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ON THE SMOOTHING PROBLEM

By
George MICHAEL, A. A.

In this paper we sharpen the result established in [11], see also [12], to obtain
a criterion for the smoothability of any topological n-manifold (not neccessarily
compact). Our criterion is the existence of a Lipschitz atlas with Lipschitz size
sufficiently close to 1 (definitions below). We do this by refining proposition 1 in
to get a smoothing theorem (theorem 1.10) by making all computations in a
suitable tubular neighbourhood of a given compact subset of a smooth mani-
fold in some Euclidean space in which the manifold is properly and smoothly
embedded. This smoothing theorem will allow an inductive construction of a
smooth atlas on any given topological n-manifold that satisfy the smoothability
criterion. Our final result is given in theorem 2.5.

Throughout this paper we shall adopt the following notations, conventions
and definitions.

R" is the N-dimensional real vector space consisting of N-tuples of real
numbers, <-,-» is the canonical scalar product on R" given by {x, y)> = ZIZ | XiVi
and | - || is the corresponding norm [2, p. 118]. {e;: 1 <i < N} is the canonical
basis of RY where (ei)j =05 1<i,j<N.If n<N we identify R" as R" x
{0} =« RY and RV as {0} x R"™" c R" and we let |- ||, and || - |y_, be the
corresponding norms on RY and R™™" respectively so that R" is identified
as R" x RY™". Let p; : RY — R" and p, : RY — R"™" be the projection maps.
For all xeR" and r>0 we let BV(x)={yeR":|x—y|| <r} and BN =
BN (0). For {a,b} = RN — {0} we define A4(a,b) = the angle between a and b
by A(a,b) = arccos(<a,b)/(|lall||bl])), 0 < A(a,b) <= and if ae RY — {0} and
if L is a non-trivial vector subspace of R" we define 4(a, L) = the angle between
a and L by A(a,L) = A(a, Pr(a)) where Pr(a) is the orthogonal projection of
a on L [2, p. 121] (note that since {a — Pr(a),Pr(a)) =0 we have A(a,L) =
arccos(||P(a)l|/[all).

If (Xi,d;), i=1,2, are metric spaces, then f:X; — X; is bilipschitz (re-
spectively locally bilipschitz) if there exists some 1 < L < oo such that: (*) For all
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x1, y; € X1 (respectively for all x € X there exists some neighbourhood V(x) of
x in X; such that for all x;, y, € V(x)) we have 1/Ldi(x,y,) < da(f(x1),
f(3)) < Ld\(x1, y,), and we define the Lipschitz size L(f) = L(f,di,dz) of f
(respectively the local Lipschitz size L.(f) = Lc(f,d1,d2) of f) by: L(f) (re-
spectively L.(f)) =inf{l < L < oo : f satisfies condition (*)}. Note that for two
consectutive bilipschitz (respectively locally bilipschitz) maps X Ly Z, the
composite map is bilipschitz (respectively locally bilipschitz) and we have
L(go f) < L(g) - L(f) (respectively Lc(go f) < Lc(g) - Le(f))-

A topological n-manifold is a separable metric space such that every point of
which has an open neighbourhood homeomorphic to an open set in R". Let X
be a topological n-manifold. A chart of X is a couple (X;,¢;) where X; open = X
and ¢; a homeomorphism of X; onto an open set in R". An atlas &/ of X is a
family of charts o/ = {((X;, ;) : i = 1} such that X =), Xi. It is a Lipschitz
(respectively locally Lipschitz) atlas if for all i,/ > 1 such that XiNX; # &, the
map ;o ¢; V' 9(XiN X)) — 9;(X;N X;) is bilipschitz (respectively locally bilip-
schitz) and we define its Lipschitz (respectively locally Lipschitz) size L(<)
(respectively L (<)) by:

L(</)(respectively L (<))

= sup{L(g; o ¢; ") (respectively Lc(¢;0¢;')):i,j =1, X;iNX; # &}.

A smooth (= C*®) structure on a topological manifold X is an atlas &/ =
{(X;,¢;) : i =1} such that for all i, j >1 such that X;NX; # ¢ the transition
homeomorphisms ¢; o ¢;” I gi(XiN X)) — ¢;(Xi N X;) are C* diffeomorphisms. o/
is then a C™ atlas of X and X is a C® manifold. If X is a C* n-manifold, a C*
chart of X is a couple (X;, ;) where X; open = X and ¢;, a C* diffeomorphism
of X; onto an open set in R". If ae X we define T,(X), the tangent space of X
at a whose elements are the tangent vectors at a, as the quotient set of the set
{(c,h) : c=(Y,p)C*® chart of X,ae Y ,he R"} under the equivalence relation
(c1,h1)R(c2, hy) iff D(p, 0 97') - (¢1(a)) - b1 = hy and for any C* chart ¢ = (Y, ¢),
ae Y, we define 6, (also denoted by 6, ,) as the bijection 6. : R" — T,(X) given
by 6.(h) = the tangent vector represented by (c,h) [1, p. 41]. We let T(X) =
\U,cx Ta(X) be the tangent bundle of X and oy : T(X) — X be the canonical
map defined by ox(T,(X)) = a. If X is a C* Riemannian n-manifold we let exp
be the exponential map defined by the goedesic field of its Levi-Civita connection,
and we let Q c T,(X) be its domain of definition and exp, be its restriction to
QN T,(X).

Finally we recall the following patching argument for construction of topo-
logical spaces [3, p. 4].
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THEOREM AND DEFRINITION. Let {A, : a € I} be a family of topological spaces.
Suppose that for all o,f €l we are given Ag, open < Ay and hg, : Agy — Aup a
homeomorphism onto such that:

1) Ayy = Ay, hyy =1 for all ael.

2) for all a,B,y €I we have a commutative diagram of homeomorphisms

Y.
Ay N Agy - Ay N Ag,
e hy
AN Ay

where for all i,j,kel, h},‘. = hji|A;; N Awi, then there exists a topological space,
unique up to homeomorphism, satisfying:

1. for each o € I, there exists a continuous map p,: Ag — A such that for all
o,fel, p,|Ap. = pgohg, and |, ; Pu(As) = 4.

2. for any topological space A' and any family of continuous maps p, : Ay —
A', el such that pl|Apg, = p/’gohﬂa there exists a unique continuous map @ :
A — A’ such that pop, =p) for all ael.

We denote this topological space by A = (3,5 Aa) mod({A4ps}, {hps}). The
corresponding p,’s are then open embeddings. Note that if A, is an open set in R"
for all wel, then A is a topological n-manifold and if, in addition, hg, is a C*
diffeomorphism for all a,f eI then A is a C* n-manifold.

Here we make two remarks about this theorem.

REMARK A. Suppose A, open — A, for all « e/ and
Ap, = Ap NAy, g, = hgo|Adg,,  hg,(Ag,) = Ay for all o,fel,

then:
1. A, = A, hl,=1 for all ael.
2. for all «,f,y eI we have a commutative diagram of honeomorphisms

B

h
AL NA! il A NA,
Bo ye oy By
O\ s
A;ﬂﬂA;ﬂ

and the canonical map ¢: (), ;4;)mod({4g,}, {hg}) = (X, 4a)
mod({4p,}, {hg.}) induced by the injections A4, — A,, a€l, is an open
embedding.
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RemMARK B. Suppose I =, ,I; is a partition of I and for all jeJ let
Aj= 0y Ay )mod({Ap}, {hge}) and p; : Ay, — A; the corresponding open
embeddings and let 4’ = (3, ; 4)) mod({p] (Au) : j,k €T, j# k}, {pk ohyy o
(pa{j)_l . j,keJ,j#k}) and p;: Aj — A’ the corresponding open embeddings,
then the canonical map ¢: 4 — A’ induced by the open embeddings p;o pj :
Ay — A', qyel;and jeJ, is a homeomorphism by virtue of which we identify
these two spaces.

