (but has some further properties). Note that
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for this construction,K2(h) < K∗(h) by Theorem C, while for Strebel’s quasisymmetric
homeomorphismh in Example 1, it holds thatK2(h) = K∗(h) (see [S2]).

Now we prove the following

THEOREM 1. Let h : ∂D → ∂D be a quasisymmetric homeomorphism. Then the
following hold.

(1) K1(h) = K∗(h) if and only if Q(h) contains an extremal mapping whose complex
dilatation µ satisfies the relation (2.5).

(2) If, in addition, K1(h) is attained by a pair of disjoint nondegenerate continua in
∂D, then K1(h) = K∗(h) if and only if h is induced by an affine mapping.

PROOF. (1) SinceK(h) ≤ K1(h) ≤ K∗(h), the if part follows directly from Theorem
B.

Now supposeK1(h) = K∗(h). Then there exists a sequence of pairs of disjoint nonde-
generate continuaAn andBn in ∂D such that

(2.9) lim
n→∞

D[P(uAn,Bn ◦ h)]
D[uAn,Bn]

= K∗(h) .

Setφn = φAn,Bn , un = uAn,Bn . Then

(2.10) D[uAn,Bn ] =
∫∫

D

|φ′
n

2| .
For any extremal quasiconformal mappingf ∈ Q(h),

(un ◦ f )z = 1

2
(φ′
n(f (z))fz + φ′

n(f (z))f̄z) ,

(un ◦ f )z̄ = 1

2
(φ′
n(f (z))fz̄ + φ′

n(f (z))fz) .

So we have

D[un ◦ f ] = 2
∫∫

D

(|(un ◦ f )z|2 + |(un ◦ f )z̄|2)dxdy

=
∫∫

D

((|fz|2 + |fz̄|2)|φ′
n

2
(f (z))| + 2Reφ′

n
2
(f (z))fzfz̄)dxdy

=
∫∫

D

(1 + |ν|2)|φ′
n

2| − 2Reνφ′
n

2

1 − |ν|2 dudv ,

(2.11)

whereν is the Beltrami differential ofg = f−1. SinceD[un ◦ f ] ≥ D[P(un ◦ h)], we obtain
from (2.9) through (2.11)

lim
n→∞

∫∫
D

(1 + |ν|2)|φ′
n

2| − 2Reνφ′
n

2

1 − |ν|2 dudv

/∫∫
D

|φ′
n

2|dudv = K∗(h) ,

which implies

(2.12) lim
n→∞

Re
∫∫
D
ν(−φ′

n
2
)dudv∫∫

D |φ′
n

2|dudv = ‖ν‖∞ .
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Now, for a pair of disjoint nondegenerate continuaA andB in ∂D, we denote byÃ and
B̃ the closure of the complementary components ofA ∪ B on∂D. Then

(2.13) φÃ,B̃ = 1 + i

mod(A,B;D)φA,B .
Consequently, (2.12) and (2.13) imply

(2.14) lim
n→∞

Re
∫∫
D νφ

′2
Ãn,B̃n

dudv∫∫
D

|φ′2
Ãn,B̃n

|dudv = ‖ν‖∞ .

The if part of Theorem B then impliesK(h−1) = K∗(h−1) and consequentlyK(h) = K∗(h).
By the only if part of Theorem B, we get the required conclusion.

(2) It suffices to prove that ifK1(h) is attained by a pair of disjoint nondegenerate
continua, sayA andB, and thatK1(h) = K∗(h), thenh is induced by an affine mapping.

Indeed, we can deduce from the above proof (see (2.14)) that

Re
∫∫
D
νφ′2

Ã,B̃
dudv∫∫

D |φ′2
Ã,B̃

|dudv = ‖ν‖∞.

This forces thatν = ‖ν‖∞|φ′2
Ã,B̃

|/φ′2
Ã,B̃

, which implies thath−1 and consequently thath is
induced by an affine mapping.

REMARK. As stated above, for a general quasisymmetric homeomorphismh, it holds
that

(2.15) K(h) ≤ K1(h) ≤ K2(h) ≤ K∗(h) .
By Theorem C, it is known that there exists a large class of quasisymmetric homeomorphisms
h such that the strict inequalityK2(h) < K∗(h) holds. On the other hand, Theorem 4 in
the next section implies that the strict inequalityK(h) < K1(h) holds for all sewing map-
pingsh of pairs of complementary asymptotically conformal extension domains other than
disks. Now we point out that the strict inequalityK1(h) < K2(h) also holds for the Strebel’s
quasymmetric homeomorphismh in Example 1. Indeed, examining the proof in [S2], it is
found thatK(h) is attained by a pair of disjoint nondegenerate continua, which implies, by
Theorem B, Theorem 1, Proposition 1 and Theorem 3 in the next section, that the strict in-
equalityK(h) < K1(h) < K2(h)(= K∗(h)) holds for allK. It seems that the strict inequality
K(h) < K1(h) < K2(h) < K∗(h) also holds for a single quasisymmetric homeomorphism
h, but no example is known to this author.

3. The BQED constant Mb(Ω). LetΩ be a QED domain in the extended complex
planeC̄. Recall thathΩ = f2 ◦ f−1

1 |∂D is the sewing mapping of the domainsΩ andΩ∗.
In this section, we will prove some properties of the quantityMb(Ω) and some relations of
Mb(Ω) to the constants associated tohΩ introduced in Section 2.

First we note

PROPOSITION 1. R(Ω) = K∗(hΩ) and K(hΩ)+ 1 ≤ Mb(Ω) ≤ K1(h
−1
Ω )+ 1.
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PROOF. Since there is a one to one correspondence between quasiconformal extensions
of hΩ and quasiconformal reflections in∂Ω , it follows easily thatR(Ω) = K∗(hΩ). In fact,
if f is a quasiconformal reflection in∂Ω , thenJ ◦ f2 ◦ f ◦ f−1

1 ∈ Q(hΩ), whereJ is the
conformal reflection in∂D defined asJ (z) = 1/z̄.

Now, for any pair of disjoint nondegenerate continuaA andB in ∂Ω ,

mod(A,B; C) ≥ mod(A,B;Ω)+ mod(A,B;Ω∗) .

