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SELECTIONS AND DELETED SYMMETRIC PRODUCTS

By

David Buhagiar and Valentin Gutev

Abstract. We give a very simple example of a connected second

countable space X whose hyperspace ½X �nþ1 of unordered ðnþ 1Þ-
tuples of points has a continuous selection, but ½X �n has none.

This settles an open question posed by Michael Hrušák and Ivan

Martı́nez-Ruiz. The substantial part of the paper sheds some light on

this phenomenon by showing that in the presence of connectedness

this is essentially the only possible example of such spaces.

1. Introduction

All spaces in this paper are Hausdor¤ topological spaces. Let FðX Þ be

the collection of all nonempty closed subsets of a space X . Each subcollection

D �FðX Þ will carry the (relative) Vietoris topology tV , and will be simply called

a hyperspace. The basic tV -neighbourhoods for this topology on D are the sets

hVi ¼ S A D : S �
[

V and S \ V 0q; whenever V A V
n o

;

where V runs over the finite families of open subsets of X . A map f : D! X is

a selection for D if f ðSÞ A S for every S A D; and f is called continuous if it is

continuous with respect to the Vietoris topology on D.

Let nb 1 be an integer. The hyperspace FnðXÞ ¼ fS A FðXÞ : jSja ng
is commonly called the n-fold symmetric product of X , and was studied by

many authors relative to the hyperspace selection problem. In this paper, we

are interested in the hyperspace ½X �n ¼ fS A FðXÞ : jSj ¼ ng, which is known

as the n-fold deleted symmetric product, or the n-fold configuration space. The

Vietoris topology on ½X �n has a very simple description emulating the product
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topology. Namely, a subset W � ½X �n is tV -open if and only if for every S A W

there exists a pairwise disjoint family V ¼ fVx : x A Sg of open subsets of X such

that x A Vx, x A S, and hVi � W. In particular, we have the following alternative

way to express continuity of selections for ½X �n.

Proposition 1.1. A selection s : ½X �n ! X is continuous if and only if for

every S A ½X �n, there exists a pairwise disjoint family V ¼ fVx : x A Sg of open

subsets of X such that x A Vx, x A S, and sðhViÞ � VsðSÞ.

A selection s : F2ðX Þ ! X is usually called a weak selection for X . Such

selections o¤er a natural interface to order-like relations on X by letting x �s y

if sðfx; ygÞ ¼ x [13, Definition 7.1]. The resulting relation �s is both total and

antisymmetric, but not necessarily transitive. The corresponding strict relation

x0s y defined by x �s y and x0 y, plays an important role in describing

continuity of weak selections. Namely, s : F2ðXÞ ! X is continuous i¤ for every

x; y A X with x0s y, there are open sets U ;V � X such that x A U , y A V and

s0s t for every s A U and t A V [7, Theorem 3.1]. Accordingly, continuity of

weak selections is expressed only in terms of the elements of ½X �2. Moreover, each

selection for ½X �2 has a unique extension to a selection for F2ðX Þ. In contrast

to weak selections, it was shown in [9, Proposition 3.10] that there exists a

separable space X which admits a continuous selection for ½X �3 and yet has no

continuous weak selection. Thus, the following question was posed in [9].

Question 1 ([9, Question 4.4]). Does there exist a second countable space X

that admits a continuous selection for ½X �n for some n > 2, but does not admit a

continuous weak selection?

Here is a very simple example. Let T ¼
��

t; sin 1
t

�
A R2 : 0 < ta 1

�
be the

topological sine curve, and X ¼ T [ fð0;G1Þg. Then X is a connected second

countable space which has no continuous weak selection because it has three

noncut points ð0;�1Þ, ð0; 1Þ and ð1; sin 1Þ, see Section 2. However, each triple

S A ½X �3 has a unique point sðSÞ A S \ T with a maximal t-coordinate. It is easy

to see that the so defined selection s : ½X �3 ! X is continuous. Also, one can

easily generalise this example by adding more noncut points to T , see Example

2.5.

The aim of this paper is to show that in the realm of connected spaces this

is essentially the only possible example. Briefly, in Section 2 we show that a

connected space X with a continuous selection for ½X �n for some nb 2, has at
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most n noncut points, whereas the cut points of X form a connected set, Theorem

2.4. In the same section, we also obtain that all cut points of X are strong,

Theorem 2.7. In Section 3, we relate these properties to a class of spaces, called

almost weakly orderable, which are defined by the property that among any three

points of X with two of them being cut, there is one that separates the other

two. The paper culminates in Section 4, where we obtain that a connected space

X has a continuous selection for ½X �n for some nb 2 if and only if it is almost

weakly orderable, see Theorem 4.1. In the presence of local compactness or local

connectedness, this implies the orderability of X , Corollary 4.6. In Section 5,

Theorem 4.1 is applied to obtain several other interesting applications. For

instance, we show that a connected space X is weakly orderable if and only if

½X �n has precisely n continuous selections for some (every) nb 2, Corollary 5.2;

also that ½X �n has a continuous selection if and only if ½X �nþ1 has at least two

continuous selections, Corollaries 5.4 and 5.5.

2. Cut and Noncut Points

For each pair of sets A;Z � X and n A N, we are going to associate the

subset

½A;Z�n ¼ fS A ½A [ Z�n : A � Sg � ½X �n:ð2:1Þ

If A ¼q, then clearly ½A;Z�n ¼ ½Z�n; similarly, ½A;Z�n ¼q whenever jAj > n.

It is well known that the hyperspace FnðXÞ is connected if and only if so

is X [13, Theorem 4.10]. Regarding deleted symmetric products, it was shown by

Kurilić [12, Theorems 5.1 and 5.2] that ½X �n is connected, whenever so is X . For

the reader’s convenience, we give a simple proof of the latter fact (see Theorem

6.1 in the Appendix); the fact itself is crucial to establish the following property

of selections.

