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1. Introduction.

A topological space X is called homogeneous if for arbitrary points x, yv&X
there exists a homeomorphism f from X onto itself such that f(x)=y. Is
every compact 7,-space the continuous image of a homogeneous compact 7T,-
space (Arhangel’skii [2])? Particularly, is a compact T,-space nonhomogeneous
if it can be mapped continuously onto SN (van Douwen [3])? These interest-
ing problems remain unsolved. Related to these problems, Motorov showed
that there exists a metrizable compact 7,-space which is not a retract of any
homogeneous compact T,-space. In the specific idea of Motorov, Arhangel’skii
([11, [2)) found an interesting topological property called cell solubility which
every retract of an arbitrary homogeneous compact 7,-space posesses. He raised
some problems related to this topological property. We solved already one of
his problems [6]. In this paper we will answer to some other problems of
Arhangel’skii.

2. Definitions.

The following definitions were introduced by Arhangel’skii [1], [2].

2.1. DEFINITION. Let X be a topological space. A map F of X into the
set of all closed subsets of X is called a cellularity on X if the following con-
ditions are satisfied :

1) x=F(x),

2) if y=F(x) then F(y)CTF(x),

3) if f is a homeomorphism from X onto itself such that f(x)=y then
J(F(x)=F(y).

The sets F(x) are called the terms of the cellularity F. A cellularity F on
a space X is called disjoint if for any x, y=X either F(x)=F(y) or F(x)NF(y)
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=@. Arhangel’skii showed that a topological space X is homogeneous if and
only if every cellularity on X having a compact term is disjoint.

Let ¢g=(Y, Z, &) be a fixed triple, where Y is a topological space, Z a sub-
space of Y, and € a family of subsets of Y. Let X be an arbitrary topological
space. A closed subset P of X is said to be g¢-saturated if for any continuous
map f:Y—X such that f(E)\P+ @ for all Ec& we have f(Z)CP. For an
arbitrary point x& X we denote F(x) the intersection of all g-saturated subsets
containing x. Then F; is a cellularity on X. This cellularity is called the
cellularity induced by the triple q.

2.2. DEFINITION. A topological space X is called cell soluble if for any
triple ¢ as above its induced cellularity is disjoint, provided that at least one
of its terms is compact.

Arhangel’skii proved that every retract of an arbitrary homogeneous com-
pact T,-space is cell soluble. We showed that every zero-dimensional space is
cell soluble [6].

Let us denote by T the category of all Tychonoff spaces and all continuous
maps between such spaces.

2.3. DEFINITION. An abstract cellularity is a rule that associates with each
space X&T some callularity F¥ on X in such a way that the following condi-
tion is satisfied: for any map f: X-—Y in the category T,

f(FX(x)CTFY(f(x))
is held for all xe X.

The above abstract cellularity is expressed by
F={F¥. XeT}.

Let ¢g=(Y, Z, &) be a triple as before. For each space X&T, let F,* be
the cellularity induced on X by ¢q. Then F,={F,*: XeT} is an abstract cellu-
larity. This abstract cellularity is called a representable cellularity.

2.4. DEFINITION. A compact T,-space X is called completely cell soluble if

for every abstract cellularity F the cellularity F£ on X is disjoint.

3. A non-representable abstract cellularity.

Arhangel’skii posed the following problem in [2].



Completely Cell Soluble Spaces 221

3.1. PROBLEM. Is there an example of a non-representable abstract cellu-
larity?

We will give an affirmative answer to this problem. For any space X&T
let F.X¥ be the map of X into the set of closed subsets of X defined by

F.*(x) is the connected component of x

for all xX. Then F.={F/X: X&T} is obviously an abstract cellularity.

3.2. THEOREM. F, is a non-representable abstract cellularity.

Before we give the proof of this theorem, let us recall the long line. Let
t be an arbitrary uncountable ordinal. The extended z-long line L. is con-
structed from the ordinal space r by placing between each ordinal « and its
successor a-+1 a copy of the unit interval /=(0, 1). L. is then linearly ordered
and we give it the order topology. L. has the following properties:

(1) L. is connected.

(2) If r is a successor ordinal than L. is compact.

PROOF OF THEOREM. This proof is much the same as that of our theorem
in [6]. For any triple ¢=(Y, Z, &) as before, we will show that F,#F. We
can assume that Z# @ since if Z=¢@ then F,*(x)={x} for any X<7T and any
x=X. Further we can assume that €+ @ (Z# @ has been assumed) since if
&=@ then F,*(x)=X for any X&T and any x<=X.