So we obtain

mod(A,B; C)
mod(A,B;Ω) ≥ 1 + mod(A,B;Ω∗)

mod(A,B;Ω) = 1 + mod(f2(A), f2(B);D∗)
mod(f1(A), f1(B);D)

= 1 + mod(hΩ ◦ f1(A), hΩ ◦ f1(B);D)
mod(f1(A), f1(B);D) ,

from whichK(hΩ)+ 1 ≤ Mb(Ω) follows.
On the other hand, by the uniqueness of harmonic functions,

mod(A,B; C) =
∫∫

C
|∇uA,B |2

≤
∫∫

Ω

|∇(uf1(A),f1(B) ◦ f1)|2 +
∫∫

Ω∗
|∇(P (uf1(A),f1(B) ◦ h−1

Ω ) ◦ J ◦ f2)|2

= D[uf1(A),f1(B)] + D[P(uf1(A),f1(B) ◦ h−1
Ω )] .

So it follows that

mod(A,B; C)
mod(A,B;Ω) = mod(A,B; C)

mod(f1(A), f1(B);D) = mod(A,B; C)
D[uf1(A),f1(B)]

≤ 1 + D[P(uf1(A),f1(B) ◦ h−1
Ω )]

D[uf1(A),f1(B)]
,

(3.1)

which impliesMb(Ω) ≤ K1(h
−1
Ω )+ 1 as required.

Now we can prove

THEOREM 2. Let Ω be a QED domain in the extended complex plane. Then the fol-
lowing hold.

(1) Mb(Ω) = R(Ω) + 1 if and only if Q(hΩ) contains an extremal mapping whose
complex dilatation µ satisfies the relation (2.5).

(2) If, in addition, Mb(Ω) is attained by a pair of disjoint nondegenerate continua in
∂Ω , then Mb(Ω) = R(Ω)+ 1 if and only if hΩ is induced by an affine mapping.

PROOF. (1) The assertion follows directly from Theorem B, Theorem 1 and Proposi-
tion 1.

(2) We only need to prove that ifMb(Ω) is attained by a pair of disjoint nondegenerate
continua, sayA andB, thenMb(Ω) = R(Ω) + 1 implies thathΩ is induced by an affine
mapping.



CONFORMAL INVARIANTS OF QED DOMAINS 453

By (3.1) we have

Mb(Ω) = mod(A,B; C)
mod(A,B;Ω) ≤ 1 + D[P(uf1(A),f1(B) ◦ h−1

Ω )]
D[uf1(A),f1(B)]

≤ 1 +K1(h
−1
Ω ) ≤ 1 +K∗(h−1

Ω ) = 1 + R(Ω) = Mb(Ω) ,

which implies thatK1(h
−1
Ω ) is attained by the pairf1(A) andf1(B) and thatK1(h

−1
Ω ) =

K∗(h−1
Ω ). We conclude by Theorem 1(2) thath−1

Ω and consequentlyhΩ are induced by affine
mappings.

An immediate consequence of Theorems B, 1 and 2, and Proposition 1 is the following

COROLLARY 1. Let Ω be a QED domain in the extended complex plane. Then the
following conditions are all equivalent:

(1) Mb(Ω) = R(Ω)+ 1.
(2) K(hΩ) = K∗(hΩ).
(3) K1(hΩ) = K∗(hΩ).
(4) Q(hΩ) contains an extremal mapping whose complex dilatation µ satisfies the

relation (2.5).

Forn ≥ 1, letAn andBn be a pair of disjoint nondegenerate continua inC̄ such thatAn
andBn converge in the Hausdorff metric to continuaA andB, respectively. We say(An,Bn)
is degenerate if the pair(A,B) is degenerate. Now, for any pair of disjoint nondegererate con-
tinuaA andB in ∂D joined byz1, z2 andz3, z4, respectively, by the well-known Christoffel-
Schwarz formula, we have

ψA,B =: φ′2
A,B∫∫

D |φ′2
A,B |

= − (z1 − z2)(z3 − z4)

(z− z1)(z− z2)(z− z3)(z− z4)

/∫∫
D

|(z1 − z2)(z3 − z4)|
|(z− z1)(z− z2)(z− z3)(z− z4)| .

So, if (An,Bn) is degenerate, then(ψAn,Bn) is degenerate in the sense thatψAn,Bn → 0 locally
uniformly inD.

The following corollary is an immediate consequence of Theorems A, B and 2. Here, by
the extremal quasiconformal mapping theory, we give a simple proof using our Theorem 2.

COROLLARY 2. Let Ω be a QED domain in the extended complex plane. If Mb(Ω) =
R(Ω)+ 1, then either hΩ is induced by an affine mapping or H(hΩ) = K∗(hΩ).

PROOF. LetMb(Ω) = R(Ω) + 1. If Mb(Ω) is attained by a pair of disjoint nonde-
generate continua in∂Ω , then the second part of Theorem 2 implies thathΩ is induced by
an affine mapping. Otherwise, we conclude by Theorem 2(1) that there exists a degenerate
sequence(An,Bn) of pairs of disjoint nondegenerate continua in∂D such that

(3.2) lim
n→∞ Re

∫∫
D

µψAn,Bn = ‖µ‖∞ ,
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whereµ is the Beltrami differential of an extremal mapping inQ(hΩ). Since(An,Bn) is
degenerate,(ψAn,Bn) is degenerate. By the theory of extremal quasiconformal mappings (see
Strebel [St3]), we can conclude from (3.2) thatH(hΩ) = K∗(hΩ).

REMARK. Let Ω be a QED domain in the extended complex plane. IfH(hΩ) <

K∗(hΩ), andhΩ is not induced by an affine mapping, thenMb(Ω) < R(Ω) + 1. So, if
h is a Strebel point which is not induced by an affine mapping, thenMb(Ωh) < R(Ωh) + 1.
Consequently, by the density of Strebel points [La], we conclude that there exists a large class
of domains for whichMb(Ω) < R(Ω) + 1. On the other hand, Example 1 shows that there
still exists a domainΩ for which H(hΩ) = K∗(hΩ), butMb(Ω) < R(Ω) + 1. So the
converse of Corollary 2 is not ture.

In the rest of the section, we give some relations betweenMb(Ω) andK(hΩ). When
hΩ is induced by an affine mapping, it holds thatMb(Ω) = K(hΩ) + 1. The following
theorem claims that the converse is true ifK(hΩ) is in addition attained by a pair of disjoint
nondegenerate continua.

THEOREM 3. Let Ω be a QED domain in the extended complex plane. If A and B is
a pair of disjoint nondegenerate continua in ∂D which attains the supremum in (2.3), that is,
K(hΩ) = mod(hΩ(A), hΩ(B);D)/mod(A,B;D), thenMb(Ω) = K(hΩ)+ 1 if and only if
hΩ is induced by an affine mapping.

