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CONFORMAL INVARIANTS OF QED DOMAINS

Y U-LIANG SHEN
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Abstract. Given a Jordan domait2 in the extended complex plai@ denote by
Mp(£2), M(£2) and R(§2) the boundary quasiextremal distance constant, quasiextremal dis-
tance constant and quasiconformal reflection constan® ofespectively. It is known that
Mp(2) < M(£2) < R(£2) + 1. In this paper, we will give some further relations among
Mp(£2), M(£2) and R(£2) by introducing and studying some other closely related constants.
Particularly, we will give a necessary and sufficient conditionfty($2) = R(£2) + 1 and
show thatM (£2) < R(£2) + 1 for all asymptotically conformal extension domains other than
disks. This gives an affirmative answer to a question asked by Yang, showing that the con-
jectureM (£2) = R(£2) + 1 by Garnett and Yang is not true for all asymptotically conformal
extension domains other than disks. Our discussion relies heavily on the theory of extremal
quasiconformal mappings, which in turn gives some interesting results in the extremal quasi-
conformal mapping theory as well.

1. Introduction. Let$2 be adomaininthe extended complex pl&h&iven a pair of
disjoint nondegenerate contindaand B in £2, let mod A, B; £2) denote the modulus of the
family I" (A, B; £2) of curves that joirA and B in £2. The following so-called quasiextremal
distance constant (or QED constant) was introduced in [Y1]:

mod(A, B; C)

; for all pairsA andB in Q} .
The domains2 is a QED domain if its QED constamt (£2) is finite. QED domains were
introduced by Gehring and Martio [GM] as a useful class of domains in the study of quasi-
conformal mappings.

In this paper, we will always assume thatis a Jordan domain. It was proved in [GM]
thats2 is a QED domain if and only if2 is a quasidisk, meaning as usual tkiats the image
of the unit diskD = {|z| < 1} under a quasiconformal self-mapping of the extended complex
planeC, or equivalently, there exists a quasiconformal reflectiosihwhich interchanges
2 and2* = C — £2 and keeps every point 6f2 fixed. Thus, a QED domaif determines
the quasiconformal reflection constaits2), defined as

(1.2 R(£2) =inf{K[f]; for all quasiconformal reflectiong in 92},
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where K[ f] is the maximal dilatation off. Clearly, R(£2) = R(£2*). The two constants
M ($2) andR(£2) are closely related to one another. For example, it was proved in [Y1] that

1.3 M($2) = R(2) +1,

and it was conjectured by Garnett and Yang [GY] that the equality in (1.3) holds for all QED
domains. But this was disproved by Yang [Y3] for ellipses. In [Y3] the following boundary
quasiextremal distance constant (or BQED constaft)s2) was also introduced:

mod(A, B; C)

; for all pairsA andB in 8.(2} .
Clearly, M, (2) < M(£2). However, the question whethéf,(2) = M (£2) still remains
open.

We say a Jordan domai® is an asymptotically conformal extension domain if the Rie-
mann mapping fronD to §2 has a quasiconformal extension to a neighborhoob @fhose
complex dilatationu satisfies|u(z)] — 0 as|z| — 14. 2 is a disk if it is the image
of D under a Mobius transformation. Clearly, a smooth domain is always an asymptoti-
cally conformal extension domain, but the converse is not true. Very recently, Yang [Y4]
proved thatM (£2) < R(£2) + 1 for all smooth domains other than disks and asked whether
M($2) < R(£2) + 1 for all asypmtotically conformal extension domains other than disks. On
the other hand, Wu and Yang [WY] proved the}, (£2) < R(£2) + 1 for all asypmtotically
conformal extension domains other than disks.

In this paper, we will continue to investigate the relations amdfygs2), M(§2) and
R(£2) by introducing and studying some other closely related constants associated to a qua-
sisymmetric homeomorphism. In particular, we will give a necessary and sufficient condition
for Mp(£2) = R(£2) + 1 (Theorem 2) and show thaf(£2) < R(£2) + 1 for all asypmtot-
ically conformal extension domains other than disks (Theorem 5). This contains the above-
mentioned results obtained by Wu and Yang and gives an affirmative answer to the question
of Yang as well. Consequently, the Garnett-Yang conjecture is not true for all asypmtotically
conformal extension domains other than disks. On the other hand, as will be seen, our discus-
sion relies heavily on the theory of extremal quasiconformal mappings, which in turn gives
some interesting results in the extremal quasiconformal mapping theory as well (see Sections
2 and 3).

The author would like to thank the referee for his (her) valuable suggestions.

2. Related quantities. In this section, we will define and discuss some constants as-
sociated with a quasisymmetric homeomorphism. The results will be used in the next section
to prove some properties of the boundary quasiextremal distance constant.

For a Jordan domaif® in the extended complex plai@ let f1 and f» map£2 and2*
conformally ontoD and D*, respectively. Extend; and f> to the boundarnd2 = 9£*
and defineh; = fao fl*1|8D, which is known as the sewing mapping of the domains
£2 and 2*. Then$2 is a QED domain, or equivalently, a quasidisk, if and only: g is
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a quasisymmetric homeomorphism of the unit circle onto itself in the sense of Beurling-
Ahlfors [BA]. Conversely, a quasisymmetric homeomorphigralso determines a pair of
complementary Jordan domains, which we denot@pyands2;, respectively.

Given a quasisymmetric homeomorphignof the unit circle onto itself, we denote by
Q(h) the class of all quasiconformal mappings of the unit diskvith boundary value#.
The homeomorphisri then determines the extremal maximal dilatatioi k), defined as

2.1 K*(h) = inf K .
2.1 (h) feIrQ](h) [f]
Clearly, K*(h™1) = K*(h). f € Q(h) is called extremal ik [ /] = K*(h) (see [St3]). ltis

well-known that there always exists at least one extremal mapping in the@(&3sh also
determines the boundary dilatatiégh(h) (see [St3]), defined as

(22) H(h) =inf{K[f|D — E]; forall f € Q(h) and all compact subsets C D},

whereK [ f|D — E] is the maximal dilatation off on D — E. Then,H(h) = H(h~1) and
H(h) < K*(h). The set of all normalized (fixing three boundary pointsddm quasisym-
metric homeomorphisms of the unit circle onto itself is known as the universal Teichmiller
spacel’ of Bers (see [Le], [Na]). Following Earle-Li [EL], a poiritis called a Strebel point
if H(h) < K*(h). Then, by a result of Lakic [La], the set of Strebel points is open and dense
in the universal Teichmdller spade

Now the maximal dilatatiorK (k) of 4 is defined as

modi(A), h(B); D)
mod(A, B; D)

(2.3) K(h) = sup{ ; for all pairsA andB in aD} .