Proposition 2.1. Let Z � X be a connected subset, and A � X be disjoint

from Z. If s : ½X �n ! X is a continuous selection for some nb 2, then either

sð½A;Z�nÞ � Z or sð½A;Z�nÞ ¼ fag for some a A A.

Proof. The nontrivial case is when 0 < jAj < na jA [ Zj. In this case, the

collection W ¼ fs�1ðaÞ \ ½A;Z�n : a A Ag is pairwise disjoint and closed because s

is continuous. In fact, each member of W is clopen in ½A;Z�n, which follows from

Proposition 1.1 because A \ Z ¼q. However, by Theorem 6.1 and Proposition

6.3, ½A;Z�n is connected. Thus, either s�1ðaÞ \ ½A;Z�n ¼q for every a A A, or

½A;Z�n � s�1ðaÞ for some a A A. r
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Definition 2.2. A point p A X of a connected space X is cut if Xnfpg is

not connected, and p is noncut if Xnfpg is connected. We set

ctðX Þ ¼ fp A X : p is a cut point of Xg;ð2:2Þ

nctðX Þ ¼ fp A X : p is a noncut point of Xg:ð2:3Þ

If p A ctðXÞ, then Xnfpg is not connected, therefore Xnfpg ¼ U [ V for

some nonempty disjoint open sets. In this case, it will convenient to say that

ðU ;VÞ is a p-cut of X . Evidently, U and V are connected subsets with U \ V ¼
fpg.

In what follows, for a singleton A ¼ fpg and a subset Z � X , we will simply

write ½ p;Z�n instead of ½fpg;Z�n, see (2.1). If a connected space X has a con-

tinuous weak selection s : ½X �2 ! X , then p ¼ sðSÞ A nctðXÞ for some S A ½X �2

if and only if sðTÞ ¼ p for every T A ½X �2 with p A T [11] (see also [5, Cor-

ollary 2.7]). In other terms, we have that p A sð½X �2Þ \ nctðXÞ if and only if

sð½p;X �2Þ ¼ fpg. The property remains valid for continuous selections for ½X �n as

well.

Theorem 2.3. Let X be a connected space and s : ½X �n ! X be a continuous

selection for some nb 2. Then p A sð½X �nÞ \ nctðXÞ if and only if sð½ p;X �nÞ ¼
fpg.

Proof. Let p A sð½X �nÞ \ nctðXÞ. Then s�1ðpÞ \ ½ p;X �n 0q and Xnfpg
is connected. Hence, it follows from Proposition 2.1 that ½ p;X �n � s�1ðpÞ be-

cause ½ p;X �n ¼ ½ p;Xnfpg�n, see (2.1). Conversely, assume to the contrary that

sð½p;X �nÞ ¼ fpg and p A ctðXÞ. Next, set Y ¼ U and Z ¼ V for some p-cut

ðU ;VÞ of X , and take nonempty sets A � U and B � V with S ¼ A [ B A ½X �n.
Since p A Z, there exists T A ½A;Z�n with p A T and, by assumption, sðTÞ ¼ p.

Hence, by Proposition 2.1, sð½A;Z�nÞ � Z because Z is connected. In particular,

sðSÞ ¼ sðA [ BÞ A B. The same is true for ½B;Y �n in place of ½A;Z�n; therefore,
we also have sðSÞ ¼ sðA [ BÞ A A. Since A and B are disjoint, this is impossible.

Thus, p A nctðX Þ provided that sð½ p;X �nÞ ¼ fpg. r

If a connected space X has a continuous weak selection s : ½X �2 ! X , then

jnctðXÞja 2 and ctðXÞ is open and connected [11] (see also [5, Corollary 2.7]).

The theorem below extends this property for all nb 2.
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Theorem 2.4. Let X be a connected space, and s : ½X �n ! X be a continuous

selection for some nb 2. Then

(i) jXnsð½X �nÞj < n and Xnsð½X �nÞ � nctðXÞ.
(ii) jnctðXÞ \ sð½X �nÞja 1.

(iii) ctðXÞ is open and connected.

Proof. If Q � X and jQjb n, then Q contains an element S A ½X �n,
consequently sðSÞ A S � Q. Thus, jXnsð½X �nÞj < n. Since ½X �n is connected (by

Theorem 6.1), so is sð½X �nÞ because s is continuous. Hence, Xnsð½X �nÞ � nctðXÞ
because Xnsð½X �nÞ is finite, which is (i). Since (ii) follows from Theorem 2.3,

it remains to show (iii). By (i) and (ii), ctðXÞ is open in X . Let Y ¼ sð½X �nÞ
and h ¼ s 0 ½Y �n. If p A Y \ nctðX Þ, then Theorem 2.3 implies that hð½ p;Y �nÞ �
sð½ p;X �nÞ ¼ fpg. Hence, by the same theorem, p is a noncut point of Y and

ctðXÞ ¼ Ynfpg is connected. This is (iii). r

Now, we also have the following more general example related to Question 1.

Example 2.5. For every nb 2 there exists a connected second countable

space X such that ½X �nþ1 has a continuous selection, but ½X �n has none.

Proof. Let nb 2, and Zn � f0g � ½�1; 1� be a subset consisting of n

elements. Then X ¼ T [ Zn is as required, where T ¼
��

t; sin 1
t

�
A R2 : 0 < ta 1

�
is the topological sine curve. Indeed, by Theorem 2.4, ½X �n has no continuous

selection because X has nþ 1 noncut points. However, each S A ½X �nþ1 contains

a unique point sðSÞ with a maximal t-coordinate. This s : ½X �nþ1 ! X is a

continuous selection, see Proposition 1.1. r

Definition 2.6. A point p A X of a connected space X is a strong cut point

[4] if Xnfpg has exactly two components; equivalently, if X has a p-cut con-

sisting of connected sets.