PROOF. It suffices to prove that ifMb(Ω) = K(hΩ) + 1, thenhΩ is induced by an
affine mapping. For simplicity, we sethΩ = h.

Since we obtain

1 +K(h) = Mb(Ω) ≥ mod(f−1
1 (A), f−1

1 (B); C)

mod(f−1
1 (A), f−1

1 (B);Ω)

≥ mod(f−1
1 (A), f−1

1 (B);Ω)+ mod(f−1
1 (A), f−1

1 (B);Ω∗)
mod(f−1

1 (A), f−1
1 (B);Ω)

= 1 + mod(h(A), h(B);D)
mod(A,B;D) = 1 +K(h) ,

it follows that

Mb(Ω) = mod(f−1
1 (A), f−1

1 (B); C)

mod(f−1
1 (A), f−1

1 (B);Ω) .

Consequently, we obtain

mod(f−1
1 (A), f−1

1 (B); C) =
∫∫

C
|∇u

f−1
1 (A),f−1

1 (B)
|2

=
∫∫

Ω

|∇u
f−1

1 (A),f−1
1 (B)

|2 +
∫∫

Ω∗
|∇u

f−1
1 (A),f−1

1 (B)
|2

=
∫∫

D

|∇(u
f−1

1 (A),f−1
1 (B)

◦ f−1
1 )|2 +

∫∫
D∗

|∇(u
f−1

1 (A),f−1
1 (B)

◦ f−1
2 )|2
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≥
∫∫

D

|∇uA,B |2 +
∫∫

D∗
|∇uh(A),h(B)|2

= mod(A,B;D)+ mod(h(A), h(B);D)
= (1 +K(h))mod(A,B;D) = Mb(Ω)mod(f−1

1 (A), f−1
1 (B);Ω)

= mod(f−1
1 (A), f−1

1 (B); C) .

Then

u
f−1

1 (A),f−1
1 (B)

◦ f−1
1 = uA,B ,

u
f−1

1 (A),f−1
1 (B)

◦ f−1
2 = uh(A),h(B) .

Noting thatu
f−1

1 (A),f−1
1 (B)

is continuous inC̄, we conclude thatuh(A),h(B) ◦ f2 = uA,B ◦ f1

on∂Ω and so

uh(A),h(B) ◦ h = uA,B .

Thus

Re(φh(A),h(B) ◦ h− φA,B) = 0 .

By the mapping properties ofφh(A),h(B) andφA,B , it follows that forw = u+ iv ∈ φA,B(Ã∪
B̃),

(3.3) φh(A),h(B) ◦ h ◦ φ−1
A,B(w) = fK(h)(w) = u+ iK(h)v ,

where, as before,̃A andB̃ are the closure of the complementary components ofA∪B on∂D.
On the other hand, since

K(h) = mod(h(A), h(B);D)
mod(A,B;D) = mod(Ã, B̃;D)

mod(h(Ã), h(B̃);D)
= mod(h−1 ◦ h(Ã), h−1 ◦ h(B̃);D)

mod(h(Ã), h(B̃);D) ,

repeating the above reasoning, we obtain forw ∈ φ
h(Ã),h(B̃)

(h(A), h(B)),

(3.4) φÃ,B̃ ◦ h−1 ◦ φ−1
h(Ã),h(B̃)

(w) = fK(h−1)(w) = fK(h)(w) .

Noting that

φÃ,B̃ = 1 + i

mod(A,B;D)φA,B ,

φh(Ã),h(B̃) = 1 + i

K(h)mod(A,B;D)φh(A),h(B) ,

a direct computation from (3.4) yields forw ∈ φA,B(A ∪ B),
(3.5) φh(A),h(B) ◦ h ◦ φ−1

A,B(w) = fK(h)(w) = u+ iK(h)v .

Consequently, (3.3) and (3.5) imply thathΩ = h is induced by an affine mapping.
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Now we give an application of Theorem 3 to asymptotically conformal extension do-
mains. As will be seen in Theorem 4, we have a rather satisfactory description of these various
invariants in this case. Before observing this, we establish some preliminary results.

We first prove

LEMMA 1. Let h : ∂D → ∂D be a quasisymmetric homeomorphism. If (An,Bn) is a
degenerate sequence of pairs of disjoint nondegenerate continua in ∂D, then

lim sup
n→∞

D[P(uAn,Bn ◦ h)]
D[uAn,Bn]

≤ H(h).

PROOF. Since(An,Bn) is degenerate,ψAn,Bn = φ′2
An,Bn

/
∫∫
D

|φ′2
An,Bn

| → 0 locally
uniformly inD.

For anyε > 0, choose some quasiconformal mappingf ∈ Q(h) and some compact
subsetE of D such thatK[f |D − E] ≤ H(h)+ ε. Then, by (2.11),

D[un ◦ f ] =
∫∫

D

((|fz|2 + |fz̄|2)|φ′2
An,Bn

(f (z))| + 2Reφ′2
An,Bn

(f (z))fzfz̄)dxdy

≤
∫∫

D

(|fz| + |fz̄|)2|φ′2
An,Bn

(f (z))|dxdy

=
∫∫

D

|fz| + |fz̄|
|fz| − |fz̄| ◦ f−1|φ′2

An,Bn
|dudv

≤ K[f ]
∫∫

f (E)

|φ′2
An,Bn

|dudv + (H(h)+ ε)

∫∫
D−f (E)

|φ′2
An,Bn

|dudv .

Hence we obtain
D[P(uAn,Bn ◦ h)]

D[uAn,Bn]
≤ D[uAn,Bn ◦ f ]

D[uAn,Bn]

≤ (H(h)+ ε)
∫∫
D−f−1(E)

|φ′2
An,Bn

| +K[f ] ∫∫
f−1(E)

|φ′2
An,Bn

|∫∫
D

|φ′2
An,Bn

|
≤ H(h)+ ε +K[f ]

∫∫
f−1(E)

|ψAn,Bn | → H(h)+ ε .

Sinceε is arbitrary, it follows that

lim sup
n→∞

D[P(uAn,Bn ◦ h)]
D[uAn,Bn]

≤ H(h) .