Clearly,K (h~1) = K (h). By the quasi-invariance property of modulus under quasiconformal
mappings, it follows thak (k) < K*(h). It was an open question for a long time to determine
whether or notK (k) = K*(h) always holds before Anderson and Hinkkanen disproved this
by giving concrete examples of a family of affine mappings of some parallelograms (see
[AH]). Later, a necessary condition fa€ (k) = K*(h) was obtained independently by Wu
[Wu] and Yang [Y2]. We say: is induced by affine mappings if it is the restrictiond®

of a map of the formp; o fx o ¢;%, where fx (x +iy) = x + iKy, while ¢1 and¢, are
conformal mappings from a rectangle + iy;0 < x < 4,0 < y < b} and its image

{u +iv;0 < u < a,0 < v < Kb} under fx onto D, respectively. Then the necessary
condition forK (h) = K*(h) obtained by Wu [Wu] and Yang [Y2] can be stated as follows.

THEOREMA ([Wu], [Y2]). Leth : 3D — 3D bea quasisymmetric homeomorphism.
If K (h) = K*(h), then either & isinduced by an affine mapping or H (k) = K*(h).

In their papers [Wu] and [Y2], Wu and Yang also asked whether the converse of Theorem
A was true. Recently, the author [S2] proveatithere exists a family of quasisymmetric
homeomorphisma such thatk (k) < K*(h) = H (h), which gives a negative answer to the
guestion. So the necessary condition in Theorem A is not sufficier {6y = K*(h).
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ExamMPLE 1 ([S2]). Forconvenience sake we use the upper half gptaae{z ; Imz >
0} instead of the unit dislD. For anyK > 1, we consider the quasisymmetric homeomor-
phism# of Strebel (see [St1], [St2]), namely, = hx : d0H — 9H that is defined to be
h(x) =x forx <0andh(x) = Kx forx > 0. Itis easily computed from [St1] that

H(h)=K* (h)_1+2—Iog K+ — IogK,/1+—Iog K.

f(Z) — Klfl/rrargzz .
Then f is an extremal mapping i@ (k). It was calculated in [S2] that
K (h) = sufd A(Kp)/A(p) ; p > O},

where A(p) is the conformal module of the quadrilater@l with domainH and vertices
0o, —1, 0 andp. It was also proved there that, whé&nis large,

In fact, let

1 1 5
K(h) <1+ —logK + —log"K .
b4 4

Another approach due to Reich [Re] and developed in [CC] gave a necessary and suffi-
cient condition forK (k) = K*(h). Recall that for any pair of disjoint nondegenerate continua
A andB in C, there exists a unique real-valued function g, which is continuous irC and
harmonic inC — A U B, with constant values 0 and 1 it and B, respectively, such that
mMod(A, B; C) = Dclu pl. HereDg[u] denotes the Dirichlet integral

Dg[u]=// |W|2=2/ (uz 2 + luzPdxdy
2 2

In what follows, we will abbreviat® p[u] to D[u] for simplicity. WhenA, B C 9D,

(2.4) ua|D = %(QSA,B +da.B) .
whereg,4 g is the conformal mapping ab onto

Rap={w=u+iv; O<u<1,0<v<modA, B; D)}.
Note that for any paif, B C 3D,

mod(A B; D) = / |¢A Bl MA,B]~

For the relations between moduli and harmonic functions, we refer the reader to Gerhing [Ge]
or Ahlfors [Ah, Chapter 4].
Under the above notation, we have

THEOREM B ([Re], [CC]). Leth : 3D — 9D bea quasisymmetric homeomor phism.
Then K (h) = K*(h) if and only if Q(h) contains an extremal mapping whose complex di-
latation p satisfies

Re [/, n(2)¢'5 p(2)dxdy

(2.5) sup : = [l 1tlloo -
ascap  [fp 184 p(2)ldxdy *




CONFORMAL INVARIANTS OF QED DOMAINS 449

Now, let D denote the set of all real-valued functiansvhich are harmonic irD with
finite Dirichlet integral. We also denote b4D the set of all functiong holomorphic inD
with finite Dirichlet integral. For any € D, let P(u o h) denote the Poission integral o6 /.
We define

D[P h
(2.6) Ki(h) = sup DIPua.p o]
A.Bcap  Dlua sl
Noting that for all pairsA, B C dD, u4_ g is the unique harmonic function with the minimal
Dirichlet integral among all harmonic functions on the di3kwith boundary values 0 and 1
on A and B, respectively, we conclude that

mod(h~*(A), h~X(B); D) = Dluj-1.4) 4-1(3)] < DIP(ua.p o h)].
so it follows thatk (k) = K (h~1) < K1(h). We also define

D[P (1o h)]
2.7 Ko(h) = useug D] .
Note that the constarki, (k) (more precisely, maX»(h), K»(h~1))) was already introduced
by Beurling and Ahlfors in their famous papg®A] and has been much investigated recently
(see [KP], [NS], [P1-P5], [S1-S4]). In particular, it was pointed by the author [S4] that
K2(h) = Ko(h™1) for all quasisymmetric homeomorphistswhich implies that Schober’s
domain functionals are actually curve functionals (for more details, see [Sc], P. 379). Clearly,
K1(h) < Kz(h). On the other hand, by the quasi-invariance property of the Dirichlet inte-
gral under quasiconformal mappings, it holds tka{z) < K*(h). Consequently, for any
guasisymmetric homeomorphigmit holds that

K(h) < K1(h) < Ka2(h) < K*(h).
To determine wheiK2(h) = K*(h), the author proved

THEOREM C [S1]. Leth : dD — dD be a quasisymmetric homeomorphism. Then
K2(h) = K*(h) if and only if Q(h) contains an extremal quasiconformal mapping whose
Beltrami differential n satisfies

Ref/, ()¢ *(2)dxdy _

(2.8)
pedD  [fp18"%(2)|dxdy

ll14lloo -

REMARK. Here it should be appropriate to point out a result of Shiga and Tanigawa.
After the paper [S2] was published, the paper [ST] by Shiga and Tanigawa was called to the
author’s attention. In their paper, among other things, Shiga and Tanigawa proved that there
exists a quasisymmetric homeomorphignsuch thatd (k) = K*(h), and that the relation
(2.8) and consequently the relation (2.5) do not hold for any extremal quasiconformal mapping
in Q(h), which implies thatk () < K*(h) by Theorem B. Therefore, this has already given
an example: for which H(h) = K*(h) but K(h) < K*(h). However, this example was
abstractly constructed and somewhat complicated (but has some further properties). Note that
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for this construction K2(h) < K*(h) by Theorem C, while for Strebel’s quasisymmetric
homeomorphisnh in Example 1, it holds thak2(h) = K*(h) (see [S2]).