Suppose that there exists a clopen subset G of Y such that G"\Z# @ and
E—G+ @ for every Ec&. Then we can show that F,¥(x)=X for any XeT
and any x<JX, and hence F,*+F.* for non-connected spaces X. In fact, if a
non-empty subset P of X satisfies P+ X, then there exists a continuous map
f:Y—X such that f(G)CX—P and f(Y—G)CP. This shows that P is not g-
saturated.

The case remained is the following: For any clopen subset G of Y, if
GNZ+ @ then there exists some member E of & such that ECG. In this case,
it will be proved that there exists a space L&T such that F,+F.. Let ¢ be
the cardinality of Y. Let L be the (¢*+1)-extended long line. The linearly
order relation of L is expressed by <. Since L is connected, F,*(x)=L for
any x< L. On the other hand, for the last point £+ of L it will be shown that
F*(k*)={£*}. In fact, let f:Y—L be a continuous map such that f(E)N\{x*}
+ @ for any E<=¢&. It suffices to show that f(Z)={x*}. Assume that f(Z)+
{¢*}. Let y be a point of f(Z) which is distinct from the point £*. Then,
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since the cardinality of {x& L | y<x=«k*} is greater than the cardinally of Y,
there exists a point z&L—f(Y) between vy and x*. Let U={xcL | x<z}.
Then f~*(U) is a clopen subset of Y satisfying f"*(U"\Z+ @ and E—f"YU)#* @
for any E=¢. This contradicts the assumption of the last case. It follows
that f(Z)={x"*}.

In connection with the above result the following problem arises.

3.3. PROBLEM. Is every cell soluble compact T,-space completely cell
soluble?

4. Complete cell solubility of zero-dimensional spaces.

Arhangel’skii posed also the following problems in [2].

4.1. PROBLEM. Is every zero-dimensional compact 7,-space completely cell
soluble?

4.2. PROBLEM. s it true that SN—N is completely cell soluble ?

We will show that these problems are solved affirmatively. It suffices to
give the affirmative answer to 4.1.

4.3. THEOREM. FEvery zero-dimensional compact Ti-space is completely cell
soluble. '

PrRoor. Let F be an arbitrary abstract cellularity. Let 2={0, 1} be the
two-point discrete space. Now, let us consider the cellularty F? on 2 which is
associated with F. Since 2 is a compact homogeneous space, the following two
case occur:

(1) F*0)={0} and F*(1)={1}.

(2) FH0O)=F*1)=2.

Case (1). Let X be an arbitrary zero-dimensional compact 7T,-space. Then
it will be shown that FX(x)={x} for any x= X, and hence the cellularity F¥
on X is disjoint. In fact, assume that F¥(x) contains more than one point.
Then there exists a continuous map f: X—2 such that f(F¥(x))=2. This con-
tradicts one of the conditions of abstract cellularity since f(F¥*(x))2F?*f(x)).

Case (2). It will be proved that F¥(x)=X for any X&T and any x&X.
In fact, let x be an arbitrary point of X. Then for any another point ye X
there exists a continuous map f:2—X such that f(0)=x and f(1)=y. From
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SN FH(f(O)=F*(x)

it follows that y=F*(x). This implies that F¥(x)=X.

5. Weakly homogeneous spaces.

As a result of Arhangel’skii every retract of a homogeneous compact T.-
space is completely cell soluble. And we showed that every zero-dimensional
compact T,-space is completely cell soluble. Hence there arises the following
natural question.

5.1. QUESTION. Is every zero-dimensional compact 7T,-space the retract of
a homogeneous compact 7,-space ?

In fact, the answer to the following problem of Arhangel’skii [2] is also

unknown.

5.2. PROBLEM. For every zero-dimensional compact T,-space X, does there
exist a homogeneous compact T,-space Y such that X XY is homogeneous ?

We do not have perfect solutions for these problems. But we will give
partial answers to these problems.

5.3. DEFINITION. A topological space X is called weakly homogeneous if,
for arbitrary x, y&X and any neighborhoods U, V of x, y respectively, there
exists a homeomorphism f from X onto itself such that f(x)eV and f~(y)<U.

Every homogeneous space is clearly weakly homogeneous.

5.4. PROPOSITION. A zero-dimesional T,-space X is weakly homogeneous if
and only if, for arbitrary x, y=X and any neighborhoods U, V of x, y respec-
tively, there exist homeomorphic clopen neighborhoods U’, V' of x, y respectively
such that U'CU, V'CV.