The paper is divided into two sections. In section 1 we establish the
smoothing theorem (theorem 1.10). In section 2 we prove our smoothing criterion
(theorem 2.5).

1. We shall need the following sequence of Lemmas to establish the
smoothing theorem.

Lemma 1.1. ‘There exists ¢ : R — R, a C*® function such that:
.0<p<l1, —-10<9¢'<0

2. 071 (0)={xeR:|x| =1}

3.p7'(1) ={xeR:|x| <1/2}.

Proor. Let A: R — R be defined by
—1/x
h(x) = {e x>0
0 x<0
and define ¢(x) = h(1 — x?)/(h(1 — x*) + h(x* — 1/4)) then one can easily show
that ¢ has all the stated properties. /.

LEMMA 1.2 [11, Lemma 1]. Let V open = V < V, open = Vo = Vi open <
ViV, open = Vo = U open = B", then there exists t:R" — R, C® function
such that:

1.0<t<1

2. tlgn_y, =0 and t|, = 1.

3. If 6=min(1,d(V,VS),d(Vo, Vi), d(V1,V5),d(V2,Uc)) then dt(y) <
A O

4. 11'() -2l = —5— 1=l

PrOOF. Let u(x) = min(1,d(x, V{)/d(Vo, V1)) and let ¢ be the function
defined in and define

) = 57 [ o (52w it

where a, = [¢(||x||)dA(x) and A is the Lebesgue measure on R".
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Note that 7 is C* on R" [3, p. 125] and

an15 ,, J(p,(nx;yn) (5 - X)XHZ (x) di(x)

[ (”x5 y”)a_,,m )‘
e

s || o) @i

< 10jiz||

= oay

HOEE

T

by [4, p. 155]

=M.

Observe that a, > A(1/2B") = 1/2"A(B") by [3, p. 247] so that |{'(y)-z| <
10 - 27|z|| /6.

All the other stated properties of ¢ follow easily from the definition as shown
in [11, lemma 1]. /.

LEMMA 1.3. Let Y be a C® n-submanifold of RN and let j: Y — RY be
the canonical injection and Let K compact < Y, then for all ¢ > 0 there exists
coverings of Y by open N-balls {w;: j > 1} and {wjo : j = 1} satisfying:

- For all j=1, w) =g —+—£jBN, w;=a;+1/2¢BY, 2¢; <e, ajeY such
that w)NY = {CesJBN Lok = SO, 8), 1 <k < N — n} modulo an affine
transformatzon of RY, where fi () :&B" — R are C*® functions and f (J)( 0)
=0, f9(0)=0 for 1<k<N—n sup{|D:;f ()] :1<i<nml<k<N-n,

ICIl < &} < &, and sup{g|D, quk D:1<pg<nl<k<N-nl<eg}<e
Also K = | wj, KNw) =& for all j>s.

Jj=1
2- For all j > 1 there exists T; open — w; such T;NY =w;NY and, up to the

affine congruence of 1., we have a C® diffeomorphism

wiNY) x r,BYN " T,
J J J

(x,8) — x + Z tr (en+k - ZD f(j) (X))ei)

whose inverse is z — (n(z),0(z)) such that:
i- n(z) is the unique point of Y satisfying ||n(z) —z|| =d(z, Y).
ii- For all ze T;, n7!(n(z2)) = Ty N (7(2) + Nory(Y)) where

(Y)_Hd OT z)(])( n(z)(Y))—L'
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ProOF. Let ye Y and assume after translation that y =0 then, after a
suitable permutation of coordinates, there exists some r >0 and a smooth
submersion g : BY(0) — RM~" such that g~!(0) = B¥(0)NY. By the implicit
function theorem [2, p. 270] we may further assume that there exists a smooth
function f : B'(0) — RM~" such that f(0) =0, BN(0)NY is the graph of f and

BI(0) — BY(O)NY
x o (%, /(%)

is a bijective submersion, hence a C* diffeomorphism and it defines a C* chart
of Y about y. Now let R be the vector subspace of R" generated by the N —n
row vectors of g’(0) so that dimR= N —n and let

orthonormal |* orthonormal
basis of basis of € On(R)
R+ R

A

then (go A)'(0) = g'(0). A =[O0|" *] and D;(g o 4)(0) = 0. Hence replacing g by

g o A, and passing to 4-'(Y), we may assume, since f'(x) = —(ng(x,f(x)))_1 o

Dig(x, f(x)), that f’(0) = 0. Composing by a non-singular Linear transformation
we may further assume that g’(0) = [O|" —Iy_,]. Note that

F(x) = (Dag(x, £(x)) ™"+ (Dag(x, £(x))) - (Dag(x, £ (x))) ™" - Dag(x, £ (x))
= (Dag(x, f() ™" - (Drg(x, £ (%))’
— —(Dag(x, £()) ™" [(Dag(x, £(x)))' ' (x) + (Drg(x, f(x)))']  and
D,D,f(0) = DpDgg(0) for 1 <p, g<n. We have for Ll<k<N-—n
9k (1) — 94(0) — g(0) - 1| < 3 llfll and
91(0) — 9¢(0) — g4(0) - 1~ 31(0) - 2| < T|le|> for i) <2r0 <1 by

Taylor formula [2, p. 190], hence for € B}, (0)

£ &
19£(0) - 1P| < g el + 121),  |D}gk(0)lro < 3 for1<p<n and

2e
|gx (0) - (e, + €4, €, + €4)|r0 <3 for 1 <p,gq<n,p#q so that
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1
|DpDygic(0)|ro = > lgr (0) - (e, + eq, €, + €4) — ngk(O)

2
~Dggk(0)|r0 <?8 for 1 <p,g<n,p#gq.

Then there exists some 0 < r < ry such that sup{r|D,D,f,({)|: 1 <p, g <n,
1<k<N-n|ll|<r} <& and we have the open covers {w}’ :j=>1} and
{w; :j = 1} satisfying 1) as desired.

Now for all x € B(0) we have

My, 1) = (6i2) ™" © Ttx, 100y (1) (T, 70 (Y))

n
= {zeRN tznik — O Difi(x)zi =0 for 1 <k < N—n} hence
i=1

N-n
x (%)) Z R (en+k - Z D; fk(x)e,> = Z Ru; and
k=1

(BN 0O)NY) x RN-" — RV
N-n
(x,8) — x+ Z trc Uy

k=1

is a C® submersion and restricts, for r sufficiently small, to a C* diffeomorphism
(BN(0)NY) x BN="(0) — T open = B¥(0) whose inverse is z — (n(z), 8(z)) and
the properties stated in 2) are satisfied by [4, p. 180]. /.

LEmMMA 1.4. Let U open < RN and h: U — RY a bilipschitz embedding such

that L(h) < a. For all ye U, d < d(y,U°), Let h, = the d-simplicial approxima-
tion of h at y, be defined by h,: R® — R".

he (y + zn:aivi) = h(y) + zn:ai(h(y +v;) — h(y))
i=1 i=1

where v; = de; for 1 < i < n, then:
1- For all x e RY we have

(3262 = )= 1)) I = ¥IP < o) — HO)IP

< (o +2(a* - D= 1)x - ylI*
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2- For (2—1 <|lx = y|| £d we have

lho(x) = h(x)|* < 2(® = (n+SVm)llx =yl /

PrOOF. 1- [7, lemma 3.2].
2- Let x=y+ > ., av;, then since ||x — y|| <d we get |a;| <1 and by [7,
lemma 3.6.2]

n _ 2 2 142
o (x) = (X)) < 2(a® = 1) (n +3 lail (”x y||||x+ dy“—; il )} Ix = »II”
! i=1 -

[ - 2d
<2(a® -1 n+\/7z(”x y||+ )] x —yl?
(-] 22 -

<2(e? = D(n+5vn)x—y|>. /.