Now we prove the following

THEOREM 1. Leth : 3D — 9D be a quasisymmetric homeomorphism. Then the
following hold.

(1) Ki1(h) = K*(h) if and only if Q(h) contains an extremal mapping whose complex
dilatation u satisfies the relation (2.5).

(2) If, in addition, K1(h) is attained by a pair of digoint nondegenerate continua in
D, then K1(h) = K*(h) if and only if & isinduced by an affine mapping.

PROOF. (1) SinceK (h) < K1(h) < K*(h), the if part follows directly from Theorem
B.

Now supposek1(h) = K*(h). Then there exists a sequence of pairs of disjoint nonde-
generate continua, andB,, in 3 D such that

. D[P h
(2.9) lim 20,8, 0 1]
n—>oo  Dlua, p,]

Set¢, = ¢a,.B, Un = A, B, Then

(2.10 Dlua,, B,] = //D |¢;,2|o

For any extremal quasiconformal mappifigs Q(h),

— K*(h).

1 -
(upo f); = §(¢;(f(z))fz + &, (f () f2),
1 -
(upo [z = §(¢,§(f(1))fz + &, (f () f2)-
So we have

Dluy o f]= 2//D(|(un o Fel? + [(un o f)zDdxdy
(2.11) = / /D<<|fz|2 F1£1P)10L2(f ()] + 2Rep. 2 (f (2)) f- f)dxdy

1 2\1 47 2 _ 2
_ [[ GxblieliozRen?,,,
D 1—vf2

wherev is the Beltrami differential off = 1. SinceD[u, o f]> D[P (u, o h)], we obtain
from (2.9) through (2.11)

. 1 2)1¢/%| — 2Revep’ ?
i // A+ P, i // 16,2 dudv = K*(h)
n—oQ D 1_|V|2 D

which implies

Re /[, v(=¢, 2 dudv

(2.12)
n>oo  [f ¢ 2|dudv

= [[Vlloo -
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Now, for a pair of disjoint nondegenerate continiand B in 9 D, we denote byl and
B the closure of the complementary componentd of B ondD. Then

l
2.1 ir=1l4 ———— .
(2.13) 935 =1F moqa B D)
Consequently, (2.12) and (2.13) imply
Re ([, vp'% - dudv
(2.14) lim o ¥¥'3,.5, = [V]loo -

2
n— 00 ffD |¢/A,,,1§,,|dudv

The if part of Theorem B then implie& (h—1) = K*(h~1) and consequentli (k) = K*(h).
By the only if part of Theorem B, we get the required conclusion.
(2) It suffices to prove that iK1(k) is attained by a pair of disjoint nondegenerate
continua, say andB, and thatk; (k) = K*(h), thenh is induced by an affine mapping.
Indeed, we can deduce from the above proof (see (2.14)) that

Re[[, v¢'% zdudv

[Ip 1'% ldudv

2
AB’

= |IVlloo-
This forces that = ||v||oo|qb/% 31/9' which implies that:~! and consequently thatis
induced by an affine mapping.

REMARK. As stated above, for a general quasisymmetric homeomorphisninolds
that

(2.15 K(h) < K1(h) < K2(h) < K*(h).

By Theorem C, it is known that there exists a large class of quasisymmetric homeomorphisms
h such that the strict inequaliti{2(k) < K*(h) holds. On the other hand, Theorem 4 in
the next section implies that the strict inequalkyk) < K1(h) holds for all sewing map-
pingsh of pairs of complementary asymptotically conformal extension domains other than
disks. Now we point out that the strict inequaliky (z) < K2(k) also holds for the Strebel’s
guasymmetric homeomorphisimin Example 1. Indeed, examining the proof in [S2], it is
found thatkK (k) is attained by a pair of disjoint nondegenerate continua, which implies, by
Theorem B, Theorem 1, Proposition 1 and Theorem 3 in the next section, that the strict in-
equalityK (h) < K1(h) < K2(h)(= K*(h)) holds for allK . It seems that the strict inequality
K(h) < K1(h) < K2(h) < K*(h) also holds for a single quasisymmetric homeomorphism
h, but no example is known to this author.

3. The BQED constant M,(£2). Let £2 be a QED domain in the extended complex
planeC. Recall thatiy = f2 o fl‘1|8D is the sewing mapping of the domaifsand2*.
In this section, we will prove some properties of the quantity(£2) and some relations of
M, (£2) to the constants associateditg introduced in Section 2.

First we note

PROPOSITION 1. R(£2) = K*(hg) and K (he) +1 < My(22) < K1(hh) + 1.
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PROOF. Since there is a one to one correspondence between quasiconformal extensions
of hg and quasiconformal reflections #2, it follows easily thatR(£2) = K*(hg). In fact,
if f is a quasiconformal reflection i, thenJ o fo0 f o ffl € Q(hg), whereJ is the
conformal reflection ird D defined as/ (z) = 1/z.

Now, for any pair of disjoint nondegenerate contiriandB in 92,

mod A, B; C) > mod A, B; 2) + mod(A, B; 2%).

So we obtain
mod(A, B; C) -1 mod(A, B; 2%) 1 mod( f2(A), f2(B); D¥)
modA, B; £2) — mod(A, B; 2) mod(f1(A), fi(B); D)

modhg o f1(A), he o fi(B); D)
mod(f1(A), f1(B); D) ’
fromwhichK (ho) + 1 < M, (£2) follows.
On the other hand, by the uniqueness of harmonic functions,

=1+

mod(A,B;C):// |Vua pl?
C

- // IV ey 0 D2+ / / V(P gy, pucs) 0 hgD) o J o f2)]2
2 2%

= Dlupya). 18)] + DIP W pya). 8y © higH].