Proor. (if) Let x, y be distinct points of X. Let U, V be neighborhoods
of x, y respectively. We can assume that U and V are disjoint clopen subsets
of X. Then there exists a homeomorphism g: U’—V’ for some clopen neigh-
borhoods U’, V' of x, y respectively such that U'CU, V'cCV. Let f:X—X be
the map defined by

g(x) if xeU’
fx)y={ g '(x) if x&V’

x otherwise,
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then f is a homeomorphism such that f(x)eV’'CV and f~'(y)=g (y)=U’'CU.

(only if) We can assume that U and V are clopen subsets. Let f: X—X
be a homeomorphism such that f(x)&V, f~(y)eU. Now, let U'=Uf"YV)
and V'=VNf(U). Then U’ is a neighborhood of x and V’ is a neighborhood
of y. Further f|U’:U’—V’ is a homeomorphism.

Let us call an infinite, zero-dimensional compact T,-space X to be B-homo-
geneous if every non-empty clopen subspace of X is homeomorphic to X (cf.
[4], [5)). Then every B-homogeneous space is weakly homogeneous. As noted
by van Douwen [4], every first countable B-homogeneous space is homogeneous.
Similarly, we can show the following.

5.5. PROPOSITION. FEuvery first countable zero-dimensional weakly homogeneous
T,-space is homogeneous.

PROOF. We can assume that X has no isolated point. Let x, y be arbitrary
points of X.

CLAamMm 1. Let U, V be homeomorphic clopen neighborhoods of x, y respec-
tively. Then for arbitrary neighborhoods W=, W¥ of x, vy respectively there
exists a homeomorphism f from U onto V such that f(x)esWY, f~Y(y)eW?=.

In fact, Let g: U—V be a homeomorphism. If g(x)=y, then there is noth-
ing to do. Hence let g(x)+v. Then there are disjoint homeomorphic clopen
neighborhoods U,,, V, of g(x), y respectively such that U,.,CVg(W?),
V,cV\W¥, For a homeomorphism h:U,»—V, let k: V-V be the homeo-
morphism defined by

h(x) if x&Ugw)
k(x)=1 h™'(x) if xeV,

x otherwise.

Then f=kog:U—V is a homeomorphism and satisfies f(x)=~k(g(x))=kU ;)
eV, Wy, ff(y)=g k" (yNeg (k" (V )=g""Uzw))TW?=.

CLAIM 2. There are neighborhood bases {U.}, {V,.} of x, vy respectively,
consisting of clopen subsets such that

(@ UrDUnss, VadViai;

(b) there is a homeomorphism f, from U,—U,,, onto V,—V .4,
for each new.
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Let {W=,}, {W¥,} be neighborhood bases of =x, y respectively, consisting
of clopen subsets of X. Then there are homeomorphic clopen neighborhoods
U,, Vo of x, v respectively such that U,CW?=, V,CcW?¥. From Claim 1 it fol-
lows that there is a homeomorphism g,:U,—V, such that g,(x)eW?,, g,7'(y)
eW=. Let U,=g,"‘W¥)nW?*, and V,=g,W=*)"\W?¥. Then U, and V, are
homeomorphic clopen neighborhoods of x, y respectively. Further f,=g,|(U,—U.)
is a homeomorphism from U,—U, onto V,—V,. Continuing this procedure, we
can obtain the desired neighborhood bases of x, y respectively.

Let f: X—X be the map defined by
z if zeX-U,
f(@=3 fulz) if 2€Ur—Unn
y if z=x.

Then f is a homeomorphism such that f(x)=y. This completes the proof.
In the next theorem, the cardinal function w(X) means the weight of X.

5.6. THEOREM. Let X be a zero-dimensional compact T,-space. Then there
exists a zero-dimensional compact Ts-space Y with w(Y)=w(X) such that XXY is
weakly homogeneous.

PrROOF. Let @ be an open basis of X consisting of clopen subsets. We
can assume that | 38 |=w(X) and X 8. Let Y be the topological product

II{B® | Be 8}.

Then the family of clopen subsets of ¥ which are homeomorphic to Y forms
an open basis of Y. Hence Y is weakly homogeneous. Since X XY is homeo-
morphic to Y, the product space X XY is weakly homogeneous.

5.7. COROLLARY. Every zero-dimensional compact Ts-space is a retract of a

weakly homogeneous compact Ts-space.

Since every compact T,-space is a continuous image of a zero-dimensional
compact T.-space, we can give the following partial answer to the problem of
Arhangel’skii stated in the introduction.

5.8. COROLLARY. Every compact Ts-space is a continuous image of a weakly
homogeneous compact T ,-space.
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