We shall need five more geometric lemmas.

LemMMA 1.5. Let {a,b} < RY — {0} such that ||a — b|| < c||b||, ¢ < 1, then the
angle A(a,b) between a, b satisfies A(a,b) < /2 — arcsin(l — ¢)

PROOF.

a,by _ _lla?ll +16)* ~ lla~b]*

1 —cosA(a,b) =1— =
(@8) =1~ 1alliel 2Nall]

<1 _ llal® + 1Bl ~ ¢|jp)®
B 2||allllo]

iz (el = v1=2|p|))?
t-vl-e 2Talll

<l—-Vl-c2<c

hence A(a,b) =n/2 — ¢ and siny > 1 — ¢ so that ¥ > arcsin(1 — ¢). /.

LemMA 1.6. Let {a,b} = RY — {0} and L a non-trivial vector subspace of
RY then |A(a,L) — A(b,L)| < A(a,b).

PrROOF. We may assume A(a,b) < n/2. For all xe R" let P;(x) = p(x) and
P;.(x) =p'(x). We have
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lall?|16|* sin® 4(a, ) = ||a|*||b])* - <a,b)>

= HaH?fllbll2 — (Kp(a), p(b)> + <p'(a), p'(b))*

> [lall*18]1* = (2@ 2B + 12" @)l 2’ (B)I1)?

oo e (lp@I 2@ 12@I @Y
= lal ”””(nan Bl Tal nbn)

= lla|l*16]|” sin® |A(a, L) — A(b, L)|
and |4(a,L) — A(b,L)| < A(a,b) as desired. /-
LEMMA 1.7. Let ae RN and L =" R(e; + 1" Aiensr) and & > 0 such
that:
i- Max{|dix|: 1 <i<nl<k<N-n}<e

ii- |lally_, < Melal,

1 sin
V2n(N = n) 4(N —n)(M +n)

where 0 < < n/2, then A(a,L) <.

1i- ¢ < min

Proor. Note that L+ = ,]f: ' R(ensi — > iy Ae;) and let

n N-
a=> ae = i a; (ei +> Aiken+u) + Zn Ck (en+k -y Aikei)
i=1 i=1 k k=1 i

Then a; = a] — Z,ICV:‘I" cxAi for 1 <i<n and

n n N-n
Ck = Quik — ZAikal{ = anik — ZAik (ai + Z Cinj) for 1 <k <N-n
i=1 i=1 j=1

Now |[cx| < Me|\a||, + enl|al|, + e*n(N — n) max,<;j<n-nlc;| gives max;<x<y_n-

lck| < 2(M + n)ellal), so that
N—n n
e ( 3" e
k=1 i=1

< 2(M +n)(N - n) € ||al|,v/1 + ne?

< siny||al|

1Pre(a)l| =

and A(a,L) <y. /.
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LemMA 18. Let p: X x[0,1] > Y be a homotopy between the path-
connected topological spaces X and Y. Fix xo € X and Let y; = p(xo,s) then

[m1 (Y, y) : py(mi(X, x0))| = |1 (Y, yo) : poy(m1(X, x0))| for 0 <s<1.

PrOOF. Let a(t) = p(xo,t), 0 <t <s, be the path joining y, and y, so that
b : mi (Y, y5) = m(Y, yo)

defined by 6,(y) = a-y-a~! is a group isomorphism and we have a commutative
diagram

p
7 (X, xo) (Y, ¥)

PN (Y, ys)/g;

Since for any [f] € m(X,x0) we have a homotopy

p:[0,5] x [0,1] - Y

p(xo,3tm) 0<m<1/3

defined by ¢(1,m) = {p(,B(3m -1, 1/3<m<2/3
p(xo,3t(1 —m) 2/3<m<1

and ¢(1,0) =p(t,1) = y,, so that [x-p(B)-a~!]=[py(B)]. Our result
follows. /.

LEMMA 1.9 [6, p. 64]. Suppose A convex = R" and f : A — RY a continuous
map such that Limsup,_, || f(z) — f(z0)ll/llz — zol| < & for all zo € A, then

If(z) = f(w)]| < afjz—w| for all z,we 4. /-
Now we can establish the smoothing theorem.
THEOREM 1.10 (Smoothing theorem). Let V open = V = V, open = Vo = U
open = B™ and let Y be a C* n-manifold properly and smoothly embedded in RV
and let j: Y — RY be the canonical injection.

Suppose h: U — Y 2, RY is a locally bilipschitz embedding such that L.(h) <
o < ag(n) = ag, a > 1 where ay satisfies

0<202(a2 —1)(n—1+(n+ 5v/n)9n?) < 1

then for all 0 < u < 1, there exists an isotopy Y : U x [0,1] — h(U) € Y satisfying
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I- Yo =h

2- Yylye = hly; for all 0 <s <1,

3- Yl is a C* diffeomorphism,

4- For all ze U, 0<s <1, “(‘//s)_lh(z) _ 2| < ud(z, VE),

5- (W) ' is locally bilipshitz and L.((y,)"'h) < B’ for all 0 < s < 1 where:

8= () = <\/1 — 202(a2 — 1)(n — 1) — 3ny/202(a2 — 1)(n + 5\/5))-1

Proor. Let {w;:j>1} and {w):j>1} be the open covers of Y con-
structed in with respect to the compact set h(V2) of Y and with
¢ <min{1/(3n(N — n)a?),sin (1/2)/(4(N —n)(M +n)), &} where M = (N —n)no/
V1/202 = 2(a2 —1)(n—1), 0 < # = arcsin(1 — ¢) < /2,

2(ax? — 1)(n+ 5v/n) 1

€=3n |7 2(1 — 102202(N — n)?)
= =26 = D(r-1) (1-10e%n n

.[12(N—n)2n3/28

+ \/(IZ(N—n)2n3/2a)2 +4(1 — 10e2n2(N —n)*)(1 + 3(N—n)28)] < a,
and

1
2(141502(N —n)?%e)

—4a*n(N — n)e

+ \} (4a2n(N — n)e)* + 4(1 + 15n2(N — n)%e) ( — 8a2n(N — n)zs)

1
(Ba?)?
for 0<e<eg

5L
o

then T = szl T; is a tubular open neightbourhood of Y in R and there exists
n:T — Y a C® submersion such that for all ze T

i) m(z) is the unique point in Y such that ||7(z) —z|| =d(z, Y)

ii) For all j>1, n(T;) =T;NY and

TNz (n(z)) = (n(z) + N,»(Y))NT; which defines a C*
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chart g; of n~'(rn(z)) at z and we get a commutative diagram

0 — T(n(2(2)) — To(RY) — T, (RY)

0‘1] A[ ia )IA O I

0O— R¥Y™ — RY =—— RV
N-n
(tk) — LUy
k=1

where w = e,k — .1, Difj(-i)(pl(n(z)))ei for 1<k <N -n and
o(x) =n(z) —z+x a translation of RV so that
T.(n~'(n(z))) = 6ia(Ny()(Y)). Let 0 < u <1 and note that there exists
0 < 8o < min{d(V5,U¢),d(h(V3), Y —h(U)),r} where

r = min{l, Lebesgue number of the cover {7;:1 <j < s} of A(V2)} such that
for all ye V>

x p—
e = 31l <30 = =2 < ) — h(y)l = - 1
and for all A(y) € h(V>)
x —
o= <0 = 2 < ) — my)l < e - .