So it follows that
modA, B; C) B mod(A, B; C) _ mod(A, B; C)
mod(A, B; 2)  mod(fi(A), fi(B); D)  Dluyy(a), fu(5)]

DIP(ufya), f1(8) © higH)]

Dlu gy, 1)1

(3.2)
<1+

)

which impliesM, (£2) < K1(h ') + 1 as required.
Now we can prove

THEOREM 2. Let £2 be a QED domain in the extended complex plane. Then the fol-
lowing hold.

(1) Mp(2) = R(£2) + 1if and only if Q(hg) contains an extremal mapping whose
complex dilatation n satisfies therelation (2.5).

(2) If, in addition, M, ($2) is attained by a pair of disoint nondegenerate continua in
082, then M,(£2) = R(£2) + Llif and only if A isinduced by an affine mapping.

PrROOF. (1) The assertion follows directly from Theorem B, Theorem 1 and Proposi-
tion 1.

(2) We only need to prove that#,(£2) is attained by a pair of disjoint nondegenerate
continua, sayd and B, thenM;(£2) = R(£2) + 1 implies thath; is induced by an affine
mapping.
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By (3.1) we have

mod4, B;C) _,  DIPunw.am © hgHl
mod(A, B; 2) ~ Dlu g4y, (B}

<1+ Kihgh) <1+ K*(hgh) =14 R(2) = Mp(£2),

Mb(g) =

which implies thatk1(h ") is attained by the paifi(A) and f1(B) and thatkq(hg') =
K*(h;zl). We conclude by Theorem 1(2) twagl and consequently; are induced by affine
mappings.

An immediate consequence of Theorems B, 1 and 2, and Proposition 1 is the following

COROLLARY 1. Let 2 be a QED domain in the extended complex plane. Then the
following conditions are all equivalent:

(1) Mp(2) = R(2) + 1.

(2 K(hg)=K*(ho).

(3 Ki(hg) = K*(he).

(4) Q(hg) contains an extremal mapping whose complex dilatation p satisfies the
relation (2.5).

Forn > 1, letA, and B, be a pair of disjoint nondegenerate continugisuch thata,,
and B, converge in the Hausdorff metric to contindeand B, respectively. We sayA,,, B;)
is degenerate if the paid, B) is degenerate. Now, for any pair of disjoint nondegererate con-
tinuaA andB in dD joined byz1, z2 andzs, z4, respectively, by the well-known Christoffel-
Schwarz formula, we have

N ¢/i,3

[p 1974 51
o (z1 — z2)(z3 — z4) /// |(z1 — z2)(z3 — z4)|
-2 —22)(z —23)(z — 24) plz—z21)(z —22)(z —23)(z — z4)|
So, if (A,, B,) is degenerate, thew 4, ,) is degenerate in the sense tifat, g, — 0 locally
uniformly in D.

The following corollary is an immediate consequence of Theorems A, B and 2. Here, by
the extremal quasiconformal mapping theory, we give a simple proof using our Theorem 2.

VaA,B

COROLLARY 2. Let £2 bea QED domain in the extended complex plane. If M, (§2) =
R(£2) + 1,then either hy, isinduced by an affine mapping or H (hg) = K*(hg).

PROOF. Let Mp(£2) = R(£2) + 1. If M,(£2) is attained by a pair of disjoint nonde-
generate continua ifs2, then the second part of Theorem 2 implies thatis induced by
an affine mapping. Otherwise, we conclude by Theorem 2(1) that there exists a degenerate
sequencéA,, B,) of pairs of disjoint nondegenerate continua@ib such that

n— oo

(3.2) lim Re// w¥a,. B, = llitlloo s
D
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whereu is the Beltrami differential of an extremal mapping i%g). Since(A,, By) is
degeneratgy4,.5,) is degenerate. By the theory of extremal quasiconformal mappings (see
Strebel [St3]), we can conclude from (3.2) thath,) = K*(hg).

REMARK. Let £2 be a QED domain in the extended complex planeHlfh;) <
K*(hg), andhg is not induced by an affine mapping, théf,(2) < R(£2) + 1. So, if
h is a Strebel point which is not induced by an affine mapping, tg2,) < R($2;) + 1.
Consequently, by the density of Strebel poihig][ we conclude that there exists a large class
of domains for whichM,(£2) < R(£2) + 1. On the other hand, Example 1 shows that there
still exists a domain2 for which H(hp) = K*(hg), but Mp(2) < R(£2) + 1. So the
converse of Corollary 2 is not ture.

In the rest of the section, we give some relations betwdg(s2) and K (h). When
hg is induced by an affine mapping, it holds the},(2) = K (hge) + 1. The following
theorem claims that the converse is tru&ifz ;) is in addition attained by a pair of disjoint
nondegenerate continua.

THEOREM 3. Let £2 be a QED domain in the extended complex plane. If A and B is
a pair of disjoint nondegenerate continua in 8 D which attains the supremumin (2.3), that is,
K (hg) = modhgo(A), ho(B); D)/mod A, B; D), then My (2) = K (hg) + 1ifandonly if
hg isinduced by an affine mapping.

PrROOF. It suffices to prove that iM,(£2) = K(hg) + 1, thenhg is induced by an
affine mapping. For simplicity, we sét; = A.
Since we obtain
mod(f; *(A), f{ '(B); C)
mod(f; *(A). f; 1(B): )
mod(f; X(A), £ 1(B); 2) + mod(f; 1(A), £, X(B); 2%)

mod(f; }(A), fH(B); 2)

_ . Modh(A), h(B); D) _
=l D S LK,

1+ K(h) = Mp($2) >

it follows that
mod(f; }(A), f{ 1(B); C)

Mp(£2) = .
’ mod(f; X(A), f; X(B): 2)

Consequently, we obtain

-1 -1 . _ 2
modt £ £ 0) = [ [ 1930 3

- //g Vit v+ //g Vs

_ —-1,2 —-1,,2
_//DW(”.f"fl(A).,ffl(B)Ofl )| +//D*|v(”fl‘1(A).,ff1(B)of2 )|
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> // IVMA,BIZ-i-// IVMh(A),h(B)l2
D D*