A space X is weakly orderable (KOTS in the terminology of [14]; and

sometimes called also ‘‘Eilenberg orderable’’) if it has a coarser open interval

topology generated by a linear ordering � on X , called a compatible order for

X . If X is connected and has a continuous weak selection s : ½X �2 ! X , then it

is weakly orderable. In fact, the order-like relation �s induced by s (see the

Introduction) is a compatible linear order on X [13, Lemma 7.2]. It is well known

and easy to prove that all cut points in a connected weakly orderable space
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are strong, see for instance Kok [10]. We conclude this section by showing that

this still holds if we only assume that ½X �n has a continuous selection for some

nb 2.

Theorem 2.7. Let X be a connected space with a continuous selection for

½X �n for some nb 2. Then each cut point of X is strong.

The proof of Theorem 2.7 is based on the following simple observation.

Proposition 2.8. Let X be a connected space, s : ½X �n ! X be a continuous

selection for some nb 2, and ðU ;VÞ be a p-cut for some p A X. If Y ¼ U and

s�1ðpÞ \ ½Y �n 0q, then sð½p;Y �nÞ ¼ fpg.

Proof. Let S A s�1ðpÞ \ ½Y �n and A ¼ Snfpg. Since Z ¼ V is connected

and sðA [ fpgÞ ¼ p, it follows from Proposition 2.1 that sð½A;Z�nÞ � Z and,

therefore, sðA [ fxgÞ ¼ x for every x A Z. Since Y ¼ U is also connected,

the same reasoning implies that sð½x;Y �nÞ ¼ fxg for every x A V . Accordingly,

sð½p;Y �nÞ ¼ fpg because p A V and s is continuous. r

Proof of Theorem 2.7. Suppose that s : ½X �n ! X is a continuous selec-

tion for some nb 2, and ðU ;VÞ is a p-cut for some p A X . The proof consists

of showing that p is a noncut point of both Y ¼ U and Z ¼ V . According

to Proposition 2.8, either sð½ p;Y �nÞ ¼ fpg or p B sð½Y �nÞ. In either case, by

Theorems 2.3 and 2.4, p is a noncut point of Y . Precisely the same reasoning

applies to show that p is also a noncut point of Z. r

3. Almost Weak Orderability

Definition 3.1. For a connected space X , a point p A X is said to separate

x; y A X if x A U and y A V for some p-cut ðU ;VÞ of X .

If p separates x and y, then p is a cut point of X (see Definition 2.2), and

neither x nor y separates the other two points (see [10, Lemma 2.1]). A connected

space X is weakly orderable if and only if among every three points of X there

is one which separates the other two, see [10, Theorem 4.1] (in a footnote of

[2], the result is credited to D. Zaremba-Szczepkowicz). Evidently, this property

incorporates the fact that jnctðXÞja 2 for each weakly orderable connected

space X .
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In the present section, we use a slight modification of this property to deal

with the selection problem for deleted symmetric products on connected spaces.

Definition 3.2. We shall say that a connected space X is almost weakly

orderable if it has finitely many noncut points and among every three points of

X with two of them being cut, there is one which separates the other two.

We proceed with some properties showing a natural relationship with weak

orderability.

Proposition 3.3. Let X be a connected almost weakly orderable space, and

Y � X be a connected subset. Then ctðY Þ � ctðXÞ and jnctðYÞnnctðX Þja 2. In

particular, Y is also almost weakly orderable.

Proof. Take y A ctðYÞ, and let ðE;DÞ be a y-cut of Y . Since E;D � Y are

nonempty open sets of Y , they are infinite. Since nctðXÞ is finite, there are cut

points p; q A ctðXÞ such that p A E and q A D. Accordingly, y separates p and q

in Y . Since X is almost weakly orderable and p; q A ctðX Þ, one of the points p, q

or y must separate the other two in X , hence in Y as well. That point is clearly y

because it is the only point of this triple that separates the other two in Y . Thus,

y A ctðXÞ and we have that ctðYÞ � ctðX Þ. The second part follows by a very

similar argument. Namely, take three points of YnnctðX Þ. Then one of these

points separates the other two in X , hence also in Y . Accordingly, one of these

points is a cut point of Y . r

A subset E of a connected space X is an endset if XnE is connected. It is

evident that p is a noncut point of X i¤ the singleton fpg is an endset for X .

Thus, noncut points are often called endpoints. However, a set of endpoints is

not necessarily an endset. Here is a simple example. Let X ¼ S [ fð0;G1Þg,
where S ¼

��
Gt; sin 1

t

�
A R2 : 0 < t < 1

�
. Then X is a connected space having

two endpoints ð0;�1Þ and ð0; 1Þ, but the two-point set fð0;G1Þg is not an endset.

In contrast, the endpoints of almost weakly orderable spaces form an endset.

Corollary 3.4. Let X be a connected almost weakly orderable space. Then

ctðXÞ is connected and weakly orderable. In particular, each cut point of X is strong.

Proof. Take a noncut point p A X , and set Y ¼ Xnfpg. Then Y is a

connected subset of X , so Proposition 3.3 implies that ctðY Þ � ctðX Þ and Y is
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itself almost weakly orderable. However, ctðXÞ � ctðY Þ because Y is dense and

ctðXÞ � Y . Thus, ctðXÞ ¼ ctðY Þ. Since X has finitely many noncut points, this

implies that ctðX Þ is a connected almost weakly orderable space having only

cut points. Hence, among every three distinct points of ctðX Þ there is one

which separates the other two. Accordingly, ctðXÞ is also weakly orderable

[10, Theorem 4.1]. r

Let ðY ;�Þ be a (partially) ordered set. For subsets A;B � Y , we will write

A0B to express that y0 z for every y A A and z A B. In case A ¼ fyg, we will

simply write y0B instead of fyg0B; similarly, A0 z for B ¼ fzg. Finally, we
will use the standard notation for the intervals of ðY ;�Þ; for instance, ð ; yÞ�
will stand for the �-open interval of all z A Y with z0 y; ðy;!Þ� for that of all

z A Y with y0 z; ðy; zÞ� ¼ ðy;!Þ� \ ð ; zÞ�; etc.