Some immediate consequences of Lemma 1 are the following propositions. The first one
was the main result proved by Wu [Wu, Theorem 1] and implicit in Yang [Y2], and it was
used to derive their necessary condition Theorem A. Both discussions in [Wu] and [Y2] are
somewhat complicated.

PROPOSITION 2 ([Wu], [Y2]). Let h : ∂D → ∂D be a quasisymmetric homeomor-
phism. Then either there exists a pair of disjoint nondegenerate continua A and B in ∂D such
that K(h) = mod(h(A), h(B);D)/mod(A,B;D) or K(h) ≤ H(h).
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PROOF. Forn ≥ 1, letAn andBn be a pair of disjoint nondegenerate continua on∂D

such that

(3.6) K(h) = lim
n→∞

mod(h(An), h(Bn);D)
mod(An,Bn;D)

and thatAn andBn converge in the Hausdorff metric to continuaA andB, respectively.
If A andB is a pair of disjoint nondegenerate continua, by the continuity of moduli, it

follows from (3.6) thatK(h) = mod(h(A), h(B);D)/mod(A,B;D).
If (An,Bn) is degenerate, by Lemma 1 we get

(3.7) lim sup
n→∞

D[P(uAn,Bn ◦ h−1)]
D[uAn,Bn]

≤ H(h−1) = H(h) .

On the other hand, since

mod(h(An), h(Bn);D)
mod(An,Bn;D) ≤ D[P(uAn,Bn ◦ h−1)]

D[uAn,Bn]
,

it follows from (3.6) and (3.7) thatK(h) ≤ H(h).

PROPOSITION 3. Let Ω be a QED domain in the extended complex plane. Then either
there exists a pair of disjoint nondegenerate continua A an B in ∂Ω such that Mb(Ω) =
mod(A,B; C)/mod(A,B;Ω) or Mb(Ω) ≤ H(hΩ)+ 1.

PROOF. Forn ≥ 1, letAn andBn be a pair of disjoint nondegenerate continua on∂Ω

such that

(3.8) Mb(Ω) = lim
n→∞

mod(An,Bn; C)
mod(An,Bn;Ω)

and thatAn andBn converge in the Hausdorff metric to continuaA andB, respectively.
If (An,Bn) is nondegenerate, it follows from the continuity of moduli that

Mb(Ω) = mod(A,B; C)
mod(A,B;Ω) .

Now we suppose that(An,Bn) is degenerate. Then(f1(An), f1(Bn)) is also degenerate.
So Lemma 1 implies that

(3.9) lim sup
n→∞

D[P(uf1(An),f1(Bn) ◦ h−1
Ω )]

D[uf1(An),f1(Bn)]
≤ H(hΩ) .

On the other hand, by (3.1) we have

(3.10)
mod(An,Bn; C)
mod(An,Bn;Ω) ≤ 1 + D[P(uf1(An),f1(Bn) ◦ h−1

Ω )]
D[uf1(An),f1(Bn)]

.

It then follows from (3.8), (3.9) and (3.10) thatMb(Ω) ≤ H(hΩ)+ 1.

PROPOSITION 4. Let h : ∂D → ∂D be a quasisymmetric homeomorphism. Then
either there exists a pair of disjoint nondegenerate continuaA andB in ∂D such thatK1(h) =
D[P(uA,B ◦ h)]/D[uA,B] or K1(h) ≤ H(h).
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PROOF. Forn ≥ 1, letAn andBn be a pair of disjoint nondegenerate continua on∂D

such that

(3.11) K1(h) = lim
n→∞

D[P(uAn,Bn ◦ h)]
D[uAn,Bn ]

and thatAn andBn converge in the Hausdorff metric to continuaA andB, respectively.
If A andB is a pair of disjoint nondegenerate continua, by the continuity of moduli,

mod(An,Bn;D) → mod(A,B;D), that is,D[uAn,Bn] → D[uA,B]. So we obtain

lim
n→∞D[uAn,Bn − uA,B] = lim

n→∞D[uAn,Bn ] − D[uA,B] = 0 .

Since

D[P((uAn,Bn − uA,B) ◦ h)] ≤ K∗(h)D[uAn,Bn − uA,B] ,
we obtainD[P((uAn,Bn − uA,B) ◦ h)] → 0, which implies thatD[P(uAn,Bn ◦ h)] →
D[P(uA,B ◦ h)]. Consequently, by (3.11) we obtainK1(h) = D[P(uA,B ◦ h)]/D[uA,B].

If (An,Bn) is degenerate, by Lemma 1 and (3.11) we getK1(h) ≤ H(h).

For completeness, we recall the following analogous result for the quantityK2(h) proved
by the author [S4].

PROPOSITION 5 [S4]. Leth : ∂D → ∂D be a quasisymmetric homeomorphism. Then
either there exists an elementu ∈ D such thatK2(h) = D[P(u ◦ h)]/D[u] orK2(h) ≤ H(h).

Recall that a Jordan domainΩ is an asymptotically conformal extension domain if the
conformal mappingf−1

1 : D → Ω has a quasiconformal extension to a neighborhood ofD

whose complex dilatationµ satisfies|µ(z)| → 0 as|z| → 1+. It is known from Gardiner-
Sullivan [GS] thatΩ is an asymptotically conformal extension domain if and only ifH(hΩ) =
1, namely,hΩ is symmetric. Note that for an asymptotically conformal extension domainΩ ,
hΩ can not be induced by affine mappings unlessΩ is a disk.

By means of Corollary 1, Theorem 3 and Propositions 1 through 5, we obtain

THEOREM 4. Let Ω be an asymptotically conformal extension domain. Then all the
supremums in (1.4), (2.3), (2.6) and (2.7) can be attained. Namely, the following hold.

(1) There exists a pair of disjoint nondegenerate continua A1 and B1 in ∂D such that
K(hΩ) = mod(hΩ(A1), hΩ(B1);D)/mod(A1, B1;D).

(2) There exists a pair of disjoint nondegenerate continua A2 and B2 in ∂Ω such that
Mb(Ω) = mod(A2, B2; C)/mod(A2, B2;Ω).

(3) There exists a pair of disjoint nondegenerate continua A3 and B3 in ∂D such that
K1(hΩ) = D[P(uA3,B3 ◦ hΩ)]/D[uA3,B3].

(4) There exists an element u ∈ D such that K2(hΩ) = DD[P(u ◦ hΩ)]/DD[u].
Furthermore,K(hΩ) < Mb(Ω)− 1 ≤ K1(hΩ) < K

∗(hΩ) = R(Ω) unlessΩ is a disk.

