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THE BAIRE PROPERTY OF CERTAIN
HYPO-GRAPH SPACES

By

Katsuhisa KOSHINO

Abstract. Let X be a compact metrizable space and Y be a non-
degenerate dendrite with an end point 0. For each continuous func-
tion /: X — Y, we define the hypo-graph | /' = [ _, {x} x [0, f(x)]
of f, where [0, f(x)] is the unique path from 0 to f(x) in Y. Then
we can regard |C(X,Y)={]lf]|f:X — Y is continuous} as a sub-
space of the hyperspace consisting of non-empty closed sets in X x Y
equipped with the Vietoris topology. In this paper, we prove that
JC(X,7Y) is a Baire space if and only if the set of isolated points of
X is dense.

1. Introduction

The study on topological properties of function spaces plays a significant role
in geometric functional analysis. It is one of the most interesting problems for
many researchers when a function space is a Baire space. In this paper, we define
a hypo-graph of each continuous function from a compact metrizable space to a
non-degenerate dendrite and endow the set of hypo-graphs with certain topology.
We will discuss the Baire property of the hypo-graph space.

Throughout the paper, we assume that all maps are continuous, but functions
are not necessarily continuous. Moreover, let X be a compact metrizable space
and Y be a non-degenerate dendrite with an end point 0. Recall that a dendrite is
a Peano continuum, namely a connected, locally connected, compact metrizable
space, containing no simple closed curves. A point of a space is called an end point
provided that it has an arbitrarily small open neighborhood whose boundary is a

2010 Mathematics Subject Classification: Primary: 54C35, Secondary: 54B20, 54E52.

Key words and phrases: function space, Baire space, dendrite, hypo-graph, hyperspace, the Vietoris
topology, the Hausdorff metric.

Received August 29, 2014.

Revised January 19, 2015.



30 Katsuhisa KOSHINO

singleton. Every non-degenerate dendrite contains at least two end points, sce
[9, Chapter 111, (6.1) and Chapter V, (1.1)]. It is well-known that any two distinct
points of a dendrite are joined by a unique arc [9, Chapter V, (1.2)]. For any two
points x, y € Y, the symbol [x, y] means the unique arc between x and y if x # y,
or the singleton {x} = {y} if x=y.

For each function f: X — Y, we define the hypo-graph |f of f as follows:

If=U{x[0,/(x)]<cXxY.
xeX

Observe that if f is continuous, then the hypo-graph | f is closed in X x Y. Let
Cld(X x Y) be the hyperspace of non-empty closed sets in X x ¥ endowed with
the Vietoris topology. Then we can regard the set

IC(X,Y)={lf|f:X — Y is continuous}

of hypo-graphs of continuous functions from X to Y as a subset of Cld(X x Y).
We shall equip |C(X,Y) with the relative topology of Cld(X x Y).

A closed subset 4 of a metric space W = (W,d) is a Z-set in W if for each
map ¢: W — (0, 00), there exists a map f : W — W such that d(f(x),x) < &(x)
for all xe W and f(W)NA = . This notion plays a central role in the theory
of infinite-dimensional topology. A countable union of Z-sets is said to be a
Zs-set. Note that every Z-set is nowhere dense, and hence every space that is
a Z,-set in itself is not a Baire space. In this paper, we will give necessary and
sufficient conditions for |C(X,Y) to be a Baire space as follows (Z. Yang [7]
proved the case that Y is the closed unit interval I=[0,1] and 0 = 0):

MAIN THEOREM. The following are equivalent:

(1) IC(X,Y) is a Baire space;
(2) |C(X,Y) is not a Zs-set in itself;
(3) The set of isolated points of X is dense.

2. Preliminaries

In this section, we introduce some notation and lemmas used later. For a
metric space W = (W,d) and ¢ >0, let By(x,¢)={ye W|d(x,y) <e}. The
metric d is convex if any two points x and y in W have a mid point z, that is,
d(x,z) =d(y,z) =d(x,y)/2. Tt is easy to verify that when d is convex and
complete, there is a path between x and y isometric to the interval [0,d(x, y)].
Every Peano continuum admits a convex metric, see [1] and [5, 6]. From now on,
we use an admissible metric dy on X and an admissible convex metric dy on Y.
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Arcs in a dendrite have the following good property with respect to an admissible
convex metric [2].

LemMA 2.1.  There exists a map y: Y?> x 1 — Y such that for any distinct

points x,y € Y, the map y(x, y,*) : 1>t y(x,y,t) € Y is an arc from x to y and
the following holds:

* For each x;,yieY, i=1,2, dy(y(x1, y1,1),7(x2, 2, 1)) < max{dy(x1,x2),
dy(y1,y2)} for all tel

We also use an admissible metric p on X x Y defined by

p((x, ), (x', ")) = max{dy (x, x"),dy(y, y)}.

