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1. Introduction.

A topological space $X$ is called homogeneous if for arbitrary points $x,$ $y\in X$

there exists a homeomorphism $f$ from $X$ onto itself such that $f(x)=y$ . Is
every compact $T_{2}$ -space the continuous image of a homogeneous compact $T_{2^{-}}$

space (Arhangel’skii [2])? Particularly, is a compact $T_{2}$ -space nonhomogeneous
if it can be mapped continuously onto $\beta N$ $($van Douwen $[3])^{p}$ These interest-
ing problems remain unsolved. Related to these problems, Motorov showed
that there exists a metrizable compact $T_{2}$ -space which is not a retract of any
homogeneous compact $T_{2}$-space. In the specific idea of Motorov, Arhangel’skii
([1], [2]) found an interesting topological property called cell solubility which
every retract of an arbitrary homogeneous compact $T_{2}$ -space posesses. He raised
some problems related to this topological property. We solved already one of
his problems [6]. In this paper we will answer to some other problems of
Arhangel’skii.

2. Definitions.

The following definitions were introduced by Arhangel’skii [1], [2].

2.1. DEFINITION. Let $X$ be a topological space. A map $F$ of $X$ into the
set of all closed subsets of $X$ is called a cellularity on $X$ if the following con-
ditions are satisfied:

1) $x\in F(x)$,

2) if $y\in F(x)$ then $F(y)\subset F(x)$ ,

3) if $f$ is a homeomorphism from $X$ onto itself such that $f(x)=y$ then
$f(F(x))=F(y)$ .

The sets $F(x)$ are called the terms of the cellularity $F$. A cellularity $F$ on
a space $X$ is called disjoint if for any $x,$ $y\in X$ either $F(x)=F(y)$ or $F(x)\cap F(y)$
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$=\emptyset$ . Arhangel’skii showed that a topological space $X$ is homogeneous if and
only if every cellularity on $X$ having a compact term is disjoint.

Let $q=(Y, Z, \mathcal{E})$ be a fixed triple, where $Y$ is a topological space, $Z$ a sub-
space of $Y$ , and $\mathcal{E}$ a family of subsets of $Y$. Let $X$ be an arbitrary topological
space. A closed subset $P$ of $X$ is said to be q-saturated if for any continuous
map $f:Y\rightarrow X$ such that $ f(E)(\eta P\neq\emptyset$ for all $E\in \mathcal{E}$ we have $f(Z)\subset P$. For an
arbitrary point $x\in X$ we denote $F_{q}(x)$ the intersection of all q-saturated subsets
containing $x$ . Then $F_{q}$ is a cellularity on $X$. This cellularity is called the
cellularity induced by the triple $q$ .

2.2. DEFINITION. A topological space $X$ is called cell soluble if for any
triple $q$ as above its induced cellularity is disjoint, provided that at least one
of its terms is compact.

Arhangel’skii proved that every retract of an arbitrary homogeneous com-
pact $T_{2}$-space is cell soluble. We showed that every zero-dimensional space is
cell soluble [6].

Let us denote by $T$ the category of all Tychonoff spaces and all continuous
maps between such spaces.

2.3. DEFINITION. An abstract cellularity is a rule that associates with each
space $X\in T$ some callularity $F^{x}$ on $X$ in such a way that the following condi-
tion is satisfied: for any map $f:X\rightarrow Y$ in the category $T$ ,

$f(F^{X}(x))\subset F^{Y}(f(x))$

is held for all $x\in X$.

The above abstract cellularity is expressed by

$F=\{F^{x} : X\in T\}$ .

Let $q=(Y, Z, \mathcal{E})$ be a triple as before. For each space $X\in T$ , let $F_{q^{X}}$ be
the cellularity induced on $X$ by $q$ . Then $F_{q}=\{F_{q}^{X} : X\in T\}$ is an abstract cellu-
larity. This abstract cellularity is called a representable cellularity.