REMARK. As stated in Section 1, Wu and Yang [WY, Theorem 2.3] proved that
Mb(Ω) < R(Ω) + 1 for all asymptotically conformal extension domains other than disks.
On the other hand, Wu [Wu, Theorem 4] and Yang [Y2, Corollary 2.6] proved independently
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thatK(hΩ) < K∗(hΩ) for all asymptotically conformal extension domains other than disks.
Theorem 4 implies the stronger result thatK(hΩ) < Mb(Ω)−1< K∗(hΩ) for such domains.

4. The QED constantM(Ω). In this section, we will prove, among other things, that
M(Ω) < R(Ω)+1 for all asymptotically conformal extension domains other than disks. Re-
call that for a pair of disjoint nondegenerate compact subsets (which need not be connected)A

andB of the extended complex plane, we may define mod(A,B; C) as before. Furthermore,
there still exists a real-valued functionuA,B , which is continuous in̄C, harmonic inC̄−A∪B,
with constant values 0 and 1 inA andB, respectively, such that mod(A,B; C) = DC[uA,B].

First we note the following

THEOREM 5. Let Ω be a QED domain in the extended complex plane. If M(Ω) is
attained by a pair of disjoint nondegenerate continuaA and B in Ω̄, thenM(Ω) = R(Ω)+1
if and only if hΩ is induced by an affine mapping.

PROOF. We need to prove that ifM(Ω) = R(Ω)+ 1, thenhΩ is induced by an affine
mapping. As done in [Y3], letf : C̄ → C̄ be a quasiconformal mapping such thatf is
conformal fromΩ ontoD and isR(Ω)-quasiconformal inΩ∗. SetA′ = f (A), B ′ = f (B)

andg = f−1. By the uniqueness of harmonic functions, it follows that

mod(A,B; C) ≤ mod(A ∪ g ◦ J (A′), B ∪ g ◦ J (B ′); C)

=
∫∫

C
|∇uA∪g◦J (A′),B∪g◦J (B ′)|2 ≤

∫∫
C

|∇(uA′∪J (A′),B ′∪J (B ′) ◦ f )|2

≤
∫∫

D

|∇(uA′∪J (A′),B ′∪J (B ′))|2 + R(Ω)

∫∫
D∗

|∇(uA′∪J (A′),B ′∪J (B ′))|2

= (1 + R(Ω))mod(A′, B ′;D) = (1 + R(Ω))mod(A,B;Ω) .

(4.1)

Since mod(A,B; C) = (1 + R(Ω))mod(A,B;Ω), it follows from (4.1) thatA = A ∪
g ◦ J (A′), B = B ∪ g ◦ J (B ′). SoA andB must lie on the boundary∂Ω . We conclude by
Theorem 2(2) thathΩ is induced by an affine mapping.

Now we can state the main result of this section.

THEOREM 6. Let Ω be an asymptotically conformal extension domain. Then there
exists a pair of disjoint nondegenerate continua A and B in Ω̄ such that M(Ω) =
mod(A,B; C)/ mod(A,B;Ω). Furthermore,M(Ω) < R(Ω)+ 1 unlessΩ is a disk.

As stated in Introduction, Yang [Y4] proved Theorem 6 in the case whenΩ is a smooth
domain and asked whether it still holds whenΩ is a general asymptotically conformal ex-
tension domain. Our Theorem 6 gives this an affirmative answer, showing that the conjecture
M(Ω) = R(Ω) + 1 by Garnett and Yang [GY] is not true for all asymptotically conformal
extension domains other than disks.

Theorem 6 is an immediate consequence of Theorem 5 and the following Theorem 7, a
generalization of Theorem 6. The proof of Theorem 7 relies on some well-known facts which
may be stated as follows. For anyρ > 0, letΛ(ρ) denote, as before, the conformal module



460 Y.-L. SHEN

of the quadrilateralQ with domain the upper half planeH and vertices∞,−1,0 andρ. It is
well-known (see [BA]) thatΛ(ρ)Λ(ρ−1) = 1. Furthermore, whenρ ≥ 1,

(4.2) Λ(ρ) = 1 + θ(ρ) logρ ,

whereθ(ρ) increases monotonically fromθ(1) = 0.2284 toθ(∞) = 1/π = 0.3183. Now,
for a ring domainR, its conformal moduleM(R) is defined asM(R) = log(r2/r1), if R is
mapped conformally onto{r1 < |z| < r2}. In particular, for the Teichmüller ring domain
R(ρ) bounded by the segment[−1,0] and by the ray{z = x ; ρ ≤ x < ∞}, we have
M(R(ρ)) = πΛ(ρ). On the other hand, for a ring domainR with complementay components
A andB, we have mod(A,B; C) = 2π/M(R).

Now we prove

THEOREM 7. Let Ω be a QED domain in the extended complex plane. Then either
there exists a pair of disjoint nondegenerate continua A an B in Ω̄ such that M(Ω) =
mod(A,B; C)/mod(A,B;Ω) or M(Ω) ≤ 2H(hΩ).

PROOF. Forn ≥ 1, letAn andBn be a pair of disjoint nondegenerate continua onΩ̄

such that

(4.3) M(Ω) = lim
n→∞

mod(An,Bn; C)
mod(An,Bn;Ω)

and thatAn andBn converge in the Hausdorff metric to continuaA andB, respectively.
If (An,Bn) is not degenerate, then by the continuity of moduli, it follows from (4.3) that

M(Ω) = mod(A,B; C)
mod(A,B;Ω) .

Now we suppose that(An,Bn) is degenerate. Then, as in [Y3], there are the following
five possibilities, depending on the sizes and relative positions ofA andB:

(1) A is a single point,B is a nondegenerate continua andA ∩ B = ∅.
(2) A, B both are single points andA ∩ B = ∅.
(3) A is a single point,B is nondegenerate andA ∩ B �= ∅.
(4) A, B both are single points andA ∩ B �= ∅.
(5) A, B both are nondegenerate andA ∩ B �= ∅.
In all these cases, we will show thatM(Ω) ≤ 2H(hΩ). We adapt the strategy used in

[Y3] (see also [WY], [Y4]). For simplicity, we also setH = H(hΩ).
In what follows,D(z0, r) will denote the disk with centerz0 and radiusr > 0, Dr =

D(0, r). For anyε > 0, there exist aR > 1 and a quasiconformal mappingg fromDR onto a
Jordan domainΩ ′ such thatK[g] < H +ε, andg is conformal fromD ontoΩ . Setf = g−1,
A′
n = f (An) andB ′

n = f (Bn), whereAn andBn are as in (4.3).
Case (1) Since

mod(An,Bn;Ω) = mod(A′
n, B

′
n;D) ≥ 1

2
mod(A′

n, B
′
n; C) ,
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we have

(4.4)
mod(An,Bn; C)
mod(An,Bn;Ω) ≤ 2

mod(An,Bn; C)
mod(A′

n, B
′
n; C)

.