According to Corollary 3.4, the cut points ctðX Þ of a connected almost

weakly orderable space X form a connected weakly orderable space. Moreover,

by Proposition 3.3, the cut points of X remain cut points of ctðXÞ, and all cut

points of both spaces are strong (see Definition 2.6). This implies the following

immediate consequence.

Corollary 3.5. Let X be a connected almost weakly orderable space, and �
be a compatible linear order on ctðX Þ. Then each cut point p A X has a unique

p-cut ðU ;VÞ such that U \ ctðX Þ ¼ ð ; pÞ� and V \ ctðXÞ ¼ ðp;!Þ�.

For a connected space X and p; q A X , let (see Definition 3.1)

Sðp; qÞ ¼ fx A X : x separates p and qg:ð3:1Þ

An important property of this set is that Sðp; qÞ � Y for every connected

subset Y � X with p; q A Y . That is, Sðp; qÞ behaves as the ‘‘segment’’ between

the points p and q. In case of almost weakly orderable spaces, this is essentially

true and is based on the following considerations.

Proposition 3.6. Let X be a connected almost weakly orderable space, � be

a compatible linear order on ctðXÞ, and p; q A X. Then Sðp; qÞ0q if and only

if U \ ctðX Þ0V \ ctðX Þ or V \ ctðX Þ0U \ ctðXÞ for some open sets U ;V � X

with p A U and q A V .

Proof. If y A Sðp; qÞ, then y is a cut point of X and, by Corollary 3.5,

X has a y-cut ðU ;VÞ with U \ ctðXÞ ¼ ð ; yÞ� and V \ ctðXÞ ¼ ðy;!Þ�.
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Accordingly, U \ ctðX Þ0V \ ctðX Þ. To show the converse, let U ;V � X be

open sets such that p A U , q A V and U \ ctðXÞ0V \ ctðXÞ ¼ B. Then A ¼S
z0Bð ; zÞ� is an open subset of ctðX Þ with A \ V ¼q, in fact A0B.

Moreover, A is not closed in ctðXÞ because ctðXÞ is connected and q0

U \ ctðX Þ � A. If y A A \ ctðXÞ with y B A, then A ¼ ð ; yÞ� and V \ ctðXÞ �
ðy;!Þ�. Let ðE;DÞ be a y-cut in X such that E \ ctðX Þ ¼ ð ; yÞ� and

D \ ctðX Þ ¼ ðy;!Þ�. We are left to show that p A E and q A D. However, this

is evident because p A D will imply that q0U \D \ ctðX Þ � U \ ðy;!Þ� ¼q.

Similarly, q A E is impossible. r

Let X be a connected almost weakly orderable space, and � be a compatible

linear order on ctðXÞ. We can now extend � to a partial order �ct on X by

writing for points p; q A X that p0ct q if U \ ctðX Þ0V \ ctðXÞ for some open

sets U ;V � X with p A U and q A V . According to Proposition 3.6, �ct is the

maximal extension of � which is still compatible with the topology of X .

Namely, we have the following immediate consequence.

Corollary 3.7. Let X be a connected almost weakly orderable space, �
be a compatible linear order on ctðXÞ and �ct be defined as above. Then points

p; q A X are 0ct-comparable if and only if Sðp; qÞ0q. In fact, p0ct q if and

only if U 0ct V for some open sets U ;V � X with p A U and q A V.

Motivated by Corollary 3.7, we will refer to �ct as the separation partial

ordering on X induced by �, and will use the same notation for both relations.

Let us explicitly remark that the idea of a separation order induced by cut points

goes back to Whyburn [16]; the interested reader is also referred to [8, 17], and

the more recent monograph [15].

Proposition 3.8. If X is a connected almost weakly orderable space, then

every two separation partial orderings on X are either identical or inverse to each

other.

Proof. Suppose that � and �� are separation partial orderings on X . Since

ctðXÞ is connected and weakly orderable with respect to both � and ��, it

follows from [3, Theorem II] that on the points of ctðXÞ, these orders are either

identical or inverse to each other. According to the definition of � and ��, they
are themselves either identical or inverse to each other. r
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Proposition 3.9. Whenever � is a separation partial ordering on a connected

almost weakly orderable space X and p A X is a noncut point, we have that either

p0 ctðX Þ or ctðXÞ0 p. In particular, for each cut point q A X , the �-open
intervals ð ; qÞ� and ðq;!Þ� form a q-cut of X .

Proof. Let p A X be a noncut point, and q A X be a cut one. Take a q-cut

ðE;DÞ of X with p A E. By Corollary 3.4, q is a strong cut point of X , hence

q is not separating any pair of points of E. Since X is almost weakly orderable

and p is a noncut point, any point of E \ ctðXÞ is separating p and q. Thus,

Sðp; qÞ0q because E \ ctðXÞ0q. According to Corollary 3.7, p and q are

0-comparable, so p is 0-comparable with each cut point of X . By the same

corollary, the sets Ap ¼ fx A ctðXÞ : x0 pg and Bp ¼ fx A ctðXÞ : p0 xg are

open in ctðXÞ. Since ctðX Þ is connected (by Corollary 3.4), it follows that

ctðXÞ ¼ Ap or ctðXÞ ¼ Bp, i.e. ctðX Þ0 p or p0 ctðXÞ. The second part now

follows from Corollary 3.5 and the definition of �, which completes the proof.

r

Let X and � be as in Proposition 3.9, and p; q A X with p0 q. It follows

from this proposition that Sðp; qÞ ¼ ðp; qÞ� is an open connected subset of ctðXÞ.
However, the �-closed interval ½ p; q�� ¼ fx A X : p � x � qg is not necessarily

closed in X . In fact, one can easily prove that X is weakly orderable provided

all �-closed intervals are closed in X , but this fact will play no role in this

paper.