2.4. DEFINITION. A compact $T_{2}$-space $X$ is called completely cell soluble if
for every abstract cellularity $F$ the cellularity $F^{X}$ on $X$ is disjoint.

3. A non-representable abstract cellularity.

Arhangel’skii posed the following problem in [2].
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3.1. PROBLEM. Is there an example of a non-representable abstract cellu-
larity?

We will give an affirmative answer to this problem. For any space $X\in T$

let $F_{C}^{X}$ be the map of $X$ into the set of closed subsets of $X$ defined by

$F_{c^{X}}(x)$ is the connected component of $x$

for all $x\in X$. Then $F_{C}=\{F_{c^{X}} : X\in T\}$ is obviously an abstract cellularity.

3.2. THEOREM. $F_{c}$ is a non-representable abstract cellularity.

Before we give the proof of this theorem, let us recall the long line. Let
$\tau$ be an arbitrary uncountable ordinal. The extended $\tau$-long line $L_{\tau}$ is con-
structed from the ordinal space $\tau$ by placing between each ordinal $\alpha$ and its
successor $\alpha+1$ a copy of the unit interval $I=(O, 1)$ . $L_{\tau}$ is then linearly ordered
and we give it the order topology. $L_{\tau}$ has the following properties:

(1) $L_{\tau}$ is connected.
(2) If $\tau$ is a successor ordinal than $L_{\tau}$ is compact.

PROOF OF THEOREM. This proof is much the same as that of our theorem
in [6]. For any triple $q=(Y, Z, \mathcal{E})$ as before, we will show that $F_{q}\neq F_{c}$ . We
can assume that $ Z\neq\emptyset$ since if $ Z=\emptyset$ then $F_{q}^{X}(x)=\{x\}$ for any $X\in T$ and any
$x\in X$. Further we can assume that $\mathcal{E}\neq\emptyset$ ( $ Z\neq\emptyset$ has been assumed) since if
$\mathcal{E}=\emptyset$ then $F_{q^{X}}(x)=X$ for any $X\in T$ and any $x\in X$.

Suppose that there exists a clopen subset $G$ of $Y$ such that $ G\cap Z\neq\emptyset$ and
$ E-G\neq\emptyset$ for every $E\in \mathcal{E}$ . Then we can show that $F_{q}^{X}(x)=X$ for any $X\in p^{v}$

and any $x\in X$, and hence $F_{q}^{X}\neq F_{C}^{X}$ for non-connected spaces $X$. In fact, if a
non-empty subset $P$ of $X$ satisfies $P\neq X$, then there exists a continuous map
$f:Y\rightarrow X$ such that $f(G)\subset X-P$ and $f(Y-G)\subset P$. This shows that $P$ is not q-
saturated.

The case remained is the following: For any clopen subset $G$ of $Y$ , if
$ G\cap Z\neq\emptyset$ then there exists some member $E$ of $\mathcal{E}$ such that $E\subset G$ . In this case,
it will be proved that there exists a space $L\in T$ such that $F_{q^{L}}\neq F_{c^{L}}$ . Let $\kappa$ be
the cardinality of $Y$ . Let $L$ be the $(\kappa^{+}+1)$-extended long line. The linearly
order relation of $L$ is expressed by $\leqq$ . Since $L$ is connected, $F_{c^{X}}(x)=L$ for
any $x\in L$ . On the other hand, for the last point $\kappa^{+}$ of $L$ it will be shown that
$F_{q^{L}}(\kappa^{+})=\{\kappa^{+}\}$ . In fact, let $f:Y\rightarrow L$ be a continuous map such that $f(E)\cap\{\kappa^{+}\}$

$\neq\emptyset$ for any $E\in \mathcal{E}$ . It suffices to show that $f(Z)=\{\kappa^{+}\}$ . Assume that $ f(Z)\neq$