Now we show

(4.5) lim sup
n→∞

mod(An,Bn; C)
mod(A′

n, B
′
n; C)

≤ H + ε .

Choosean, bn ∈ An andcn, dn ∈ Bn such that

(4.6) |bn − cn| = d(An,Bn), |an − bn| = max
z∈An

|z− bn|, |cn − dn| = max
z∈Bn

|cn − z| .

Using the basic properties of the modulus, we obtain

(4.7) mod(A′
n, B

′
n; C) = 2π

M(C̄ − A′
n ∪ B ′

n)
≥ 2

Λ[f (an), f (bn), f (cn), f (dn)] ,

(4.8) mod(An,Bn; C) = 2π

M(C̄ − An ∪ Bn)
≤ 2π

log(|bn − cn|/|bn − an|) ,

where

[z1, z2, z3, z4] = |z4 − z1||z3 − z2|
|z4 − z3||z2 − z1| .

Noting thatΛ(ρ) ∼ (1/π) logρ asρ → ∞, we obtain asn → ∞

(4.9)
mod(An,Bn; C)
mod(A′

n, B
′
n; C)

≤ πΛ[f (an), f (bn), f (cn), f (dn)]
log(|bn − cn|/|bn − an|) ∼ log(1/|f (bn)− f (an)|)

log(1/|bn − an|) .

Now, sincef is H + ε-quasiconformal inΩ ′, by the Hölder continuity of quasiconformal
mappings,f is Hölder continuous inΩ ′ with Hölder index 1/(H + ε) and a coefficient de-
pending only onΩ ′ andf . We deduce from (4.9) that

mod(An,Bn; C)
mod(A′

n, B
′
n; C)

≤ H + ε

asn → ∞, which yields (4.5). By the arbitrariness ofε, we get from (4.4), (4.5) thatM(Ω) ≤
2H .

Case (2) This case can be treated similarly as in Case 1. In this case, to establish (4.5),
we need the following estimates instead of (4.8):

mod(An,Bn; C) = 2π

M(C̄ − An ∪ Bn)
≤ 2π

log(|bn − cn|/(2|bn − an|))+ log(|bn − cn|/(2|dn − cn|)) .
(4.10)
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So
mod(An,Bn; C)
mod(A′

n, B
′
n; C)

≤ πΛ[f (an), f (bn), f (cn), f (dn)]
log(|bn − cn|/(2|bn − an|))+ log(|bn − cn|/(2|dn − cn|))

∼ log(1/|f (bn)− f (an)|)+ log(1/|f (dn)− f (cn)|)
log(1/|bn − an|)+ log(1/|dn − cn|)

→ H + ε .

(4.11)

Case (3) Choosea′
n, b

′
n ∈ A′

n andc′n, d ′
n ∈ B ′

n such that

(4.12) |b′
n − c′n| = d(A′

n, B
′
n), |a′

n − b′
n| = max

z∈A′
n

|z− b′
n|, |c′n − d ′

n| = max
z∈B ′

n

|c′n − z| .
We divide our argument into two subcases:

Subcase 3.1 There exists some constantρ0 such that[a′
n, b

′
n, c

′
n, d

′
n] < ρ0.

In this case, we have

mod(A′
n, B

′
n; C) = 2π

M(C̄ − A′
n ∪ B ′

n)
≥ 2

Λ[a′
n, b

′
n, c

′
n, d

′
n]

≥ 2

Λ(ρ0)
.

Since the quasiconformal mappingg : DR → Ω ′ can be extended to a quasiconformal map-
pingG on the whole plane, by the quasi-invariance property of modulus under quasiconformal
mappings (see [Va]), we get

(4.13) mod(An,Bn; C) ≥ 1

K[G]mod(A′
n, B

′
n; C) ≥ 2

K[G]Λ(ρ0)
.

Now, chooseδ > 0 such thatA′
n ⊂ D(b′

n, δ) ⊂ DR for largen. Noting that for each
curveγ ∈ Γ (An,Bn; C), eitherγ ∈ Γ (An,Bn;Ω ′) or γ contains a subarc which joins
g(∂D(b′

n, |b′
n−a′

n|)) andg(∂D(b′
n, δ)), and thatg isH +ε-quasiconformal inDR, we obtain

(see [Va])

(4.14) mod(An,Bn; C) ≤ mod(An,Bn;Ω ′)+ 2π(H + ε)

log(δ/|b′
n − a′

n|)
.

It follows from (4.13) and (4.14) that

1 ≥ mod(An,Bn;Ω ′)
mod(An,Bn; C)

≥ mod(An,Bn; C)− 2π(H + ε)/ log(δ/|b′
n − a′

n|)
mod(An,Bn; C)

≥ 1 − π(H + ε)K[G]Λ(ρ0)

log(δ/|b′
n − a′

n|)
→ 1 ,

which implies

(4.15)
mod(An,Bn; C)
mod(An,Bn;Ω ′)

→ 1 .

Now it follows that

mod(An,Bn;Ω ′) ≤ (H + ε)mod(A′
n, B

′
n;DR) ≤ 2(H + ε)mod(An,Bn;Ω) ,

which together with (4.15) implies that

mod(An,Bn; C)
mod(An,Bn;Ω) ≤ 2(H + ε)

mod(An,Bn; C)
mod(An,Bn;Ω ′)

→ 2(H + ε) ,
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and henceM(Ω) ≤ 2H as required.
Subcase 3.2 lim supn→∞[a′

n, b
′
n, c

′
n, d

′
n] = ∞.

Without loss of generality, we may assume that limn→∞[a′
n, b

′
n, c

′
n, d

′
n] = ∞. Then it

follows that

mod(A′
n, B

′
n; C) = 2π

M(C̄ − A′
n ∪ B ′

n)
≥ 2

Λ[a′
n, b

′
n, c

′
n, d

′
n]
,

and

mod(An,Bn; C) = 2π

M(C̄ − An ∪ Bn)
≤ 2π

M(g({|b′
n − a′

n| < |z− b′
n| < |b′

n − c′n|}))
≤ 2π(H + ε)

log(|b′
n − c′n|/|b′

n − a′
n|)

.