Since X and Y are compact, the topology of Cld(X x Y) is induced by the
Hausdorff metric py defined as follows:

pu(A4,B) = inf{r >0

A< U B,,((x,y),r),Bc U B,,((x,y),r)}.

(x,y)eB (x,y)e4

For each 4 € Cld(X x Y), we define a set-valued function 4 : X — CId*(Y) as
follows:

A(x)={yeY|(x,y)ed} =Y,

where Cld*(Y) is the set of closed subsets in Y. Here we set A(B) = {A(x) | x € B}
for B < X. Moreover, for each subset B < X, let

Alp={(x,y)ed|xeB} c X x Y.
The following lemma, that has been proved in [3], is a key lemma of this paper.
Lemma 2.2 (Digging Lemma). Let Z be a metrizable space and ¢ :Z —
1C(X,Y) be a map. Suppose that X contains a non-isolated point a. Then for each

map ¢:Z — (0,1), there exist maps W : Z — |C(X,Y) and 6 :Z — (0,1) such
that for each x € Z,

(@) pr(¥(x),¢(x)) < e(x),
(6) ¥(x)(Bay (a,0(x))) = {{0}}.

3. Proof of Main Theorem

This section is devoted to proving the main theorem. For the sake of
convenience, we denote the set of isolated points of X by X;. Let |C(X,Y) be
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the closure of |[C(X, Y) in Cld(X X Y). Since X and Y are compact, Cld(X x Y)
is also compact, and hence |C(X,Y) is a compactification of |C(X,Y).

Lemma 3.1. The following holds:

ICX,Y)={4eCld(X x Y)| (%)},
where

(%) for each x € X, (i) A(x) # &, (ii) [0, y] = A(x) if y € A(x), and (iii) A(x)
is an arc or the singleton {0} if x € Xj.

Proor. For simplicity, let o/ ={4eCld(X x Y)|(x)}. Obviously,
IC(X,Y) < /. First, we shall show that ./ is a closed set in Cld(X x Y). To
this end, take any sequence {A4,},.n In o/ that converges to 4 € Cld(X x Y).
According to [4, Lemma 1.11.2],

(%) A:{(x,y)eXxY

for each ne N, there is (x,, y,) € 4,
such that lim,_ .. (x,, y») = (x, ) ’

We will prove that 4 € «/. Fix any point x € X.

(i) A(x) # . Since each A4, € .o/, we can choose a point y, € 4,(x) # . By
the compactness of Y, we may assume that {y,},.n converges to some point
ye Y. Due to (x), (x,y) € 4. It follows that A(x) # .

(i) [0, y] = A(x) for every y e A(x). To show this, take any z € [0, y]. Then
we can write z = (0, y, ) for some 7€ I, where y: Y2 x I — Y as in Lemma 2.1.
Because (x, y) € 4, according to (x), there exists (x,, y,) € Ay, n €N, such that
limy,—, o0 (X, yu) = (x, ¥). Let z, = (0, y,,1) for each neN. Since A4, € .o/ for
every neN, z,€(0,y,] = Ay(x,), and hence (x,,z,) € d,. It follows from
Lemma 2.1 that dy(z,z,) < dy(y, y»). Since lim,—o, y, = y, lim,_,, z, = z. Thus
lim,, o (X, z,) = (x,2). By (%), (x,z) € 4, namely z € A(x), which implies that
[0,y] = A(x).

(ili) A(x) is an arc or the singleton {0} if x € X;. Suppose the contrary, that
is, x is an isolated point and A4(x) is neither arc nor the singleton {0}. Then A(x)
contains a triod one of whose end points is 0. Let e¢;, e, be the other end points
and b be the branch point of the triod. Define 6, = min{dy(e;,b),dy(e2,b)} > 0.
On the other hand, since x e X;, we can find d, > 0 such that B (x,d;) =
{x}. Let 6 = min{d,,0,}. Since lim, ., A, = 4, there exists ne N such that
pu(An, A) <. Then we can choose points y, y» € Y so that y;, y» € 4,(x) and
dy(yi,e;) <9, i = 1,2, respectively. Observe that A4,(x) contains the triod whose
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end points are 0, y; and y,, which contradicts to that 4, € /. Therefore A(x) is
an arc or the singleton {0}.

By (i), (ii) and (iii), 4 € /. Consequently, .o/ is closed in Cld(X x Y).