We conclude this section with the following two special cases when extra

conditions on the noncut points of a connected almost weakly orderable space

imply weak orderability.

Proposition 3.10. Let X be a connected almost weakly orderable space which

is locally connected at each of its noncut points. Then X is weakly orderable.

Proof. Let � be a separation partial ordering on X . According to Proposi-

tion 3.9, nctðXÞ ¼ A [ B for some sets A and B with A0 ctðX Þ0B. It now

su‰ces to show that jAja 1 and jBja 1. To this end, take p A A, and contrary

to the claim, assume that A contains another point q A A. Then, by condition,

there are open connected sets U ;V � X such that p A U , q A V and U \ V ¼q.

Since ctðXÞ is dense in X , there are cut points x; y A X with x A U and y A V .

Accordingly, x and y are 0-comparable, say x0 y, and we get that q0 x0 y.

It now follows that ðq; yÞ� ¼ Sðq; yÞ � V because V is connected and q; y A V .
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However, this is impossible because x A ðq; yÞ� and x A U , but U \ V ¼q.

Accordingly, jAja 1. Similarly, jBja 1. r

Lemma 3.11. Let X be a connected almost weakly orderable space which is

locally compact at each of its noncut points. Then X is weakly orderable.

Proof. By Proposition 3.10, it su‰ces to show that X is locally connected

at each of its noncut points. This can be shown following the idea of the proof

of [1, Proposition 1.2]. Namely, let � be a separation partial ordering on X and

nctðX Þ ¼ A [ B with A0 ctðXÞ0B. Next, contrary to the claim, assume that

X is not locally connected at some point p A nctðX Þ, say p A A. Hence, p is

contained in an open set U such that K ¼ U is compact, K \ A ¼ fpg, but

K does not contain any interval ðp; yÞ� for y A ctðXÞ. Therefore, the set H ¼T
x A ctðX ÞnK K \ ð ; xÞ� is nonempty, in fact H ¼ fpg. To get a contradiction,

for every x A ctðXÞnK , set Sx ¼ ðKnUÞ \ ð ; xÞ� which is a clopen set in KnU
because Sx ¼ ðKnUÞ \ ð ; x�� ¼ KnðU [ ðx;!Þ�Þ, see Proposition 3.9. The set

Sx is also nonempty because U \ ð ; xÞ�0q and ð ; xÞ� is connected. Finally,

Sx � Sy whenever x; y A ctðXÞnK with x0 y. Since K is compact, we must have

that
T

x A ctðXÞnK Sx 0q. However, this is impossible because p A U and, therefore,T
x A ctðX ÞnK Sx � HnU ¼ fpgnU ¼q. The proof is complete. r

4. ½X �n-Selections Versus Weak Selections

A connected space X is weakly orderable if and only if it has a continuous

weak selection, equivalently a continuous selection for ½X �2. In this section, we

will prove the following natural generalisation.

Theorem 4.1. A connected space X has a continuous selection for ½X �n for

some nb 2 if and only if it is almost weakly orderable.

In one direction, the proof of Theorem 4.1 is based on the following prop-

erties of the set Sðp; qÞ, see (3.1).

Proposition 4.2. Let X be a connected space, and s : ½X �n ! X be a con-

tinuous selection for some nb 2. If p A nctðXÞ \ sð½X �nÞ, then Sðp; qÞ ¼ ctðX Þ for
any other noncut point q A X .

Proof. Let y A X be any cut point, and ðU ;VÞ be a y-cut of X with

p A U . By Theorem 2.4, it su‰ces to show that U � sð½X �nÞ. To this end, take
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an A A ½V �n�1 and observe that, by Theorem 2.3, sðA [ fpgÞ ¼ p. Hence, by

Proposition 2.1, we have that sðA [ fxgÞ ¼ x, for every x A U . The proof is

complete. r

Lemma 4.3. Let X be a connected space, s : ½X �n ! X be a continuous

selection for some nb 2. If q A sð½X �nÞ, p A nctðXÞ and U is the component of

Xnfqg with p A U , then Sðp; qÞ ¼ ctðUÞ.

Proof. Since q is either a strong cut point of X (by Theorem 2.7), or a

noncut one, the set U is open and q is a noncut point of Y ¼ U . Moreover,

Sðp; qÞ � U because U is connected and p; q A Y ¼ U . Since s is also a con-

tinuous selection for ½Y �n, all cut points of Y are strong cut points of Y , therefore

SY ðp; qÞ ¼ fy A Y : y separates p and q in Yg � Sðp; qÞ:

Thus, it is now su‰cient to show that SY ðp; qÞ ¼ ctðY Þ which, by Proposition

4.2, is reduced to showing that fp; qg \ nctðYÞ \ hð½Y �mÞ0q for some mb 2

and a continuous selection h : ½Y �m ! Y . To this end, take an S A ½X �n with

sðSÞ ¼ q. Evidently, q A nctðY Þ \ sð½Y �nÞ provided that S A ½Y �n. The other two

cases are considered below.

(i) If S \U ¼q, set A ¼ Snfqg. Then by Proposition 2.1, sð½A;Y �nÞ � Y

because S A ½A;Y �n and sðSÞ ¼ q A Y . Accordingly, sðA [ fxgÞ ¼ x for every

x A U , so sðA [ fpgÞ ¼ p. Since p A nctðX Þ, it follows from Theorem 2.3 that

sð½p;Y �nÞ � sð½ p;X �nÞ ¼ fpg. Hence, for the same reason, p A nctðYÞ \ sð½Y �nÞ.
(ii) If SnY 0q0S \U , set B ¼ SnU and C ¼ SnY . Then k ¼ jCj < jBj

< n and S A ½B;U �n. Since q ¼ sðSÞ A BnC, by Proposition 2.1, we now have

that sð½B;U �nÞ ¼ fqg and sð½C;Y �nÞ � Y . So, one can define a continuous

selection h : ½Y �n�k ! Y by hðTÞ ¼ sðC [ TÞ, T A ½Y �n�k, see Proposition 6.3.