Consequently, we obtain

mod(An,Bn; C)
mod(A′

n, B
′
n; C)

≤ π(H + ε)Λ[a′
n, b

′
n, c

′
n, d

′
n]

log(|b′
n − c′n|/|b′

n − a′
n|)

∼ (H + ε)
log((|b′

n − c′n||d ′
n − a′

n|)/(|b′
n − a′

n||d ′
n − c′n|))

log(|b′
n − c′n|/|b′

n − a′
n|)

→ H + ε .

So (4.5) also holds in this subcase, which implies thatM(Ω) ≤ 2H as required.
Case (4) We consider the same two subcases as in Case 3.
Subcase 4.1 There exists some constantρ0 such that[a′

n, b
′
n, c

′
n, d

′
n] < ρ0.

In this case, the argument in Subcase 3.1 is valid here as well. SoM(Ω) ≤ 2H .
Subcase 4.2 Without loss of generality, we can assume limn→∞[a′

n, b
′
n, c

′
n, d

′
n] = ∞.

In this case, we need a different approach. LetA = B = {w0} andz0 = f (w0). First
we suppose thatw0 ∈ Ω . Then there exists someδ > 0 such thatAn ∪ Bn ⊂ D(w0, δ) ⊂ Ω

whenn is large. Sincef is conformal inΩ , there exists two constantsλ1 > 0 andλ2 > 0 not
depending onn such that

λ1|w1 −w2| ≤ |f (w1)− f (w2)| ≤ λ2|w1 −w2|
for all w1, w2 ∈ An ∪Bn whenn is large. Therefore, using the discrete form of an equivalent
definition for modulus due to Bagby [Ba, Theorem 5], it is easy to show that, for largen,

(4.16)
2π

mod(A′
n, B

′
n; C)

≤ λ(λ1, λ2)+ 2π

mod(An,Bn; C)
,

whereλ is a constant depending only onλ1 andλ1. Now, since[a′
n, b

′
n, c

′
n, d

′
n] → ∞, so

mod(A′
n, B

′
n; C) → 0, and so mod(An,Bn; C) → 0. It follows from (4.16) that

lim sup
n→∞

mod(An,Bn; C)
mod(A′

n, B
′
n; C)

≤ 1 .

This together with (4.4) implies thatM(Ω) ≤ 2.
Now we suppose thatw0 ∈ ∂Ω and so thatz0 ∈ ∂D. By definition of modulus, we

may assume, without loss of generality, that bothC̄ − An andC̄ − Bn are connected. Set for
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z ∈ C̄ −A′
n ∪J (A′

n)∪B ′
n ∪J (B ′

n), un = uA′
n∪J (A′

n),B
′
n∪J (B ′

n)
andψn = u2

nz/
∫∫

C |u2
nz|. Then

ψn is holomorphic inC̄ −A′
n ∪ J (A′

n) ∪ B ′
n ∪ J (B ′

n) with
∫∫

C−A′
n∪J (A′

n)∪B ′
n∪J (B ′

n)
|ψn| = 1.

Since each ofA′
n, J (A

′
n), B

′
n andJ (B ′

n) shrinks to{z0} asn → ∞, without loss of generality,
we assume that there exists some functionψ which is holomorphic inC̄ − {z0} such that
ψn → ψ locally uniformly in C̄ − {z0}. By Fatou’s lemma, we obtain

∫∫
C |ψ| ≤ 1, which

can happen only ifψ = 0.
Now, let F : C̄ → C̄ be a quasiconformal extension off to the whole plane. Since

z0 ∈ ∂D andA′
n ∪ J (A′

n) ∪ B ′
n ∪ J (B ′

n) ⊂ DR for largen. By the uniqueness of harmonic
functions, we have

mod(An,Bn; C) ≤ mod(An ∪ g ◦ J (A′
n), Bn ∪ g ◦ J (B ′

n); C)

=
∫∫

C
|∇uAn∪g◦J (A′

n),Bn∪g◦J (B ′
n)

|2 ≤
∫∫

C
|∇(un ◦ F)|2

≤
∫∫

D

|∇(un)|2 + (H + ε)

∫∫
DR−D

|∇(un)|2

+K[F ]
∫∫

C−DR
|∇(un)|2

≤ 4

(∫∫
D

|u2
nz| + (H + ε)

∫∫
D∗

|u2
nz| +K[F ]

∫∫
C−DR

|u2
nz|

)
.

(4.17)

On the other hand, we see

mod(An,Bn;Ω) = mod(A′
n, B

′
n;D)

= 4
∫∫

D

|u2
nz| = 4

∫∫
D∗

|u2
nz| = 2

∫∫
C

|u2
nz| .

(4.18)

Noting thatψn → 0 locally uniformly in C̄ − {z0}, from (4.17) and (4.18) we obtain

mod(An,Bn; C)
mod(An,Bn;Ω) ≤ 1 +H + ε + 2K[F ]

∫∫
C−DR

|ψn| → 1 +H + ε ,

which implies thatM(Ω) ≤ 1 +H ≤ 2H as required.
Case (5) In this case, mod(An,Bn; C) → ∞, and so mod(An,Bn;Ω) → ∞. Now

mod(An,Bn; C) ≤ mod(An,Bn;Ω ′)+ mod(∂Ω, ∂Ω ′; C)

≤ 2(H + ε)mod(An,Bn;Ω)+ mod(∂Ω, ∂Ω ′; C) ,

which implies that

lim sup
n→∞

mod(An,Bn; C)
mod(An,Bn;Ω) ≤ 2(H + ε) .

It then follows thatM(Ω) ≤ 2H .

Now the proof of Theorem 7 is complete.

REMARK. An interesting question is to determine whether the bound 2H(hΩ) in Theo-
rem 7 can be replaced by 1+H(hΩ). If the answer to the question were affirmative, then there
would be a large class of domainsΩ for whichM(Ω) < R(Ω) + 1, namely, the domains
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Ω whose associated sewing mappingshΩ are Strebel points and are not induced by affine
mappings.

Finally, as stated in Section 1, we point out that the question whetherMb(Ω) = M(Ω)

still remains open, even for asymptotically conformal extension domains. Theorems 4 and 6
may shed some new light on this problem for asymptotically conformal extension domains.
We hope to attack this problem in the near future.