$\{\kappa^{+}\}$ . Let $y$ be a point of $f(Z)$ which is distinct from the point $\kappa^{+}$ . Then,
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since the cardinality of $\{x\in L|y\leqq x\leqq\kappa^{+}\}$ is greater than the cardinally of $Y$ ,

there exists a point $z\in L-f(Y)$ between $y$ and $\kappa^{+}$ . Let $U=\{x\in L|x\leqq z\}$ .
Then $f^{-1}(U)$ is a clopen subset of $Y$ satisfying $ f^{-1}(U)\cap Z\neq\emptyset$ and $ E-f^{-1}(U)\neq\emptyset$

for any $E\in \mathcal{E}$ . This contradicts the assumption of the last case. It follows
that $f(Z)=\{\kappa^{+}\}$ .

In connection with the above result the following problem arises.

3.3. PROBLEM. Is every cell soluble compact $T_{2}$ -space completely cell
soluble?

4. Complete cell solubility of zero-dimensional spaces.

Arhangel’skii posed also the following problems in [2].

4.1. PROBLEM. Is every zero-dimensional compact $T_{2}$ -space completely cell
soluble?

4.2. PROBLEM. Is it true that $\beta N-N$ is completely cell soluble ?

We will show that these problems are solved affirmatively. It suffices to
give the affirmative answer to 4.1.

4.3. THEOREM. Every zero-dimensional compact $T_{2}$ -space is completely cell
soluble.

PROOF. Let $F$ be an arbitrary abstract cellularity. Let $2=\{0,1\}$ be the
two-point discrete space. Now, let us consider the cellularty $F^{2}$ on 2 which is
associated with $F$. Since 2 is a compact homogeneous space, the following two
case occur:

(1) $F^{2}(0)=\{0\}$ and $F^{2}(1)=\{1\}$ .
(2) $F^{2}(0)=F^{2}(1)=2$ .
Case (1). Let $X$ be an arbitrary zero-dimensional compact $T_{2}$ -space. Then

it will be shown that $F^{X}(x)=\{x\}$ for any $x\in X$, and hence the cellularity $F^{X}$

on $X$ is disjoint. In fact, assume that $F^{X}(x)$ contains more than one point.

Then there exists a continuous map $f:X\rightarrow 2$ such that $f(F^{x}(x))=2$ . This con-
tradicts one of the conditions of abstract cellularity since $f(F^{x}(x))\supsetneqq F^{2}(f(x))$ .

Case (2). It will be proved that $F^{x}(x)=X$ for any $X\in T$ and any $x\in X$.
In fact, let $\mathfrak{r}$ be an arbitrary point of $X$. Then for any another point $y\in X$

there exists a continuous map $f:2\rightarrow X$ such that $f(O)=x$ and $f(1)=y$ . From
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$f(F^{2}(0))\subset F^{X}(f(0))=F^{X}(x)$

it follows that $y\in F^{X}(x)$ . This implies that $F^{X}(x)=X$.

5. Weakly homogeneous spaces.

As a result of Arhangel’skii every retract of a homogeneous compact $T_{2^{-}}$

space is completely cell soluble. And we showed that every zero-dimensional
compact $T_{2}$ -space is completely cell soluble. Hence there arises the following
natural question.

5.1. QUESTION. Is every zero-dimensional compact $T_{2}$ -space the retract of
a homogeneous compact $T_{2}$ -space ?

In fact, the answer to the following problem of Arhangel’skii [2] is also
unknown.

5.2. PROBLEM. For every zero-dimensional compact $T_{2}$ -space $X$, does there
exist a homogeneous compact $T_{2}$ -space $Y$ such that $X\times Y$ is homogeneous ?

We do not have perfect solutions for these problems. But we will give
partial answers to these problems.

5.3. DEFINITION. A topological space $X$ is called weakly homogeneous if,

for arbitrary $x,$ $y\in X$ and any neighborhoods $U,$ $V$ of $x,$ $y$ respectively, there
exists a homeomorphism $f$ from $X$ onto itself such that $f(x)\in V$ and $f^{-1}(y)\in U$ .