Let ¢ be the function defined in lemma 1.2 with respect to the open set U and
define

G.:U— RY
by
! lIx = ¥l .
Gi(y) = { an(kdt(y)" J(p( k51(y) )h(x) di(x) if ((y) >0
h(y) otherwise

where 0 < k < do(ot — 1)/ (40 - 27" - a%).
Note that Gk|V2p Ehl,,zc and by (3, p. 125] Gkl is C*.
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CLamm 1. 1- |Ge(y) — A(y)|| < akdt(y) in particular Gi is continuous on U.
2- [|Ge(y) = GVl < @[y = y'|| for |ly = ¥'ll < bo/2.

PrOOF. 1- We may assume y € V, with #(y) > 0, hence

iy (o) )i - )|

1Gx(y) = h(P)I =

by [4, p. 155]

J(P(||X||)(h()’+k5t(J’)x) — h(»)) dA(x)

_1
an
< akdt(y)
by Cauchy-Schwarz inequality [3, p. 153].
2- Now suppose y,y' € U, ||y — y'|| <180, t(y) >0 and #(y’) =0 then
1Gk(») — Ge(¥)l

< 1Ge(») = (W)l + IA(y) — RO
<ally—y'||(k-10-2"+1) by lemma 1.2+ [2, p. 160]

<a?fly -yl
Also if y,y' e U, |ly— y'|l <1do, t(y) and #(y’) both >0 then

|Gr(¥) — Gk (¥')]l

< \/alnjfpllh(y + kdt(y)x) — h(y' + kdt(y")x)||* dA(x)

< a(l+k-10-27)]|y— /|
< a?||ly — || as above. /.
Now define ¢ : U x [0,1] — Y by

v z{noGSk O<s<1
$ h s=0

and we follow to show that y is the required map satisfying properties 1), 2),
3) of the theorem.

CLam 2. ,(+1((0, 1)) = A(t~1((0, 1])).
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ProoF. Let 0<s<1 and yeV, with #(y) >0 and suppose ¥, ()¢
h(t~'((0,1])). We have

l¥s(y) — APl < llm 0 G (y) — G (P)I| + |G (¥) — Ay)ll-
< 2||Ga(y) = ()|

< 2askdt(y) by claim 1

< do

hence Y, (y) = h(z) with #(z) =0 and

-1 z —
d(y, ta ) _ | a W inez) - ho)|

= [1¥s(») — h(Y)II < 2ukd(y,r7(0))

by lemma 1.2, which is absurd by choice of k. /.
By claim 2 we have y : U x [0,1] — A(U).
CLAmM 3. ¥ is continuous.

Proor. Continuity on U x (0, 1] follows from [3, p. 125].

Let y e h(V2), ¢>0 and Let h(V2) < W open « W < (), T;.

There exists 0 < d; < min{(1/2)dp,¢} such that z,z’e W, ||z—7Z/|| <) =
|n(z) — 7n(z")|| < &/2 then for ||y — y'|| <é1/«® and s < 1/amin{d(h(V2), W°),

¢/4} we have ||Gu(y) — h(y)|| < askdt(y) < d(h(V2), W) and ||Gu(y) — G (V)|
< a?||y — y'|| <d; hence

195 (»") = BN < Mlvs(¥") — s+l (y) — RO

< &/2 4+ 2askot(y) < €
establishing continuity at (y,0). /.

Note that for all 0 <s <1
Uligoap 1 17 ((0,1]) — A(e™'((0,1])) is C* by [3, p. 129]

and proper.
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CramM 4. for all 0 <s<1, Y1) Is etale (= local diffeomorphism).
Proor. We shall prove this for s = 1, the proof for 0 < s < 1 is obtained by
replacing k by sk throughout.

Let ye U, t(y) >0, and set d = kot(y) and let h, be the d-simplicial ap-
proximation of 4 at y so that A.(y)-z = he(y+z) —h(y) and

! x|
an(k31(0))" J ¢( k31(0) )h"(x) 4Ax)
N+ Y | P LR + 9) ~ K()
=1 """

= ho’(C),

so that

1G(¥) - 2 = ho(y) - 2l

1
 akno"

J (t( )) ) - 2(h(x) = he(x)) dA(x)

%t'(y) - 2(Gi(y) — h(»)) +

1
an (kot(y)"™

J o har() S=E — = ot (3) - 2)(h(3) — ) i)

N 2
< “Z” (10 - 2" nok + W\' Z (J I(ﬂ ||h(x G(X)|l- d/l(X)) )

=1

by lemma 1.2 + claim 1

2 , ' _ 2
<|l|| ( - +W\/J|¢ |di(x)J|f/’ [ lA(x) — hs(x)|| d/l(x))

by Cauchy-Schwarz inequality {3, p. 153]

L 23/2(e2 = 1)(n+ 5v/m) naaie) - Nl — vI2 difx
sile( i \/ﬁm(u() jwm Y2 di( ))
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by
[0 0]
[ o'(r)rmdr
<llzl| - +2y/2(22 = D(n+5vi) - VZe—— 1| by [4, p. 155]

| o(ryr—1dr
0

<3ny/2(a2 — D) (n + 5v/m) 2]

<3n 12(ot2 — 1)(n+5vn)
;—2(0:2 -DHn-1)

A, (¥) -z|| by lemma 1.4

= cllhz(») - zll.
Since 0 <c<1 we have Gi(y)-z#0 and lemma 1.5 gives A(G.(y) -z,

hy(y)-2) < gm—n.
Note that h(y +dB") = T; for some 1 <j <s so that by

lA(y + 01) — h(P)|3—p < (N — n)n||A(y + v:) — h(»)||}

and

lho(y +2) = h(D)ly-n < (N = m)Vn Y _ |zil[l(y + 1) = (D),
i=1

< &(N — n)na||z||

< e(N — n)na
\/ociz— 22— 1)(n—1)

lhs(y + 2z) — h(»)|| by lemma 1.4

&(N — n)na

<
\/é —2(a? = 1)(n— 1) — X(N — n)*n?a?

lho(y + 2) — A(Y)|l,

< (N — n)na
\/ﬁ—Z(az —1)(n-1)

= Mé|lho(y + z) = h(p)|,.

ellhs(y +2) — h(Y)l,
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Recall that from we have a commutative diagram

()
0 —— Ty,()(Y) =Ty, (nwNY) —= Ty, (W) = Ty, (»(RY)
OMT HidI
0, R" _ RY
n N-n ()
x — £ (+ ¥ bift <p1¢1<y)>en+k)
i= =

where m is the C* chart corresponding to the C* diffeomorphism

rB" —r,BNNY
x = (x, [P ().

n N-n .
Now My, = ZR(ef+ )3 Dif,@(plwl(y))em) and gives
i=1 k=1

A(hy(y) -z, My, (,)) < 17 therefore by we get A(GL(y) -z, My (y)
< i(m—n), hence Gi(y) -z ¢ Ny,»(Y) = 67 (ker(Tg,(,)(m))) and for all z e R"
0 # TG, (y)(n) 0 0a(Gr(y) - z) = Ty(Y,) 0 6ia(z) and T,(y¥,) is a bijection as
desired. /.

Now by Claim 4, for all 0 <s <1 y,:¢1((0,1]) — A(¢"1((0,1])) is proper,
C® and étale hence a finitely sheeted covering, and claim 3+ Lemma 1.8 show
that ; is a bijection hence a C* diffeomorphism.