Next, we will prove that |C(X, Y) is dense in /. Take any 4 € ./ and ¢ > 0.
We need only to construct a map f: X — Y such that p,(lf,A) <e. Since
A is compact it has a finite subset 4’ = {(x;, y;)) e 4|i=1,...,n} such that
Ac U ((x;, yi),&/4). Recall that if x; € X for some i =1,...,n, then A(x;)
is an arc or the singleton {0}. In the case that there are 1 <i < j <n such
that x; = x; and x; ¢ Xy, replace x; with a point xjf € X such that x]f # x; and
dx(xi,x]) < e/4. Moreover, if there are 1 <i<j<n such that x;=x; and
X; € X, we may assume that y; € [0, y;]. Then remove (x;, y;) from A’. Repeating
these operations, we can obtain {(x;, y;)e X x Y|i=1,...,m} for some m<n
such that x; # x; if i # j, and letting

A= X x {O}U k)l{xl yz]

we get py(Ao,A) <e/2. Let A =min{e, dy(x;,x;) |1 <i<j<m}/3>0. Using
the map y: Y>xI— Y as in Lemma 2.1, we can define a map f: X — Y as
follows:

f<x>={g(o’yi’(l—d)r(xaxf))/ﬂ) if x e By (xi ), i=1,....m,

if xe X\\;", Ba, x,,/l)
Then py (1 f,40) <A <e/3. It follows that

pH(lfﬂA) S:DH(lvaO) +pH(A07A) S8/3—"_6/2 <eg,

which means that |[C(X x Y) is dense in .o/. The proof is complete. O
We show the implication (3) = (1) in the main theorem.

PROPOSITION 3.2.  Suppose that X is dense in X. Then |C(X,Y) is a Baire
space.

PrOOF. Let # be the collection of finite subsets of Xj. For each F € & and
neN, we define

Upn={A€|C(X,Y)|A(x) = By, (0,1/n) for all xe X\F}.

Observe that % , is open in |C(X,Y) because F < Xy. Let %, = UFGy U n.
First, we shall prove that each %, is dense in |C(X, Y). For each |f e |[C(X,Y)
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and ¢ > 0, we can obtain F € # so that py(|f|p, |f) < & because |f is compact
and Xj is dense in X. Define a map g: X — Y as follows:

[ f(x) ifxeF,
g<x>_{0 if x € X\F.

Then |g € Up, =W, and py(lg, | f) < pu(lflp lf) < e Hence %, is dense in
1C(X, 7).

Next, we will show that ¥ = (| (%, = |C(X,Y). Let 4 € 4. Observe that
for each x € X\ Xy, 4(x) = {0}. According to Lemma 3.1, for any x € Xy, A(x)
is an arc or the singleton {0}. Therefore A is a hypo-graph of some function
f:X — Y. It remains to show that f is continuous at each x € X\ X,. For each
neN, we can find F € # such that 4 € %p ,. Then X\F is a neighborhood of x
in X and A(y) < B4,(0,1/n) for all y € X\F, which means that f is continuous
at x. Therefore A= |f e |C(X,Y), so 4 |C(X,Y). Since |[C(X,Y) is com-
pact, the Gs-set 4 = ﬂneN% is a Baire space and dense in |C(X,Y), so it is
also dense in |C(X,Y). Consequently, |C(X,Y) is a Baire space. O

The following lemma is a counterpart to Lemma 5 of [7], but we can not
prove it by the same argument. The reason is because for hypo-graphs |f, |g €
JC(X,Y) and a point x € X, the union |f(x)U |g(x) of values of x is not
necessarily an arc or the singleton {0} in Y, so |fU|g¢ |C(X,Y) in general.
Using the Digging Lemma 2.2, we can prove the following:

Lemma 3.3, Suppose that of = ZUZ < |C(X,Y) is a closed set such that
Z is a Z-set in |C(X,Y), and there exists a point x € X such that for every
1feaB, |f(x)={0} Then o is a Z-set in |C(X,Y).

Proor. Let ¢: |C(X,Y)— (0,1). Tt is sufficient to construct a map
¢: 1C(X,Y) — |C(X, Y) such that ¢(]C(X,Y))N.o/ = & and py(s(1f). Lf) <
e(lf) for each |fe|C(X,Y). Since Z is a Z-set, there is a map

¥ JC(X, Y) — |C(X, Y)\Z such that py(y(Lf),f) <e(lf)/2 for every |f €
IC(X,Y). Fix a point yy e Y\{0} with dy(0,y¢) <1 and let

((1f) = min{e(1f), py (1 f), Z), diam Y}/2 > 0

for each |f e |C(X,Y), where py(¥(lf),Z) means the usual distance between
the point ¥(]f) and the set 2 in |C(X,Y) and diam Y means the diameter
of Y.
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First, we consider the case that x € X;. For each |f e |C(X,Y), we have
a map ¢g(lf): X — Y such that |g(lf)=vy(lf)e|C(X,Y). Define a map
¢:1C(X,Y) — |C(X,Y) by