REFERENCES

[Ah] L. V. A HLFORS, Conformal Invariants, McGraw-Hill, New York, 1973.
[AH] J. M. A NDERSON AND A. HINKKANEN , Quadrilaterals and extremal quasiconformal extensions, Com-

ment. Math. Helv. 70 (1995), 455–474.
[Ba] T. BAGBY, The modulus of a plane condenser, J. Math. Mech. 17 (1967), 315–329.
[BA] A. B EURLING AND L. V. A HLFORS, The boundary correspondence under quasiconformal mappings,

Acta Math. 96 (1956), 125–142.
[CC] J. CHEN AND Z. CHEN, A remark on “An approximation condition and extremal quasiconformal exten-

sions”, Chinese Sci. Bull. 42 (1997), 1765–1767.
[EL] C. J. EARLE AND L I ZHONG, Isometrically embedded polydisks in infinite dimensional Teichmüller

spaces, J. Geom. Anal. 9 (1999), 51–71.
[GS] F. P. GARDINER AND D. P. SULLIVAN , Symmetric and quasisymmetric structures on a closed curve,

Amer. J. Math. 114 (1992), 683–736.
[GY] J. B. GARNETT AND S. YANG, Quasiextremal distance domains and integrability of derivatives of con-

formal mappings, Michigan Math. J. 41 (1994), 389–406.
[Ge] F. W. GEHRING, Quasiconformal mappings, Complex Analysis and Its Applications (Lectures, Internat.

Sem., Trieste, 1975) vol. 2, 213–268, Internat. Atomic Energy Agency, Vienna, 1976.
[GM] F. W. GEHRING AND O. MARTIO, Quasiextremal distance domains and extension of quasiconformal

mappings, J. d’Analyse Math. 45 (1985), 181–206.
[KP] J. G. KRZYZ AND D. PARTYKA , Generalized Neumann-Poincaré operator, chord-arc curves and Fred-

holm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253–263.
[La] N. L AKIC, Strebel points, Contemp. Math. 211 (1997), 417–431.
[Le] O. LEHTO, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1986.
[Na] S. NAG, The Complex Analytic Theory of Teichmüller Spaces, Wiley-Interscience, 1988.
[NS] S. NAG AND D. SULLIVAN , Teichmüller theory and the universalperiod mapping via quantum calculus

and theH1/2 space on the circle, Osaka J. Math. 32(1995), 1–34.
[P1] D. PARTYKA , Generalized harmonic conjugation operator, Ber. Univ. Jyväskylä Math. Inst. 55 (1992),

143–155, Proc. of the Fourth Finnish-Polish Summer School in Complex Analysis at Jyväskylä, 1993.
[P2] D. PARTYKA , Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Sklodowska Sect.

A 46(1993), 81–98.
[P3] D. PARTYKA , The smallest positive eigenvalue of a quasisymmetric automorphisms of the unit circle,

Topics in Complex Analysis (Warsaw, 1992), 303–310, Banach Center Publ. 31, Polish Acad. Sci.,
Warszawa, 1995.

[P4] D. PARTYKA , Some extremal problems concerning the operatorBγ , Ann. Univ. Mariae Curie-Sklodowska
Sect. A 49 (1996), 163–184.

[P5] D. PARTYKA , The generalized Neumann-Poincaré operator and its spectrum, Dissertations Math. No. 484,
Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997.

[Re] E. REICH, An approximation condition and extremal quasiconformal extensions, Proc. Amer. Math. Soc.
125 (1997), 1479–1481.



466 Y.-L. SHEN

[Sc] G. SCHOBER, Continuity of curve functionals and a technique involving quasiconformal mappings, Arch.
Ration. Mech. Anal. 29 (1968), 378–389.

[S1] Y. SHEN, Quasiconformal mappings and harmonic functions, Adv. in Math. (Beijing) 28 (1999), 347–357.
[S2] Y. SHEN, A counterexample theorem in quasiconformal mapping theory, Sci. China Ser. A 43 (2000),

929–936.
[S3] Y. SHEN, Pull-back operators by quasisymmetric functions and invariant metrics on Teichmüller spaces ,

Complex Variables Theory Appl. 42 (2000), 289–307.
[S4] Y. SHEN, Notes on pull-back operators by quasisymmetric homeomorphisms with applications to

Schober’s functionals, Chinese Annals of Math. 24A (2003), 209–218; Chinese J. of Contemporary
Math. 24 (2003), 187–196.

[ST] H. SHIGA AND H. TANIGAWA , Grunsky’s inequality and its applications to Teichmüller spaces, Kodai
Math. J. 16 (1993), 361–378.

[St1] K. STREBEL, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises,
Comment. Math. Helv. 36 (1962), 306–323.

[St2] K. STREBEL, On the existence of extremal Teichmüller mappings, J. Anal. Math. 30 (1976), 464–480.
[St3] K. STREBEL, Extremal quasiconformal mappings, Result. Math. 10 (1986), 169–209.
[St4] K. STREBEL, On the dilatation of extremal quasiconformal mappings of polygons, Comment. Math. Helv.

74 (1999), 143–149.
[Va] J. VÄISÄLÄ , Lectures onn-dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer-

Verlag, Berlin-Heidelberg-New York, 1971.
[Wu] S. WU, Moduli of quadrilaterals and extremal quasiconformal extensions of quasisymmetric functions,

Comment. Math. Helv. 72 (1997), 593–604.
[WY] S. WU AND S. YANG, On symmetric quasicircles, J. Austr. Math. Soc. Ser. A 68 (2000), 131–144.
[Y1] S. YANG, QED domains and NED sets in̄Rn, Trans. Amer. Math. Soc. 334 (1992), 97–120.
[Y2] S. YANG, On dilatations and substantial boundary points of homeomorphisms of Jordan curves, Result.

Math. 31 (1997), 180–188.
[Y3] S. YANG, Conformal invariants of smooth domains and extremal quasiconformal mappings of ellipses,

Illinois J. Math. 41 (1997), 438–452.
[Y4] S. YANG, A modulus inequality for condensers and conformal invariants of smooth domains, J. Anal.

Math. 75 (1998), 173–183.

DEPARTMENT OFMATHEMATICS

SUZHOU UNIVERSITY

SUZHOU 215006
P.R. CHINA

E-mail address: ylshen@suda.edu.cn