Then q A T A ½Y �n�k implies that C [ T ¼ B [ ðTnfqgÞ A ½B;U �n, therefore hðTÞ
¼ sðC [ TÞ ¼ q. Thus, q A nctðYÞ \ hð½Y �n�kÞ. r

The other direction of Theorem 4.1 is based on the following considerations

of order-determined selections on partially ordered sets. Let ðX ;�Þ be a partially

ordered set, and s : ½X �n ! X be a selection for some nb 2.

Definition 4.4. We shall say that s is �-determined if for every S A ½X �n,
each point of S is �-comparable with sðSÞ. A �-determined selection s : ½X �n

! X will be called �-balanced if

jfx A S : x � sðSÞgj ¼ jfx A T : x � sðTÞgj for every S;T A ½X �n:ð4:1Þ
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We finalise the preparation for the proof of Theorem 4.1 with the following

characterisation of continuity of selections.

Lemma 4.5. Let X be a connected almost weakly orderable space, � be a

separation partial ordering on X , and s : ½X �n ! X be a selection for some nb 2.

Then s is continuous if and only if it is �-balanced.

Proof. If s is continuous, then it is also �-determined. Indeed, take an

S A ½X �n. If q ¼ sðSÞ is a cut point of X , then it is �-comparable with any other

point of X , by Proposition 3.9. Otherwise, if q is a noncut point of X , it follows

from Proposition 4.2 that any cut point of X separates q from any other noncut

point of X . In other words, q is �-comparable with any other noncut point of

X , hence q is also �-comparable with any element of S. Thus, in either case,

s is �-determined. For such a selection, consider the function ks : ½X �n ! N

defined by ksðSÞ ¼ jfx A S : x � sðSÞgj, for every S A ½X �n. Since sðSÞ is �-
comparable with each x A S, using Corollary 3.7, there exists a pairwise disjoint

collection U ¼ fUx : x A Sg of open subsets of X such that x A Ux, for every

x A S, and

Ux 0UsðSÞ or UsðSÞ0Ux; whenever x A SnfsðSÞg:ð4:2Þ

Consider the tV -neighbourhood W ¼ hUi of S in ½X �n. Whenever T A W, it

follows from (4.2) that sðTÞ A UsðSÞ if and only if ksðTÞ ¼ ksðSÞ. Hence, by

Proposition 1.1, s is continuous at S if and only if ks is continuous at S

(equivalently, constant in a neighbourhood of S). Since ½X �n is connected (by

Theorem 6.1) and N is discrete, s is continuous if and only if ks is constant.

The latter is clearly equivalent to s being �-balanced, see (4.1). The proof is

complete. r

Proof of Theorem 4.1. By Theorem 2.4, X has finitely many noncut points.

To show that it is almost weakly orderable, take distinct points p; q; y A X with

q; y A ctðXÞ, and assume that p doesn’t separate q and y; also, that q doesn’t

separate p and y. Thus, we are left to show that y A Sðp; qÞ. Since p is either a

strong cut point of X (by Theorem 2.7) or a noncut one, Xnfpg has an open

component W with q; y A W . It is evident that q and y remain cut points of

W because W is open in X , whereas p is a noncut point of Z ¼W . In fact, q

and y are strong cut points of Z because ½Z�n also has a continuous selection

being a subset of ½X �n. Moreover, Sðp; qÞ �W because W is connected and
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p; q A Z ¼W . Thus, we are left to show that y separates p and q in Z. Let U

be the component of Znfqg with p A U , hence with y A U as well. Since ½Z�n

has a continuous selection, Lemma 4.3 implies that y separates p and q in Z

because y A ctðUÞ.
Conversely, suppose that X is almost weakly orderable, and � is a sep-

aration partial ordering on X . Then nctðXÞ ¼ A [ B with A0 ctðX Þ0B, see

Proposition 3.9. Let n ¼ jAj þ jBj þ 1 so that each S A ½X �n contains a cut point

of X , and set k ¼ jAj. We can now define a �-balanced selection s : ½X �n ! X

with jfx A S : x � sðSÞgj ¼ k þ 1, for every S A ½X �n. Namely, S A ½X �n implies

that S \ ctðX Þ0q. If A � S, let sðSÞ be the �-minimal element of S \ ctðXÞ.
If AnS0q, then S \ ctðXÞ contains at least jAnSj þ 1 points, so we can take

sðSÞ A S \ ctðXÞ such that jfx A S \ ctðXÞ : x � sðSÞgj ¼ jAnSj þ 1. Accordingly,

jfx A S : x � sðSÞgj ¼ k þ 1 and Lemma 4.5 completes the proof. r

A space X is orderable (or linearly ordered ) if it has the open interval

topology generated by a linear ordering on X . It is well known that a connected

weakly orderable space is orderable if and only if it is locally connected, or

locally compact. For a discussion on this, the interested reader is referred to [6].

In view of this equivalence, the following is an immediate consequence of

Proposition 3.10, Lemma 3.11 and Theorem 4.1.

Corollary 4.6. For a connected space X with a continuous selection for

½X �n for some nb 2, the following are equivalent:

(a) X is orderable.

(b) X is locally connected.

(c) X is locally compact.

5. Selections as Order-Determined Choice

If X is a connected space and s : ½X �2 ! X is a continuous selection, then X

is weakly orderable with respect to the relation �s generated by s [13, Lemma

7.2], see the Introduction. In fact, in this case, sðSÞ ¼ min�s
S is the �s-minimal

element of S, for every S A ½X �2. If h : ½X �2 ! X is any other continuous

selection, then the linear order �h is inverse to �s [3, Theorem II], hence

hðSÞ ¼ max�s
S, for every S A ½X �2. This also follows easily from Theorem 6.1

because the set W ¼ fS A ½X �2 : sðSÞ ¼ hðSÞg is clopen in ½X �2. Based on the

same idea, we extend this result to continuous selections for ½X �n for nb 2.