= mod(A, B; D) + modh(A), h(B); D)
= (1+ K (h))ModA, B; D) = My($2)mod f; *(A), f{ *(B): 22)
= mod(f; (4). f{ 1(B): C).
Then
Uy iy © F1 T = UAB
Ui, i © T2 = W ) -

Noting thatu ;-1 is continuous irC, we conclude that 4y 4y © f2 = ua.p o f1
J1

onds2 and so

A 7B

Un(A),h(gyoh =uap.
Thus
Re(@nay.np) oh —dap) =0.
B:y the mapping properties @, 4)..(p) andea, g, it follows that forw = u +iv € ba.B(AU
B),
3.3) Phiayn(s) ©ho ¢y (w) = frmw) =u+iK(h)v,

where, as befored andB are the closure of the complementary componentsof3 ondD.
On the other hand, since
modh(A), h(B); D) mod(A, B; D)
mod(A, B; D)  modh(A), h(B); D)
_ modh~toh(A),h"t o h(B): D)
- mod(i(A), h(B); D)
repeating the above reasoning, we obtainfos ¢h(A),h(1§)(h(A)’ h(B)),

K(h) =

(3.4) $ipoh tod b W = franw) = fraw).

Noting that
i

=14
Z¥: + mod(A, B: D)

oA,

l
e — ,
Oncindy = 1 i mod AL B Dy PHAr®)

a direct computation from (3.4) yields far € ¢4 (A U B),
(3.5) ¢h(A),h(B) oho qb;lB(w) = fK(h)(w) =u+iK(hv.

Consequently, (3.3) and (3.5) imply that = 4 is induced by an affine mapping.
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Now we give an application of Theorem 3 to asymptotically conformal extension do-
mains. As will be seen in Theorem 4, we have a rather satisfactory description of these various
invariants in this case. Before observing this, we establish some preliminary results.

We first prove

LEMMA 1. Leth : dD — 9D bea quasisymmetric homeomorphism. If (A,, B,) isa
degenerate sequence of pairs of digoint nondegenerate continua in d D, then

D[P h
Iimsup—[ (W, b, 0 )] < H(h).
n—00 D[MA”,B,,]

PROOF. Since(A,, B,) is degenerateys, 5, = ¢’in’3n/ffD |¢’%H’Bn| — 0 locally

uniformly in D.
For anye > 0, choose some quasiconformal mappifige Q(4) and some compact
subsett of D suchthatk[ f|D — E] < H(h) + ¢. Then, by (2.11),

Dluy o f] = / /D((Ilez F AP 5 (F@)] +2R&Y% 5 (F() . f)dxdy

< f fD(|fz| FILEDAY o (f()ldxdy

AR
= R d d
//D [ fz] — | fz] ! |¢A,,,B,,| udv

< K[f] // 164, 5, |dudv + (H(h) + &) // 164, 5, ldudv.
FE) D—f(E)

Hence we obtain
D[P(ua,,B, oh)l - Dlua,.B, o f1

Dlua,,s,] ~  Dlua,,s,]
_HW ) [[y s 165,51+ KU1y 105, 5,
B [Ip 1455,

< H(h)+ ¢+ K[f] // a5, | — H() +e.
()

Sinceg is arbitrary, it follows that

lim sup—D[P(uA”’B” okl <H().
n— 00 D[MA,,.,B,,]
Some immediate consequences of Lemma 1 are the following propositions. The first one
was the main result proved by Wu [Wu, Theorem 1] and implicit in Yang [Y2], and it was
used to derive their necessary condition Theorem A. Both discussions in [Wu] and [Y2] are

somewhat complicated.

PROPOSITION 2 ([Wu], [Y2]). Leth : 9D — 9D be a quasisymmetric homeomor-
phism. Then either there exists a pair of digjoint nondegenerate continua A and B in d D such
that K (h) = modh(A), h(B); D)/mod(A, B; D) or K(h) < H(h).
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ProOOF. Forn > 1, letA, andB, be a pair of disjoint nondegenerate continuaddh
such that

(3.6) K(h) = lim 1Od#(An), h(B.): D)
n—>oo  MOWUA,, By; D)
and thatA,, andB,, converge in the Hausdorff metric to contindaand B, respectively.
If A andB is a pair of disjoint nondegenerate continua, by the continuity of moduli, it
follows from (3.6) thatk () = modh(A), h(B); D)/mod A, B; D).
If (A,, B,) is degenerate, by Lemma 1 we get
(3.7 lim supD[P(MA"’B” °h )]
n—00 D[“An,Bn]
On the other hand, since
MOd(2(An). h(Bn): D) _ DIP(ua,.5, 0h™ )]
mod(A,, By; D) Dlua,,s,]
it follows from (3.6) and (3.7) thakK () < H (h).

<HWYH=HM0.

)

PROPOSITION 3. Let 2 bea QED domain in the extended complex plane. Then either
there exists a pair of digoint nondegenerate continua A an B in 952 such that M,(£22) =
Mod(A, B; C)/mod(A, B; 2) or My($2) < H(hg) + 1.

PrRoOOF. Forn > 1, letA, andB, be a pair of disjoint nondegenerate continuaddh
such that

. modA,, B,; C

(3.8) My(£2) = lim W
and that4,, andB, converge in the Hausdorff metric to contindaand B, respectively.

If (A,, B,) is nondegenerate, it follows from the continuity of moduli that
mod(A, B; C)
mod(A, B; 2)

Now we suppose that,,, B,) is degenerate. Theif1(A,), f1(By)) is also degenerate.
So Lemma 1 implies that

My ($2) =

D[P - hot
3.9 lim sup [P (u i (An), f1(B) © N 0)]
n—o0 Dlu 1A, (B
On the other hand, by (3.1) we have

Mod(A,, Ba; C) _ 1 DIP(ufy(a,). u(B) © Mg
modA,, By; 2) ~ Dlufyan, Aol
It then follows from (3.8), (3.9) and (3.10) that,(2) < H(hg) + 1.

< H(hg).