Every homogeneous space is clearly weakly homogeneous.

5.4. PROPOSITION. A zero-dimesional $T_{1}$ -space $X$ is weakly homogeneous if
and only if, for arbitrary $x,$ $y\in X$ and any neighborhoods $U,$ $V$ of $x,$ $y$ respec-
tively, there exist homeomorphic clopen neighborhoods $U^{\prime},$ $V^{\prime}$ of $x,$ $y$ respectively
such that $U^{\prime}\subset U,$ $V^{\prime}\subset V$ .

PROOF. (if) Let $x,$ $y$ be distinct points of $X$. Let $U,$ $V$ be neighborhoods
of $x,$ $y$ respectively. We can assume that $U$ and $V$ are disjoint clopen subsets
of $X$. Then there exists a homeomorphism $g:U^{\prime}\rightarrow V^{\prime}$ for some clopen neigh-
borhoods $U^{\prime},$ $V^{\prime}$ of $x,$ $y$ respectively such that $U^{\prime}\subset U,$ $V^{\prime}\subset V$ . Let $f:X\rightarrow X$ be
the map defined by

$f(x)=\left\{\begin{array}{l}g(x) ifx\in U^{\prime}\\g^{-1}(x) ifx\in V^{\prime}\\x otherwise.\end{array}\right.$
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then $f$ is a homeomorphism such that $f(x)\in V^{\prime}\subset V$ and $f^{-1}(y)=g^{-1}(y)\in U^{\prime}\subset U$ .
(only if) We can assume that $U$ and $V$ are clopen subsets. Let $f:X\rightarrow X$

be a homeomorphism such that $f(x)\in V,$ $f^{-1}(y)\in U$ . Now, let $ U^{\prime}=U\Gamma$) $f^{-1}(V)$

and $V^{\prime}=V\cap f(U)$ . Then $U^{\prime}$ is a neighborhood of $x$ and $V^{\prime}$ is a neighborhood
of $y$ . Further $f|U^{\prime}$ : $U^{\prime}\rightarrow V^{\prime}$ is a homeomorphism.

Let us call an infinite, zero-dimensional compact $T_{2}$ -space $X$ to be B-homo-
geneous if every non-empty clopen subspace of $X$ is homeomorphic to $X$ (cf.

[4], [5]). Then every B-homogeneous space is weakly homogeneous. As noted
by van Douwen [4], every first countable B-homogeneous space is homogeneous.
Similarly, we can show the following.

5.5. PROPOSITION. Every first countable zero-dimensional weakly homogeneous
$T_{1}$ -space is homogeneous.

PROOF. We can assume that $X$ has no isolated point. Let $x,$ $y$ be arbitrary
points of $X$.

CLAIM 1. Let $U,$ $V$ be homeomorphic clopen neighborhoods of $x,$ $y$ respec-
tively. Then for arbitrary neighborhoods $W^{x},$ $W^{y}$ of $x,$ $y$ respectively there
exists a homeomorphism $f$ from $U$ onto $V$ such that $f(x)\in lV^{y},$ $f^{-1}(y)\in W^{x}$ .

In fact, Let $g:U\rightarrow V$ be a homeomorphism. If $g(x)=y$ , then there is noth-
ing to do. Hence let $g(x)\neq y$ . Then there are disjoint homeomorphic clopen
neighborhoods $U_{g(x)},$ $V_{y}$ of $g(x),$ $y$ respectively such that $U_{g(x)}\subset V\cap\backslash g(W^{x})$ ,

$V_{y}\subset V\cap W^{y}$ . For a homeomorphism $h:U_{g(x)}\rightarrow V_{y}$ let $k:V\rightarrow V$ be the homeo-
morphism defined by

$k(x)=\left\{\begin{array}{l}h(x) ifx_{\backslash }=_{-}U_{g(x)}\\h^{-1}(x) ifx\in V_{y}\\x otherwise.\end{array}\right.$

Then $f=k\circ g:U\rightarrow V$ is a homeomorphism and satisfies $f(x)=k(g(x))\in k(U_{g(x)})$

$\in V_{y}\subset W^{y},$ $f^{-1}(y)=g^{-1}(k^{-1}(y))\in g^{-1}(k^{-1}(V_{y}))=g^{-1}(U_{g(x)})\subset W^{x}$ .