To this end, for a partially ordered set ðX ;�Þ and a �-balanced selection
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s : ½X �n ! X , we are going to associate the unique integer jsj� A N with the

property that

jsj� ¼ jfx A S : x � sðSÞgj; for some ðeveryÞ S A ½X �n:ð5:1Þ

It is evident that a partially ordered set ðX ;�Þ has at most n �-balanced
selections for ½X �n. According to Theorem 4.1 and Proposition 3.8, this implies

the following immediate consequence.

Corollary 5.1. Let X be a connected space with a continuous selection for

½X �n for some nb 2. Then ½X �n has at most n continuous selections.

We now have also the following characterisation of weak orderability of

almost weakly orderable spaces.

Corollary 5.2. For a connected space X and nb 1, the following are

equivalent:

(a) X is weakly orderable.

(b) ½X �nþ1 has precisely nþ 1 continuous selections.

(c) ½X �nþ1 has at least n continuous selections.

Proof. Suppose that X is weakly orderable with respect to a linear order �
on it. According to Lemma 4.5, ½X �nþ1 has precisely nþ 1 continuous selections

s1; . . . ; snþ1; each with the property that jskj� ¼ k, 1a ka nþ 1. They can be

defined inductively by letting for S A ½X �nþ1 that s1ðSÞ ¼ min� S and skþ1ðSÞ ¼
min�ðSnfs1ðSÞ; . . . ; skðSÞgÞ, ka n.

Suppose that ½X �nþ1 has at least n selections. By Theorem 4.1, X is almost

weakly orderable. Let � be a separation partial ordering on X . By Lemma 4.5,

each continuous selection for ½X �nþ1 is �-balanced. Since ½X �nþ1 has at least

n such selections, � is a linear order on each element of ½X �nþ1. Thus, � is a

linear order on X , and X is weakly orderable with respect to �, see Corollary

3.7. r

Corollary 5.3. Let X be a connected space which has two di¤erent con-

tinuous selections s1; s2 : ½X �n ! X for some nb 2, such that

s1ð½X �nÞ \ nctðXÞ0q0 nctðX Þ \ s2ð½X �nÞ:

Then X is weakly orderable.
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Proof. Let p A s1ð½X �nÞ \ nctðX Þ and q A s2ð½X �nÞ \ nctðXÞ. By Theorem

4.1, X is almost weakly orderable. Take a separation partial ordering � on X

with p0 ctðXÞ, see Proposition 3.9. By Lemma 4.5, s1 and s2 are �-balanced.
Hence, js1j�0 js2j� because s1 0 s2, while js1j� ¼ 1 because s1ð½ p;X �nÞ ¼ fpg,
by Theorem 2.3. Since we also have that s2ð½q;X �nÞ ¼ fqg, the points p and

q are di¤erent and being contained in some member of ½X �n, they are �-
comparable. By Proposition 3.9, this implies that p0 ctðX Þ0 q and js2j� ¼ n.

If y A Xnfp; qg, then y A S \ T for some S;T A ½X �n with p A S and q A T .

Therefore, p0 y0 q because js1j� ¼ 1 < n ¼ js2j�. That is, � is a linear order

on X . r

Corollary 5.4. Let X be a connected space which has at least two con-

tinuous selections for ½X �nþ1 for some nb 2. Then ½X �n also has a continuous

selection.

Proof. Let s1; s2 : ½X �nþ1 ! X be continuous selections with s1 0 s2. If

s1ð½X �nÞ \ nctðXÞ0q0 nctðXÞ \ s2ð½X �nÞ;

then X is weakly orderable (by Corollary 5.3), and ½X �n has a continuous selec-

tion (by Corollary 5.2). Suppose that s2ð½X �nÞ � ctðXÞ, and take a separation

partial ordering � on X with js1j� < js2j�. We can now define a �-balanced
selection h : ½X �n ! X with jhj� ¼ js1j�. Namely, take T A ½X �n and a cut point

q A X such that x0 q for every x A T \ ctðX Þ. Then S ¼ T [ fqg A ½X �nþ1 and

s1ðSÞ0 s2ðSÞ � q. Setting hðTÞ ¼ s1ðSÞ and using Lemma 4.5, the proof is

complete. r

In fact, we also have the converse of Corollary 5.4.

Corollary 5.5. Let X be a connected space which has a continuous selection

for ½X �n for some nb 2. Then ½X �nþ1 has at least two continuous selection.

Proof. Let s : ½X �n ! X be a continuous selection, and � be a separation

partial ordering � on X such that if z A nctðX Þ \ sð½X �nÞ, then z � x for every

x A X , see Proposition 4.2. Since s is continuous, by Lemma 4.5, it is �-balanced,
and we have that jsj� ¼ k for some ka n. By the same lemma, it su‰ces to

define �-balanced selections h1; h2 : ½X �
nþ1 ! X with jh1j� ¼ k and jh2j� ¼ k þ 1.

This can be done as follows. Let T A ½X �nþ1, and q be the �-maximal cut point

of X contained in T , i.e. q ¼ max� T \ ctðXÞ. Such a point does exist because
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T \ ctðXÞ0q, see Theorem 2.4. Consider the set S ¼ Tnfqg and the point

p ¼ sðSÞ. If p is a noncut point of X , then by the properties of �, we have

that p0 q. If p is a cut point of X , then by the properties of q we have again

that p0 q. Thus, p is �-comparable with each point of T , and jfx A T : x � pgj
¼ jfx A S : x � pgj ¼ k. Hence, we can define h1ðTÞ ¼ p. As for h2ðTÞ, take

in mind that Sðp; qÞ � ctðXÞ, see Proposition 3.9. If T \ Sðp; qÞ ¼q, then

jfx A T : x � qgj ¼ k þ 1, and we can take h2ðTÞ ¼ q. Otherwise, if T \ Sðp; qÞ
0q, take h2ðTÞ ¼ min� T \ Sðp; qÞ. It is evident that jfx A T : x � h2ðTÞgj ¼
k þ 1, and h2ðTÞ A ctðX Þ. Hence, h2ðTÞ is also �-comparable with each point of

T , which completes the proof. r

We conclude with the following consequence about the distribution of con-

tinuous selections for deleted symmetric products on connected spaces.