To prove property 4), Let ze ¥, and #(z) > 0 then A(z) = y,(z;) for some
zs € Vo, t(zg) >0 and

18(zs) = R(2)|| = IlA(zs) — ¥i(2o)l
< 2askot(z;) by claim 2

< 0o
hence
lzs — 2|l < «lli(zs) — h(2)]|
< 202s5k(6t(z) + 10 - 2"||z — z,||) by lemma 1.2
or
llzs — z|| < 4a2skd(z,t1(0))
and

()~ 1(2) — z|| < pd(z, Vs)
as desired.
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We prove property 5) for s =1, the proof for 0 <s <1 is obtained by
replacing k by sk throughout. We write ¢ for ¥, in what follows.
By lemma 1.9 it suffices to show that for all zo e U

Iz — zoll

Bah = ¥~ A(z) — ¥~ h(20)|| < Borllz — 2ol

for all z in some neighbourhood of z.
Case I. #(z9) =0
We may assume zo € V. Let ze U, ||z — zo|| < do/20, ¥~ 'h(z) = z1, then
lA(z1) — h(z0)ll < |lA(z1) — ()] + [|A(2) — A(z0)l

< 20kdt(z1) + af|z — zo|| < o

hence
llz1 = zoll < allA(z1) — A(zo)||
< 26%k10.2"||zy — zo|| + @?||z — z0|| by lemma 1.2
and ||z; — zo|| < &?||z — zo||. Similarly,

Iz = =l
o3

lz1 — zoll =

hence,

z—z - -
l e ol < “W lh(z) —y lh(zo)” < Ot3||21 — 2|

Case II.  #(zp) >0
Let A, be the d-simplicial approximation of h at zo, d = kdt(zp), then

Gk (20) - zll = llhz(20) - zll ~ [(Gi(20) — hg(20)) - Il

> (\/% -2z -1)(n—-1)— 3n\/2(oc2 —1)(n+ 5\/'_1)> izl
by lemma 1.4 + claim 4

_ =
B

Let B,(zo) < r~'((0,1]) such that p < do/2a, l//'lh(Bp(zo)) c Bpl(lll_lh(Z())) c
t71((0,1]), p; <do/2 and the oscillation of G; on Bpl(lll_lh(Z())) < (¢ —1)/Ba?.
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Now for z € B,(z0), set Y 'h(z) =z' and Y 'h(zp) = z{, then
1Gi(z") = Gi(zo)|

> [|Gi(25) - (2" = 20| = 1Gk(z") = Ge(2p) — Gilzp) - (2 = 20)|

zl -z}
”ﬁ—aon_ sup [|G(8) — Gi(z)ll - l2' — 3]l by [2, p. 162]
Ce[z(;,z‘]
lIz! =zl
Po?
and
1Gk(2") — h(zo)l|
< 1Ge(z") = ()l + l1A(z) = h(z0)|
< akot(z') + al|z — zo|| < ¥
so that

h(B,(20)) U h(¥ " h(By(20))) U Ge (¥~ h(B,(20)))
€ B,(h(z9)) = T; for some 1 < j<s.
Now gives

(Ge(=)); = W)~ Y aDifP(p(z!)) and
k=1

(Ge(2)) e = [ (P19 (2")) + 1

for 1 <i<n and 1 <k < N —n, with similar expressions for Gi(z}). We get

N—n ] .
(") =y E)I? = S (") - £ (pi(2)))?
k=1

n
>
i=1

N-n
(Ge(z") = Gr(z)); + D _{(Gr(z") — Gi(20)) s
k=1

+ (FP () = P ENIDiL (pry(2h))

+ (G ) wix = S (2 N Dif D (p1¥(21))

2
— DifY (p,wza)))}
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and
(") — W) - 1062n*(N — n)?)
< [|Ge(z") — Ge(Z)IP(1 + 3(N — n)%)
+1Gi(2") = Gi(2)) (") = Y () IN2(N — n)’n*e
hence
(') — (zp)ll
Gk (2") = Gi(2p)l 12(N — n)?n¥2s
~ 2(1 — 10&2n2(N — n)2)
+/(12(N — n)2n3/26)? + 4(1 — 108272(N — m))(1 + 3(N — n)’%)
< a|G(z") — Gi(z)
< ad|z! —Z|| by claim 1
and
1~ A(z) — ¥~ h(z0)|| = ”i;f—‘)” ............... *)
Also

1Ge(z") — Gi(z))|12
- Zn: [(./,(z ) —¥(zd)); - E{(Gk(z — Gi(20)) s

+ (D pw(zd) = FO (i EHYNDiY (prv(2h)

N—n

(G2 ek = (P DS (219 (2Y))
k=1
2
- Dif P (p, nﬁ(zs)))}

< (") = ¥ ()P (1 + 150*(N — n)%)
+ Gk (z") = Gulz)II*n(N — m)’e

+11Gk(z") = Ge(z) Il I (2") = ¥ (zp)ll4n(N — m)e.
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Note that
ZI —Zl 2
(22 < 6 - e
= Gk (z") — Gi(z))|12

N-n 1 2
3 ([ GG + ko)) — b+ Kor)) 24

k=1 n
< 1Gk(z") = Ge(z9)lln + (N = m)(ev/n - a1+ £10.27) 2" — z4)?
< (") = w(z)I1*(1 + 150> (N = n)%e) + 8&°n(N —n)’e]z" — 2§

+4a®n(N —n)e|lz" =z} || 1y (z") — ¥ ()]

hence
I (z') — (=)l
> 2"~ =] >~ | — 40’n(N — n)e
2(1 4+ 151r%2(N — n)%¢)
+ \/ (402n(N — n)e)” + 4(1 + 15n2(N — n)%e)(1/(Ba2)? — 8x2n(N — n)ze)]
llz! =z
2
and
1 _ .1
Iz -l > I =2l
or
W th(z) — g h(zo)|l < Botllz—zol| .o ovveeeenn. . **).

Now (*) and (**) give
=2l < jymth@) - v )l < patlz = 2l .

2- Here we also need several lemmas to establish the smoothing criterion.

LeMMA 2.1. Let M be a connected C® Riemannian n-manifold with Rie-
mannian distance d, then for all x e M and all € > 0 there exists some 6 > 0 such
that Bs(oy) «c QN Ty (M) and
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<é¢

d(exp,(h)),exp.(k) 1‘
Il — k]|

for all h, k € Bs(oy), h # k, and there exists co = (Xo,9,), a C* chart of M,
x € Xy, such that

<e¢

d(z,w) B ll
llpo(2) — @o(W)l
for all z, we Xy, z # w.

ProoF. Note that there exists 0 < r < 1, B,(0,) S QN Tyx(M) such that for
all 0 <p<r, exp,|: By(0x) = B,(x) is a C* diffeomorphism (5, p. 351] and
B,(x) is strictly geodesically convex [5, p. 356] (i.e. B,(x) is convex with respect
to the geodesic field of the Levi-Civita connection of M and the induced
Riemannian structure on B,(x) has a Riemannian distance = d| B,,(x)); hence for
all z, we B,(x) there exists a unique geodesic arc y,, in B,(x) joining z and w
and d(z,w) = Lt(y,,) [5, p. 25, 355] where Lt denotes the length of y,,.

Let ¢=(U,p) be a C® chart of M such that B,(x) c U and 6.: R" —
T,(M) is an isometry which defines a C® structure for Tx(M). Recall that if E
is an n-dimentional vector space and a € E then there exists a canonical bijection
7q: T,(E) — E [4, p. 23].