CLAIM 2. There are neighborhood bases $\{U_{n}\},$ $\{V_{n}\}$ of $x,$ $y$ respectively,
consisting of clopen subsets such that

(a) $U_{n}\supset U_{n+1},$ $V_{n}\supset V_{n+1}$ ;
(b) there is a homeomorphism $f_{n}$ from $U_{n}-U_{n+1}$ onto $V_{n}-V_{n+1}$

for each $ n\in\omega$ .
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Let $\{W_{n}^{x}\},$ $\{W_{n}^{y}\}$ be neighborhood bases of $x,$ $y$ respectively, consisting

of clopen subsets of $X$. Then there are homeomorphic clopen neighborhoods
$U_{0},$ $V_{0}$ of $x,$ $y$ respectively such that $U_{0}\subset W^{x_{0}},$ $V_{0}\subset W_{0}^{y}$ . From Claim 1 it fol-

lows that there is a homeomorphism $g_{1}$ : $U_{0}\rightarrow V_{0}$ such that $g_{1}(x)\in W_{1}^{y},$ $g_{1}^{-1}(y)$

$\in W^{x_{1}}$ . Let $U_{1}=g_{1}^{-1}(W_{1}^{y})\cap W^{x_{1}}$ and $V_{1}=g_{1}(W^{x_{1}})\cap W_{1}^{y}$ . Then $U_{1}$ and $V_{1}$ are
homeomorphic clopen neighborhoods of $x,$ $y$ respectively. Further $f_{1}=g_{1}|(U_{0}-U_{1})$

is a homeomorphism from $U_{0}-U_{1}$ onto $V_{0}-V_{1}$ . Continuing this procedure, we
can obtain the desired neighborhood bases of $x,$ $y$ respectively.

Let $f:X\rightarrow X$ be the map defined by

$f(z)=\left\{\begin{array}{l}z ifz\in X-U_{0}\\f_{n}(z) ifz\in U_{n}-U_{n+1}\\y ifz=x.\end{array}\right.$

Then $f$ is a homeomorphism such that $f(x)=y$ . This completes the proof.

In the next theorem, the cardinal function $w(X)$ means the weight of $X$.

5.6. THEOREM. Let $X$ be a zero-dimensional compact $T_{2}$-space. Then there
exists a zero-dimensional compact $T_{2}$ -space $Y$ with $w(Y)=w(X)$ such that $X\times Y$ is
weakly homogeneous.

PROOF. Let $\mathscr{D}$ be an open basis of $X$ consisting of clopen subsets. We
can assume that $|\mathscr{D}|=w(X)$ and $X\in B$ . Let $Y$ be the topological product

$\Pi\{B^{\omega}|B\in \mathscr{Q}\}$ .

Then the family of clopen subsets of $Y$ which are homeomorphic to }’ forms
an open basis of $Y$ . Hence $Y$ is weakly homogeneous. Since $X\times Y$ is homeo-
morphic to $Y$ , the product space $X\times Y$ is weakly homogeneous.

5.7. COROLLARY. Every zero-dimensional compact $T_{2}$ -space is a retract of a
weakly homogeneous compact $T_{2}$-space.

Since every compact $T_{2}$-space is a continuous image of a zero-dimensional
compact $T_{2}$-space, we can give the following partial answer to the problem of
Arhangel’skii stated in the introduction.

5.8. COROLLARY. Every compact $T_{2}$ -space is a continuous image of a weakly
homogeneous compact $T_{2}$ -space.
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