(3.10)

PROPOSITION 4. Let h : 9D — 9D be a quasisymmetric homeomorphism. Then
either there existsa pair of digoint nondegenerate continua A and B in d D suchthat K1(h) =
D[P(ua.p oh)]/Dlua plor Ki(h) < H(h).
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PrROOF. Forn > 1, letA, andB, be a pair of disjoint nondegenerate continuaddn
such that
D[P(ua,,B, oh)l
Dlua,,s,]
and thatA,, and B, converge in the Hausdorff metric to contindaand B, respectively.

If A and B is a pair of disjoint nondegenerate continua, by the continuity of moduli,
mod(A,, B,; D) — mod A, B; D), thatis,D[u,,, p,] = Dlua,gl. SO we obtain

(3.11) Ki(h) = lim_

lim Dlua, p, —ua,pl= n”_)moo Dlua,.B,] —Dlua,pl =0.

n—oo
Since
D[P ((ua, B, —ua,B)oh)] < K*(h)Dlua, s, —ua,pl.

we obtainD[P((ua,.B, — ua.g) o h)] — 0, which implies thatD[P(ua, 5, o h)] —
DI[P(ua p o h)]. Consequently, by (3.11) we obtalfy (h) = D[P (ua,p o h)1/Dlua, gl
If (A,, B,) is degenerate, by Lemma 1 and (3.11) wekjeth) < H (h).

For completeness, we recall the following analogous result for the quéfitity) proved
by the author [S4].

PROPOSITION 5[S4]. Leth : 9D — 9D be aquasisymmetric homeomorphism. Then
either there exists an element D such thatk>(h) = D[P (u o h)]/D[u] or K2(h) < H(h).

Recall that a Jordan domai® is an asymptotically conformal extension domain if the
conformal mappingfl‘l : D — £ has a quasiconformal extension to a neighborhoob of
whose complex dilatatiop satisfies|u(z)| — 0 as|z| — 1+. Itis known from Gardiner-
Sullivan [GS] that?2 is an asymptotically conformal extension domain if and on§ i ;) =
1, namely i is symmetric. Note that for an asymptotically conformal extension dofain
hg can not be induced by affine mappings uniesis a disk.

By means of Corollary 1, Theorem 3 and Propositions 1 through 5, we obtain

THEOREM 4. Let £2 be an asymptotically conformal extension domain. Then all the
supremumsin (1.4), (2.3), (2.6) and (2.7) can be attained. Namely, the following hold.

(1) Thereexistsa pair of digoint nondegenerate continua A1 and Bj in d D such that
K(hg) = modhe (A1), he(B1); D)/mod A1, B1; D).

(2) Thereexists a pair of digoint nondegenerate continua A and Bz in 952 such that
Mp($2) = mod(Az, B2; C)/mod( Az, Bz; £2).

(3) Thereexistsa pair of digoint nondegenerate continua Az and B3z in 9 D such that
Ki(he) = D[P(uay By 0 he)]/Dluag, syl

(4) Thereexistsanelement u € D suchthat Ko(hp) = Dp[P(uo hg)]/Dplu].

Furthermore, K (hgo) < Mp(2) —1 < K1(hg) < K*(hg) = R(£2) unless 2 isadisk.

REMARK. As stated in Section 1, Wu and Yang [WY, Theorem 2.3] proved that
Mp(2) < R(£2) + 1 for all asymptotically conformal extension domains other than disks.
On the other hand, Wu [Wu, Theorem 4] and Yang [Y2, Corollary 2.6] proved independently
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thatK (hgo) < K*(hg) for all asymptotically conformal extension domains other than disks.
Theorem 4 implies the stronger result tiath ;) < M, (2)—1 < K*(hg) for such domains.

4. TheQED constant M(£2). In this section, we will prove, among other things, that
M(£2) < R(£2)+ 1 for all asymptotically conformal extension domains other than disks. Re-
call that for a pair of disjoint nondegenerate compact subsets (which need not be conAected)
and B of the extended complex plane, we may define (dod3; C) as before. Furthermore,
there still exists a real-valued functian_g, which is continuous it€, harmonic inC— AUB,
with constant values 0 and 1 inand B, respectively, such that mod, B; C) = Dclua gl

First we note the following

THEOREM 5. Let 22 be a QED domain in the extended complex plane. If M(£2) is
attained by a pair of digjoint nondegenerate continua A and B in £2, then M(2) = R(£2)+1
if and only if 2, isinduced by an affine mapping.

PROOF. We need to prove that i/ (£2) = R(£2) + 1, thenhg, is induced by an affine
mapping. As done in [Y3], leff : C — C be a quasiconformal mapping such thais
conformal froms2 onto D and isR(§2)-quasiconformal inf2*. SetA’ = f(A), B’ = f(B)
andg = f~1. By the uniqueness of harmonic functions, it follows that

mod(A, B; C) <modAU go J(A"), BUgo J(B'); C)
= //C |VMAUgoJ(A’),BUgoJ(B’)|2 < //C IV(arugary,Bus B © HI?

< / / IV (uarvsan.surey)l? + R($2) / / IV Wavsan.sursy)l?
D D*
= (1+ R(2))modA’, B'; D) = (14 R(£22))mod(A, B; 2).

(4.1)

Since modA, B; C) = (1+ R(£2))modA, B; §2), it follows from (4.1) thatA = A U
goJ(A"), B=BUgo J(B'). SoA andB must lie on the boundar§s2. We conclude by
Theorem 2(2) thak; is induced by an affine mapping.

Now we can state the main result of this section.

THEOREM 6. Let £2 be an asymptotically conformal extension domain. Then there
exists a pair of disoint nondegenerate continua A and B in £ such that M(2) =
mod(A, B; C)/ mod A, B; £2). Furthermore, M (§2) < R(£2) + 1unless £2 isadisk.

As stated in Introduction, Yang [Y4] proved Theorem 6 in the case whéna smooth
domain and asked whether it still holds whénis a general asymptotically conformal ex-
tension domain. Our Theorem 6 gives this dfiriafative answer, showing that the conjecture
M($2) = R(£2) + 1 by Garnett and Yang [GY] is not true for all asymptotically conformal
extension domains other than disks.