Now ¢ = (B,(x),0.' oexp;!) is a C* chart of M and if

B,(x) X R" — 03/ (B/(x))
(z,h) — O, :(h)

is the fibered chart corresponding to cj, then the local expression of the Levi-
Civita connection with respect to this fibered chart is

CZ((Zv v)’ (Zv w)) = ((Zv w)’ (v, _FZ(U, w)))
where T (v,w) =3, , . T (z)u,wge; and I, are C* functions on B,(x).

Also X(z) = 0., . (e), ze B,(x), 1 <i<n, is a frame of T(M) over B,(x)
and the curvature tensor of the Levi-Civita connection has the expression
(r-(X; A Xi))- Xi =3, ri, X, where rj; are C* functions on B,(x).

Now {0.(e;):1 <i<n} is an orthonormal basis for 7x(M) and if k. €
B,(o,) and if

v:(=r,r) — B,(x)

t — exp,(thy)
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is the corresponding geodesic, then with respect to the fibered chart above v’(¢)
has the expression # — (v(¢), 76" (hy)).

Also if u; is the parallel transport of 6, (e;) along the geodesic v for 1 <i < n
then {u; : 1 <i <n} form a basis of T,, (M) [5, p. 30] and the local expression
of the u;’s with respect to the fibered chart above are ¢+~ (v(¢),v;(z)) where

(1) + Y T (0(0)(6; " (1)), (:(1)es = O

5p.q

hence v; = v;(¢,h,) is continuous on (—r,r) x (B,(0x) — {0x}) by [2, p. 296] so
that w;(¢,hs) = 3| w;(t, hy) X;(v(z)) where u;(z,hy) are continuous on (—r,r) x
(Br(ox) — {ox}) and by Cramer’s rule we get (r-(u; Aug)) -up = 1, sll;jkui(t)
where s;;jk are continuous on (—r,r) X (B,(0x) — {ox}) and for each h, € B,(oy) —
{ox}, s, (-, hx) are C* functions. With these notations and terminology we have
the following claim.

CLAamM. There exists 0 < <r such that for all he Bs(ox) and all ke
T(M) — {ox} we have

[ o < ITa(exp)7 (R

< T <l+e

PrOOF. Since T, (exp,)o7,’ =1 by [5, p. 22] it suffices to show that there
exists 0 < < p < r such that 1 —¢ < || Tu(exp,) - ;' (k)|| < 1+¢ for 0 < |t| <6
and all h,k e T (M), ||h|| = p, ||k|| = 1. There exists J an open interval containing
0 in R such that f: (—r,r) x J — M defined by f(¢,{) = exp, t(h+ (k) is a one-
parameter family of geodesics and

w: (—r,r)— T(M)
t f1(1,0) = tTu(exp,) - 14 (k)

is the unique Jacobi field along the geodesic v = f(-,0) such that w(0) = o, and
(VEw)(0) =k [5, p. 36], where (E(¢)) is the unique vector field on R such that
7,(E(t)) = e; and Vg is the covariant derivative, for the Levi-Civita connection on
M, of w at ¢t along the tangent vector E(¢) (4, p. 321].

Let

h= ;h,ﬁc(ei), k= ;k,.ac(e,-).
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We have w(f) = S, wi(f)u;(t) where w;’s are C* functions, hence

Vew = Z W,{(l)ll,"(t)
i=1
and

Ve(Vew) = > wi(f)ui(r) since Vgu; = 0.
i=1

But Vg(Vew) = (r- (v’ Aw))-v’" and v'(r) = > [, hau(t) since v is a geodesic,
therefore w/'(f) = > i1 (3, ; St (DHihp)wi(t) with wi(0) = 0 = w/(0), w!(0) = k;
and w; = wi(t,h, k) is continuous on (—r,r) x (B,(ox) — {ox}) x Tx(M) by (2,
p. 296] for 1 <i<n.

Now Taylor formula [2, p. 190] shows that for 1 <i<n w;(f) =tk +*-
jol(l —{)w!'((t)d{ hence Lim,_o 1/ t2(wi(t) — tk;) = 0 uniformly for all hke
T(M), K| = p, lIk] = 1.

Let o;(t) = wi(f) — tk; for 1 <i<n and a(r) = > 7, a;(t)0.(e;) so that s, =
tk + a(t) € T(M). Let w be the unique parallel transport along v such that
w(0) = s, [5, p. 30], then w(r) = w(t) = 3 [, wi(t)ui(t) and since VEw =0 we get
W) = lIs:ll = ||tk + «(2)]| so that Lim,_o||w(z)||/|?| = 1 uniformly for all h, k€
Ty (M), ||h|| = p, ||k|| =1, hence there exists some 0 <J < p <r such that 1 —¢
< Iwdll/l1tl <1+¢ for 0< |f)| <6 and all h ke T (M), ||h| =p, ||k||=1 as
desired. /-

Observe that if y: [0,1] — Bs(ox) is any piecewise smooth curve, then

1
Lt(7)=\ﬁ)||9§]Ty(:)(expx)'(?’(t))llzdt and

1
Lt(exp, 0 y) = \/ JO I Ty (expy) - (7' (D)1* dt

so that Lt(y) > ||7(0) — y(1)|| and if further 7,(,(y'(¢)) # ox for all 0 <7 <1 then

< <l+e¢
Lt(y)

by the above claim.
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Now Let h,k € B5(0x), h # k and Let h' = exp,(h), k' = exp,(k),
it (1 —0)h+ tk,
y2 1 (expy) ™ (i (1)
and ¢o = (Xo, ¢y) = (Bs(x),6," o (exp,)”!). We have

d(h', k') d(h' k") S Lt(exp, o y,)

loo(h) = okl k=&l = Lt(z,)

and Lt(exp, o y)/Lt(y,) = d(h',k’)/||h — k||. Note that 1, (y!()) # o, for i=
1,2 so that 1 —e<d(h',k")/||h— k|| <1+ ¢ as desired. /-

LEMMA 2.2. Let W open = W < U open connected = B" and Let Y be a C®
n-manifold and h: U — Y an embedding such that h(U) =\ )., Y; where for all
i21, (Y,0)isa C® chart of Y and ¢, o Rly1(y, is bilipschitz with L(g; o - (y,)
<a, a> 1, then there exists a Riemannian distance d on h(U) such that h|y, is
locally bilipschitz and L.(h|y, | -|,d) < a*.

ProOOF. By [3, p. 20] there exists o/ = {¢; = (Y/,¢!):i > 1} a C® atlas of
h(U) such that

1- {Y/:i>1} is a locally finite open cover of h(U).

2- Y/ = Yy, ¢/ = ¢jyly; where j(i) =min{j>1:7] < v}}.
Let {f;:i>1} be a C* partition of unit subordinate to the cover {¥/ :i > 1} of
h(U) [4, p. 16].

Note that the tangent bundle of A(U) is defined by the family of C®
diffeomorphisms [4, p. 104]

g;: Y xR" — o,j(lu)(Yi')
(x,h) — 6, x(h).

Define a Riemannian metric an 4(U) by [5, p. 264]

9(x) = 3 £1(x)g:(x)

i>1
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where {g;(x),0:(x,h) ® oi(x,k)> = {h,k), so that if y:[a, bl — h(U) is any
piecewise C® curve then its length is given by

jf(yt) 0 ® 70> d

b
=j S 001D, 0 )OI dt @1

i>1

Note that for all i, j > 1 such that Y/NY/ # ¢ the transition homeomorphism
plog™l: p/(Y/NY/) — ¢j(¥Y/NY/) is bilipschitz and L(pjo¢;™') <o? so that

(173l < 1D(9] 0 9 (x) - 2]l < o3|le] (2:2)

for all xe¢/(Y/NY/) and all te R".