Corollary 5.6. Let X be a connected almost weakly orderable space, � be a

separation partial ordering on X , and nb 2. If s1 and s2 are continuous selections

for ½X �nþ1 and js1j� < k < js2j�, then ½X �
nþ1

also has a continuous selection h with

jhj� ¼ k.

Proof. Suppose that k ¼ js1j� þ 1 < js2j�, and let us show that ½X �nþ1 has

a continuous selection h with jhj� ¼ k. So, take T A ½X �nþ1 and let p ¼ s1ðTÞ and
q ¼ s2ðTÞ. Then jfx A T : x � pgj ¼ k � 1 < k < jfx A T : x � qgj and, therefore,
p0 x0 q for some x A T . That is, q0T \ Sðp; qÞ � ctðX Þ, and we can now

take hðTÞ ¼ min�fx A T : p0 xg which is a well defined cut point of X . Hence,

hðTÞ is �-comparable with each x A T , and jfx A T : x � hðTÞgj ¼ k. r

Appendix

Here, we give a short proof of the following result of Kurilić about con-

nectedness of n-fold deleted symmetric products [12, Theorems 5.1 and 5.2].

Theorem 6.1. If X is a connected space and nb 1, then ½X �nþ1 is also

connected.

Our proof of Theorem 6.1 is based on the following considerations. A family

P of subsets of a given set is connected if for every E;D A P there exists a finite

sequence P1;P2; . . . ;Pk of elements of P with E ¼ P1, D ¼ Pk and Pi \ Piþ1 0q

for every i ¼ 1; . . . ; k � 1. The proof of the following property of connected

families is easy and is left to the reader.
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Proposition 6.2. Let P be a connected family in a space X .

(i) If each P A P is covered by a connected family QP, then
S

P AP QP is itself

a connected family.

(ii) If each element of P is a connected subset of X , then
S

P is also a

connected subset of X .

Now, we proceed by pointing out a particular connected cover of ½X �nþ1

consisting of connected subsets of ½X �nþ1. In this, we are going to use the

following simple observation, see (2.1).

Proposition 6.3. Let A;Z � X be disjoint sets in a space X with jAja n.

Then the map j : ½Z�nþ1�jAj ! ½A;Z�nþ1 defined by jðTÞ ¼ A [ T for every T A

½Z�nþ1�jAj, is a homeomorphism.

Applying induction on n by assuming that ½Z�k is connected for every

connected space Z and ka n, it follows from Proposition 6.3 that the elements

of the collection

P½X �nþ1 ¼ f½A;Z�nþ1 : A0q; A \ Z ¼q and Z is connectedg

are connected subsets of ½X �nþ1. Thus, by Proposition 6.2, the proof of Theorem

6.1 is reduced to showing that P½X �nþ1 is a connected cover of ½X �nþ1.

Lemma 6.4. Let X be a connected space, p A X and Q A ½X �nþ1 with p B Q.

Then ½ p;Q�nþ1 is covered by a connected subcollection Q � P½X �nþ1.

Proof. If Z ¼ Xnfpg is connected, take Q ¼ f½ p;Z�nþ1g � P½X �nþ1. If

Xnfpg is not connected, take a p-cut ðU ;VÞ of X . Then both Y ¼ U and

Z ¼ V are connected. If Q is contained in one of the sets U or V , say Q � U ,

then R ¼ f½A;Z�nþ1 : A A ½Q�ng � P½X �nþ1 is a cover of ½ p;Q�nþ1. Take a point

q A V � Z, and observe that ½q;Y �nþ1 \ ½A;Z�nþ1 0q for every A A ½Q�n. Hence,

Q ¼ R [ f½q;Y �nþ1g is a connected subcollection of P½X �nþ1 covering ½ p;Q�nþ1.
Suppose finally that A ¼ U \Q0q0Q \ V ¼ B, in which case jAja n and

jBja n. Then Q ¼ f½A;Z�nþ1; ½B;Y �nþ1g � P½X �nþ1 is as required. Indeed, Q is

connected because Q ¼ A [ B A ½A;Z�nþ1 \ ½B;Y �nþ1. It is also a cover of ½ p;Q�nþ1

because S A ½ p;Q�nþ1 implies that QnS is a singleton, hence A � S if QnS � V

and B � S if QnS � U . The proof is complete. r
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The required property of P½X �nþ1 is now precisely the assertion of the

proposition below, which also completes the proof of Theorem 6.1.

Proposition 6.5. If X is a connected space, then P½X �nþ1 is a connected

cover of ½X �nþ1.

Proof. Let S;T A ½X �nþ1 and P ¼ S [ T . It now su‰ces to show that ½P�nþ1

is covered by a connected subcollection of P½X �nþ1. Whenever x A P, set Qx ¼
Pnfxg. Then ½x;Qx�nþ1 \ ½y;Qy�nþ1 0q for every x; y A P, so f½x;Qx�nþ1 : x A Pg
is a connected cover of ½P�nþ1. Thus, jPj ¼ nþ 2 implies that jQxj ¼ nþ 1 for

every x A P, and the property follows from Proposition 6.2 and Lemma 6.4.

If jPj > nþ 2, this follows by induction using Proposition 6.2 and the fact that

f½Qx�nþ1 : x A Pg is a connected cover of ½P�nþ1 with jQxj ¼ jPj � 1, for every

x A P. r
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