Theorem 6 is an immediate consequence of Theorem 5 and the following Theorem 7, a
generalization of Theorem 6. The proof of Theorem 7 relies on some well-known facts which
may be stated as follows. For apy> 0, let A(p) denote, as before, the conformal module
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of the quadrilaterap with domain the upper half plarté and verticeso, —1, 0 andp. Itis
well-known (see [BA]) thatA(p) A(p~1) = 1. Furthermore, whep > 1,

4.2) A(p) =1+46(p)logp,

wheref(p) increases monotonically frod(1) = 0.2284 to6(c0) = 1/m = 0.3183. Now,
for a ring domaingr, its conformal moduleV (R) is defined asV(R) = log(rz/r1), if R is
mapped conformally ont¢é1 < |z| < rp}. In particular, for the Teichmiiller ring domain
R(p) bounded by the segmefpt1,0] and by the ray{z = x; p < x < oo}, we have
M (R(p)) = m A(p). On the other hand, for a ring domakhwith complementay components
A andB, we have mo4, B; C) = 2n /M (R).

Now we prove

THEOREM 7. Let 2 be a QED domain in the extended complex plane. Then either
there exists a pair of digoint nondegenerate continua A an B in £2 such that M(2) =
mod(A, B; C)/mod A, B; 2) or M(2) < 2H (hg).

PROOF Forn > 1, letA, and B, be a pair of disjoint nondegenerate continuas®n
such that

. modA,, B,;C
(4.3) M(2) = lim modAy, Bn; C)
n—>00 MO A, B,; §2)
and that4,, and B, converge in the Hausdorff metric to contindeand B, respectively.
If (A,, B,) is not degenerate, then by the continuity of moduli, it follows from (4.3) that

mod(A, B; C)

M) = mod(A, B; 2)

Now we suppose thatd,,, B,) is degenerate. Then, as in [Y3], there are the following
five possibilities, depending on the sizes and relative positiodsarfd B:

(1) Aisasingle pointB is a nondegenerate continua atd) B = ¢.

(2) A, B both are single points andlnN B = ¢.

(3) Aisasingle pointB is nondegenerate amtinN B # .

(4) A, B both are single points ardiN B # @.

(5) A, B both are nondegenerate aAd) B # (.

In all these cases, we will show tha€(£2) < 2H (hp). We adapt the strategy used in
[Y3] (see also [WY], [Y4]). For simplicity, we also sé{ = H (hg).

In what follows, D(zo, ) will denote the disk with centerg and radius- > 0, D, =
D(0, r). For anyes > 0, there exist & > 1 and a quasiconformal mappiggrom Dg onto a
Jordan domaim’ such thatk [¢] < H +¢, andg is conformal fromD onto$2. Setf = g1,
Al, = f(A,) andB, = f(By), whereA, andB, are as in (4.3).

Case (1) Since

1
mod (A, By; 2) = modA),, B,; D) > Emod(AL,, B);C),
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we have

mod(4,, B,; C) < mod(4,, B,; C)
mod(A,, By; 2) — modAl, B,;C) "

n’

(4.4)

Now we show

. mMod(A,, B,; C)
4.5 imsup————M= < H .
(45) P hod AL, B C) ~ ¢

n’

Chooseay,, b, € A, andc,, d, € B, such that

(4.6) |by — cnl = d(An, By), lay — byl = max|z — byl, |cp —dn| = mMax|c, —z|.
z€A ZEB,

Using the basic properties of the modulus, we obtain

2 2

4.7 Al B);C)= —= > ,
@D modd,. B C) = 4 E T U T AL @, ). fen). T@)]
(48) modAn’ By; C) = = 2 < 2n s

MC— A, UB,) ~— log(lb, — cul/|bp — anl)
where

|z4 — z1llz3 — 22|
[z1.22,23, 24] = ————.
|z4 — z3l|z2 — z1|

Noting thatA(p) ~ (1/7)logp asp — oo, we obtain aa — oo

mod(A,, B; C) < w ALf(an), f(byn), f(cn), f(dn)] N log(1/| f(by) — f(an)))

49
4 oda,. B C) = 10g(bn — cul/ by — an]) l09(L/ [br — an])

Now, sincef is H + e-quasiconformal inf2’, by the Hdélder continuity of quasiconformal
mappings,f is Holder continuous if2’ with Holder index ¥(H + ¢) and a coefficient de-
pending only on2” and f. We deduce from (4.9) that

mod(A,, B,; C) <

————— < H+e¢
mod(A,,, B,; C) —

asn — oo, which yields (4.5). By the arbitrarinessafwe get from (4.4), (4.5) tha/ (£2) <
2H.

Case (2) This case can be treated similarly as in Case 1. In this case, to establish (4.5),
we need the following égnates instead of (4.8):

2

modA,,B,;C) = ——————
d " " ) M(C_AnUBn)

(4.10) .

< .
- lOg(|bn - Cn|/(2|bn —apl)) + |Og(|bn - Cn|/(2|dn —cul))
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So
mod(A,, By; C) < T ALf(an), f(bn), f(cn), f(dn)]
mOCKA;17 B,/,; C) 7 log(lb, — cul/(2lby — anl)) +109(1b, — cul/2ldy — cal))
(4-11) ~ lOg(1/|f(bn) - f(an)D + IOQ(l/lf(dn) - f(Cn)D
log(1/1bn — anl) +109(1/|dn — cal)
— H+¢.
Case (3) Chooser,, b, € A} andc), d, € B, such that

(4.12)  |b, —c,| =d(A,, B)), l|a, —b,| =max|z —b,l|, |c, —d,| =max|c, —z|.
Z€A], z€B;
We divide our argument into two subcases:
Subcase 3.1 There exists some constatsuch thata;,, b),, ¢, d,]1 < po.
In this case, we have
2r 2 2
- > > .
M(C— A, UB)) ~ Alay, by, c,,d,] — A(po)
Since the quasiconformal mappigg D — 2’ can be extended to a quasiconformal map-
ping G on the whole plane, by the quasi-invariance property of modulus under quasiconformal
mappings (see [Va]), we get

mod(A),, B; C) =

1 A <
(4.13) mod(A,, B,; C) > mmo‘“"’ By C) = K[G]A(po)

Now, chooseS > 0 such thatd), c D(b,,8) C D for largen. Noting that for each
curvey € I'(Ay, By; C), eithery € I'(A,, B,; £2') or y contains a subarc which joins
g(@D(b),, b, —ay))) andg(dD(b),, §)), and thaly is H + e-quasiconformal irDg, we obtain
(see [Va])