Let r= Lebesgue number of the cover {Y/:i>1} of h(W) with respect
to the Riemannian distance d, then there exists a finite family of C* charts
{(Z;,¥;) : 1 < j < s} such that:

- (W) = U Z .

2- Forall 1 <j < s, Z; < B,/a(z;), zj € H(W), ¥;(Z;) is an open ball in R”
where y; = ¢; |, and i(j ) =min{l <i: B,(z;) = Y/}.

Now it suffices to show that for 1 <j <'s, y; is bilipschitz and L(y;,d, || - ||)

. Let x,y € Z; and let

y:[0,1] = ¥;(Z)
= (1= Oy;(x) + 0y (»)
hence
d(x,y) <LU((¥;)"" ©7)
< &3||y;(x) — ¥;(»)|l by equations 2.1+2.2,

also since d(x, y) < r/2, there exists a piecewise C® curve p : [a,b] — h(U) such
that p(a) = x, p(b) =y and Lt(p) < r/2, hence d(x), p(t)) < Lt(p) < r/2 for
all a<t<b and p([a,d]) < Y, so that Lt(p) > 1/a3 f | D(@;(;y 0 p)(D)]| dt =

1/a3|ly;(x) — ¥;(»)l| and d(x,y) = 1/?Y;(x) =gl /-

LEMMA 2.3. Let Y be a connected C® Riemannian n-manifold with Rie-

mannian distance d and Let o > 1 then there exists a locally bilipschitz isometric
embedding Y : Y — RY such that L.(y,d,| ) <«
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Proor. By virtue of Nash embedding theorem [9] we may assume that Y is
a C® Riemannian submanifold of RY. Let &£ > 0 such that

1 —&2n(N —n)
>
1+ &?n(N —n)
The argument of lemma 1.3 shows that there exists o = {B;:j>1} a

covering of Y such that: for all j > 1, B; = BSI,Y (z))NY, zie Y and modulo an
affine transformation of R" there exists

RI|m—

¥, : Bg(0) — B

x = (x, fU(x))

C* diffeomorphism and ) (0) =0, f(j)l(O) =0, sup{}Dif,({j)(C)l 1 <i<gn,
1<k<N-n||| <s}<e Let B={B,(y;):i=1} be a refinement of o/ by
strictly geodesically convex balls [5, p. 356]. Now Let z,w € B,,(y;) = B; = B;’jY (z)
NY < RY for some j> 1. We have w = exp,h, for some h, € T.(Y) and

V: [Oa 1] - Br,»(yi)
t — exp,(th;)
is the unique geodesic arc from z to w [5, p. 25] and

d(z,w) = d(z,exp,(k:)) = [lh|| [5, p. 355]

= Lt(y) = [|lz — w.
Note that
Iz = wll* = (1 — (N — m)n)||z — wll3
and if
o:1—R"
t— (1 =10)p(2) +tpy(w)
then

1
>
" \/1+&n(N —n)

_LWen)  _ dew
VI+en(N—n) /1+e&n(N —n)

1
L 1w, 0 0)' (0] dt

llz = wil
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1 —&2n(N — n)
and \/1 T e2n(N — n)d(Z, w) < ||z — w|| <d(z,w). Our result follows. /.

LEMMA 24. Let W open c W c U open c B* and Let Y be a C*®
n-manifold and let h: U — Y be an embedding. Suppose that there exists C®
charts of Y, ¢i=(Yi,9,), i 21, such that h(U)=\),,, Y: and for each i>1
@; © hly-1(y, is Locally bilipschitz with L.(g; 0 hlj-1(y,) < a, &> 1, then there exists
a proper C* embedding y : Y — R" such that y o h|y, is locally bilipschitz with
L(¥ o hly) < o

ProorF. By Whitney embedding theorem ([4, p. 185] it suffices to show
that there exists a C® embedding y : A(U) — RY such that Y o k|, is locally
bilipschitz with L.(i o h|,) < a>. We may assume that U is connected and that
@i © hly-1(y, is bilipschitz with L(g; 0 hlj-1(y,) <« Now it suffices to invoke
lemma 2.2 + lemma 2.3 to establish our claim. /.

Now we can establish our smoothing criterion.

THEOREM 2.5. Let X be a topological n-manifold and let oy satisfies
0 <202(a — 1)(n—1+9n%(n+5\n)) <1 then the following statements are
equivalent:

1- X has a smooth structure.

2- inf{L(«) : o Lipschitz atlas of X} =1,

3- X has a Lipschitz atlas o/ with L() < a,

4- X has a locally Lipschitz atlas of with L.(/) < a, where

n-1
aS(ﬁn(a)aZO)S/W((ZO) -1) < a

and

o) = (V1226 =1 = 1) = 32— )53 )

PrOOF. Clearly we may assume that X is connected. 1) = 2) Give X a
Riemannian structure [5, p. 264} so that X is a connected C* Riemannian n-
manifold with Riemannian distance d.
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Let 0 <& < I, then by lemma 2.1 for all x € X, there exists a C® chart of X,
cx = (Xx,¢,), x € Xy, such that ¢, is bilipschitz and

L(gd,||-||) <1+1/3.

The collection of these C* charts form a Lipschitz atlas of X with Lipschitz
size < 1 +e.

Now it suffices to show that 4) = 1). Let # = {(V;,9;) :i > 1} be a locally
Lipschitz atlas of X with L.(#) < o and let ¢;(V;) = W; = B" for all i > 1. By
abuse of notation we also let # = {V;:i > 1}. Since X Has a Lebesgue covering
dimension = n by [8, p. 17, 27, 97], we may assume by Milnor lemma [10,
lemma 2.4] that # is locally finite and that # = UZ:O &/ where each 7y =
{Vi:i=kmod(n+ 1)}, a pairwise dijoint subfamily of 4.

Let ', 0 < i < n, be open covers of X such that Z° = #, #' = {V’ j =1},
V?=V; for j>1 and B! is a shrinking of %' for 0 <i < n (i.e V’+1 c ¥} for
all]>1) by [3, p. 21]. For],k>1 0<i<nlet V”rl < V' open < V’ cVJ’
W/ =¢(V/) and Wi —(pk(V NV). Also for Js kzl OSISn Let
W)= (pj(V’) 9 = (ple, Wi=@(V/NV]) and hj : W; — Wy be defined by
hjk—(p]owk |W, so that for all 0<i<n X—(ZOW@)ZIW’ )
>on W’)mod({WkJ} {h .}) where >, denotes the topological sum over all
J =kmod(n+1).

To construct a C* structure on X it suffices to establish the following
assertion: For all 0<i<n, Let X'=(, W/ @, W -3, W)
mod({ W },{h};}) and Let p!: W/ — X' be the corresponding open embedding
for all j =k <imod(n+ 1), then there exists a homeomorphism

g X B — (ZB @@ ZB,) mod({By}, {fi;})

where B; open = B" for all j > 1, By; open = B; for all j,k > 1 and Jij : Byj —
Bj is a C* diffeomorphism such that
1- By =B, f;=id
2- For all j,k,m >1 we have a commutative diagram of C*® diffeomor-
phisms
I
Bkj N Bm/ d Bjm n Bim

o Fion
B N By,
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where f ,’j,j = fmilg, s, and for all s =k <imod(n+ 1) we have a commutative
diagram of homeomorphisms defining g,

pi(wiy -2, g.(By)

q

wi %, B,
where g : B; — B' is the corresponding open embedding and g! is locally
bilipschitz with

Le(g!) < (Ba(a)o®®)/PE=D —

We proceed by induction on i, 0 <i < n. If i =0, there is nothing to prove
since /o is a disjoint family of open subsets of X which are chart domains.