_ o 2n(H + ¢)
(4.19 mod A,, B,; C) < modA,, B,; 2') + 096/ b, —ar])
It follows from (4.13) and (4.14) that
< mOCKAn’ By; Q/) . mOCKAn’ B,;C) —2n(H + g)/ Iog(8/|b,’1 - a;,|)
~ modA,, B,;C) mod(A,, B,; C)
_ 7(H 4 ¢)K[G]A(po)
log(8/1b;, — aj,1)

-1,

which implies
A, By;
(415) mod ns ns C) s
modA,,, B,; £2/)
Now it follows that

mod(A,, B,: 2') < (H + e)mod(A},, B,: Dg) < 2(H + ¢)mod(A,, B,; £2),

which together with (4.15) implies that
Mod(A,, B,; C) mMod(A,, By; C)

— < 2(H _— 2(H ,
mod(A,, B,; 2) ( +8)modAn’Bn;~Q/) — AHte)
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and henceé (£2) < 2H as required.
Subcase 3.2 limsup_, . la,, b, c,,d,] = oo.

n’>-n’Tn’n

Without loss of generality, we may assume that,lim,[a’,, b/, ¢/, d’] = oo. Then it

n’>-n’Tn’n

follows that
2 2
mod A/, B,; C) = —— a > )
M(C— A, UB)) ~ Ala,, by, cp,d;]
and
2
mod(A,, By;C) = ———
M(C - An U Bn)
21 2n(H +¢)

= M(g({lb, — ay| < |z = byl < |b;, — c,1}) = log(|b;, — cpl/1b), — ap))
Consequently, we obtain
Mod(A,, B,; C) - n(H +¢e)Ala),, b, c;,,d]
mod(A4j,, B;; C) — log(lb), — c,1/1b;, — a1
log((1b;, — culldy — a,1)/(Iby, — aylldy — ¢, )
log(1b;, — cpl/1by, — a, )

~ (H+e¢)

— H +¢.

So (4.5) also holds in this subcase, which implies M&t2) < 2H as required.
Case (4) We consider the same two subcases as in Case 3.
Subcase 4.1 There exists some constagtsuch thala,, b, c,, d,] < po.
In this case, the argument in Subcase 3.1 is valid here as well ($) < 2H.
Subcase 4.2 Without loss of generality, we can assume,lim[a,,, b),, c),, d,] = co.
In this case, we need a different approach. Aet B = {wo} andzo = f(wo). First
we suppose thabtg € £2. Then there exists sonde> 0 such thatA,, U B, C D(wo, $) C 2
whenr is large. Sincef is conformal ins2, there exists two constantg > 0 andx, > 0 not

depending om such that
Alwi —wa| < [ f(w1) — f(w2)] < A2lwi — w2

for all wy, wo € A, U B, whenn is large. Therefore, using the discrete form of an equivalent
definition for modulus due to Bagby [Ba, Theorem 5], it is easy to show that, for large

4.16 T it
mod(A,,, B.; C) mod(A,, By,; C)
wherex is a constant depending only aia andi1. Now, sincela),, b, ¢}, d;] — o0, SO
mod(A),, B,; C) — 0, and so mo@4,, B,; C) — 0. It follows from (4.16) that
mod(A,, B,; C)

limsup—————— < 1.
,,_mpmod(Ajl, B;C) ~

This together with (4.4) implies thatf (£2) < 2.
Now we suppose thabg € 952 and so thatg € dD. By definition of modulus, we
may assume, without loss of generality, that b6th A,, andC — B, are connected. Set for
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z2€C—A,UJ(A,)UB,UJ(B)), un =tunusca.euss,) andy, =uz / [[-luz.|. Then
¥, is holomorphic inC — A/, U J(A},) U B, U J(B;,) with ffc_A;w(A;)UB’,iU](B’,!) V] = 1.
Since each oft),, J(A),), B, andJ (B, shrinks tofzo} asn — oo, without loss of generality,
we assume that there exists some functjonvhich is holomorphic inC — {zo} such that
Yn — ¥ locally uniformly in C — {zo}. By Fatou's lemma, we obtaifif - || < 1, which
can happen only ify = 0.

Now, let F : C — C be a quasiconformal extension gfto the whole plane. Since
zo € 9D andA), U J(A,) U B, U J(B,) C Dk for largen. By the uniqueness of harmonic
functions, we have

mod(4,, B,; C) < modA, U go J(A;,)y B,Ugo J(By/,); C)

= // IvuAnUgoJ(A;l),B,lUgoJ(B;l)|2 < // IV (uy 0 F)|?
c c
2 2
(4.17) < //D [V(un)l©+ (H +¢) //DRD [V (1)l
4 KIF] f/ IV () 2
C—Dg

54(// |u,§z|+(H+s)// IuﬁZI+K[F]// |u,§z|).
D D* C—Dg

On the other hand, we see
mMod(A,, B,; 2) = mod A, B,; D)

(4.18) 24///3 2| 24//1)* 2, = Z/fcluﬁzl.

Noting thaty,, — 0 locally uniformly inC — {zo}, from (4.17) and (4.18) we obtain
mod(A,, B,; C)
—§1+H+£+2K[F]// Wl —> 1+ H +¢,
mOCKAnv an Q) C—DR I/In
which implies thatM (£2) < 1+ H < 2H as required.
Case (5) Inthis case, moi,, B,; C) — oo, and so mo@4,,, B,; £2) — oco. Now
mMod(A,, By: C) < mod(A,, B,; £2') + mod(8£2, 02"; C)
< 2(H +¢)mod(A,, B,; £2) + modd£2, 052"; C) ,
which implies that
. mod(A,, B,; C)
limsup———————= < 2(H +¢).
n—)oomeCtAny By; $2) — ( )
It then follows thatM (£2) < 2H.

Now the proof of Theorem 7 is complete.

REMARK. An interesting question is to determine whether the boutidiz,) in Theo-
rem 7 can be replaced bylH (k). If the answer to the questionane affirmative, then there
would be a large class of domaifias for which M (£2) < R(£2) + 1, namely, the domains
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£2 whose associated sewing mappirigs are Strebel points and are not induced by affine
mappings.

Finally, as stated in Section 1, we point out that the question whathéf2) = M ($2)
still remains open, even for asymptotically conformal extension domains. Theorems 4 and 6
may shed some new light on this problem for asymptotically conformal extension domains.
We hope to attack this problem in the near future.
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