Assume our assertion holds for some 0 <i < n. For all j =i+ 1mod(n+1)
define the embedding

hj : U Ws'j' — B;
by hjly, = g'oplohi =gsoglohl where |); denotes the union of all sets
indexed by s where s =k <imod(n+1).

By definition of g‘, A; is clearly well-defined and, since # is locally finite,
U, Wit =, Wi compact< | J, W) for all j=i+1mod(n+1). Also
{(q5(Bs),q;") :s=k <imod(n+ 1)} is a C* atlas of B’ and by the induction
hypothesis ¢;! o jlw, is locally bilipschitz with L(q;" o hjly) < 1Ii. o for all
s=k <imod(n+1).

Now apply lemma 2.4 with the substitution W — ), W}, U~ |, W/,
h+s h; and Y +— B', then there exists a proper C* embedding ¥ : B' — RY such
that y o flU.v Wy is locally bilipschitz with L.(y Ohj'Ui Ws}') < (I,»a)5, Since (Iia)s
< ap by hypothesis, the smoothing theorem, theorem 1.10, provides a homeomor-
phism ¥, : J, W& — h({J; W) = B such that y,|; wi is a C* diffeomor-
phism and 4/ : W/ — W/ defined by

Yilhi(x) if xe (Y WE
Bxy={ 7Y

x otherwise

is a locally bilipschitz homeomorphism and L.(h/) < B, () (T;)*® = Iy1.
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Now we have the following commutative diagram where the horizontal
arrows are homeomorphisms.

9@ b
Xt@ZWt +1 BI@ZWI
i+1 i+1
quotient mapJv lquotient map

(X’ ® ZW) mod({ W1}, {pihi}) — (B’ ®y W) mod({h(W,)}.{g'pih 1Y)

i+1 i+1

Remark B Remark B

(;Wji ®ZW>m0d({WI§}’{htis})~)(%:Bj('B"'('BZBj)mOd

it i+1
({Bus, j(W’) ts—ksimod(n+1),jzi+1mod(n+1)},
{firgihih™ i 1,5 = k < imod(n+ 1), j = i+ 1mod(n+ 1)})

Open Open
embedding embedding
Remark A Remark A

gi+l

Xi+1

B"“:(ZB; (—BZB)mod
0 i+1
({Bj, hi(Wi") 1 t,s =k <imod(n+1),j =i+ I mod(n+ 1)})

{fts,g’Hh'Hh’ lit,s=k<imod(n+1),j=i+ 1mod(n+1)})

where B = gi(W/*!) for s=k <imod(n+1), B =W}, Bj = h/(WH), for
j=i+1lmod(n+1), By =gi(Wit"), fi; = filp and g’+1 = gilwm.

Note that gi+lo h;'j*] i~ :hj(Wsj.“) — gs“(W’“) and gi*!o h;'}” oh/™ =
g;' oy, a C* diffeomorphism for j =i+ Imod(n+ 1) and we have a com-
mutative diagram of homeomorphisms

11|

W) —— ¢(B))

P}.H'l T )[qj

) g1+l_h/
W_l+1 J BI
J

and g/*! is locally bilipschitz with L.(gi™') < Iy as desired. /.

REMARK 2.6. We can give an alternative proof to the implication 1) = 2) in
theorem 2.5 that is independent of lemma 2.1 as follows.
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Let o > 0. We have X a C* n-manifold and we let e : X — R" be a proper
C* embedding and n/2 >y > arcsin1/(1 + 1/30), then for ¢ < cosy/(2(N —n)-
(n+ /n(N —n))) we let T be the tubular neighbourhood of X in RY constructed
in lemma 1.3. We keep the notations of that Lemma. Define the function
¢ :e(X) > Gy n_n(R), where Gy n_,(R) is the real Grassmannian of indicies
N,N —n, as follows. For all yee(X), yeT; for some j>1, set ¢(y) = the
vector subspace of RY generated by the set (n=!(y)NT;) — y. Clearly ¢ is well-
defined and ¢(y) € Gy nv-n(R) for all yee(X). Note that

N-n n )
o(»)=> R (en+k - _Dif ,((”(pn(y))ei)
k=1 i=1

and since Gy nv_n(R) = GLN(R)/(GLyn_n(R) x GL,(R) x R"™~™) [4, p. 70], the
function ¢|7n.y) factors as the composition
TiNe(X) 3 GLy(R) 2 Gy n-n(R)

where n; is the canonical C*® submersion and

I, ]
DS (P )T
so that the function ¢ is C*.

Now it suffices to show that for all y € e(X) there exists a chart (W,,¢,)
such that y € W, and ¢, is bilipschitz with L(p,) <1+ 1/30. Let y € e(X) and
let W, be an open neighbourhood of y in e(X) such that W, < (a; + 1/2¢;B")
Ne(X) for some j> 1, hence for all z, we W,, z#w, we have |z —w|y_,
< /n(N —n)e|lz —wl|, and since ¢(y)= SN R(enrk — S, Dif P (py(3))er)
where max{|D;f’ (p;(»)|: 1 <i<n,1<k<N-n}<eand e < cosy/4(N —n)
(n+ +/n(N — n)) we get, by the proof of lemma 1.7, A(z —w,¢(y)) = ¥.

This shows that the map ¢ constructed above is a C® transverse field of X
in RY with respect to the embedding e¢: X — R" [see 13].

Let p, =00 P(¢(y))l|Wy where 6 is an arbitrary .isometry of P, - onto R",
then [lp,(2) — 9, (W) = 1Py (2 = w)ll = ll2 = wllsin A(z = w,9(»)) and |}z = w]|
> ||gy(2) —@,(W)|l = ||z — wl|siny > ||z —w||/(1 +1/30) so that (W),¢,) is in-
deed a chart of e(X) and ¢, is bilipschitz with L(p,) <1+ 1/30 as desired.

References

[1] Bourbaki, N, Eléments de Mathématique, Variétés Différentielles et Analytiques, Actual. Scient.
Ind., n° 1333. Diffusion C.C.L.S., Paris, 1983.
[2] Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York and London, 1969.



On the Smoothing Problem 45

Dieudonné, J., Eléments d’ Analyse, Tome II, Gauthier-Villars, Paris 1982.

Dieudonné, J., Eléments d’ Analyse, Tome III, Gauthier-Villars, Paris 1974.

Dieudonné, J., Eléments d’ Analyse, Tome IV, Gauthier-Villars, Paris 1977.

Federer, H., Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York, N.Y.,
1969.

Karcher, H., On Shikata’s Distance between Differentiable Structures, Manuscripta Math. 6,
(1972), pp. 53-69.

Nagata, J., Modern Dimension Theory, Wiley (Interscience), New York, 1965.

Nash, J., The Imbedding Problem for Riemannian Manifolds, Ann. of Math. 63, (1956), pp. 20—
63.

Palais, R. S., Homotopy Theory of Infinite Dimentional Manifolds, Topology 5, (1966),
pp. 1-16.

Shikata, Y., On the Smoothing Problem and the Size of a Topological Manifold, Osaka J.
Math. 3, (1966), pp. 293-301.

Weller, G. P., Equivalent Sizes of Lipschitz Manifolds and the Smoothing Problem, Osaka J.
Math. 10, (1973), pp. 507-510.

Whithead, J. H. C., Manifolds with Transverse Fields in Euclidean Space, Ann. of Math., 73,
no. 1, (1961), pp. 154-212.



	ON THE SMOOTHING PROBLEM
	THEOREM AND ...
	THEOREM 2.5. ...
	References