P(LS) = WLy g ULx} > [0,7(9(Lf)(x), yo, 1(Lf)/diam Y)],

where y: Y2 xI— Y is as in Lemma 2.1. Obviously, ¢(]f)(x) # {0}, that is,
&(lf) ¢ AB. Since dy is convex, we have

Pu(@(L), (1)) <dy(p(g(1f)(x), yo,2(1f)/diam Y),g(] f)(x))
=dy(g(1f)(x), o) x t(1f)/diam Y < (| f)
<pu((lf),2)/2,

which implies that ¢(| f) ¢ 2. Moreover,
pu((L1), L) < pu(BULN) (L) +pua((Lf), LF) <t(lf)+e(lf)/2

<e(Lf)/2+e(1f)/2 = &(Lf).

Next, we consider the case that x ¢ Xj. Using the Digging Lemma 2.2, we
can obtain maps ¢: |[C(X,Y) — |[C(X,Y) and J: |[C(X,Y) — (0,1) such that
for each |f e |C(X,Y),

@) pu(CLN),¥(LS) <t(lf)/2,
(b) (L) (Bay (x,0(11))) = {{0}}.

For each |fe |C(X,Y), let

n(Lf) = U A 00,900, yo, ((LNO(LS) = dx (x, X)) /(26(1.1)].

x'e B‘IX (X(S(J.f»

We define a map ¢: |[C(X,Y) — |C(X,Y) by ¢(1f) =&E(lf)Un(lf). Note that
#(1f)(x) # {0}, and hence ¢(|C(X,Y))N% = . For every |f e |C(X,Y), we
have

Pu(P(LS), ¥ (LS))
< pu(@(LS), (L)) + pu(S(LS), (L))
< max{dy(0,7(0, yo, ((L.f)(0(Lf) = dx(x,x"))/(26(1./)))) | dx (x, x") < 5(1./)}
+1(1/)/2
= dy (0, y0) x t(L/)/2+1(1LN) /2 < t(Lf)/2+ 1(1f)/2 = «(Lf)
<pu(W(Lf),Z)/2.
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Therefore ¢(|f) ¢ Z. It follows that

Pu(P(L) L) < pu (L), (L) +pu(W(LS), L) <t(Lf) +e(lf)/2
<e(Lf)/2+e(lf)/2=e(lf).

This completes the proof. O
PropPOSITION 3.4. If Xy is not dense in X, then |C(X,Y) is a Z,-set in itself.

Proor. Take a countable dense set D = {x,|neN} in X\Xp. For each
n,meN, let

Fum = {1/ € |C(X, Y)[dy(f(xs),0) = 1/m}.

We will show that each %, ,, is a Z-set in |C(X, Y). Observe that %, ,, is closed
in |[C(X,Y). Applying the Digging Lemma 2.2, for each map ¢: |[C(X,Y) —
(0,1), we can find a map ¢: |[C(X,Y) — |C(X,Y) such that py(s(lf),lf) <
e(lf) and ¢(1f)(x,) = {0} for every |f e |C(X,Y). Then ¢(]C(X,Y)) misses
Fnm. It follows that %, ,, is a Z-set in [C(X,7Y).

Let 7 =), cn[)en(lC(X, Y)\Z, ). We need only to prove that the
closure # of # in |C(X,Y) is a Z-set. As is easily observed,

F ={lfelCX,Y)|f(x,) =0 for each ne N},

which implies that f(x) =0 for all |fe.# and all xe X\X,, where X, is the
closure of Xj. Since X, is not dense in X, we can choose a point x € X\Xj.
Fix d > 0 such that By, (x,6) = X\ Xo. For every | f € #, we have | f(x) = {0}.
Indeed, for each ¢ e (0,0), there exists |g € # such that py(]f, |g) < e Then we
can find (a,b) € |g such that p((x, f(x)), (a,b)) < e. Since dx(x,a) < & < J, we get
g(a) =0. Hence dy(f(x),0) =dy(f(x),b) <&, which implies that |f(x) = {0}.
According to Lemma 3.3, # is a Z-set in |C(X, Y). Consequently, |C(X,Y) =
F U, nexn Tnm is @ Zy-set in itself. O

Combining Propositions 3.2 and 3.4, we can prove the main theorem.

4. Topological Type of |[C(X,Y)

The theory of infinite-dimensional topology has made meaningful contri-
butions to the study on function spaces because they are frequently infinite-
dimensional. Indeed, several function spaces have been shown to be homeomorphic
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to typical infinite-dimensional spaces. From the end of 1980s to the beginning of
1990s, many researchers investigated topological types of function spaces of real-
valued continuous functions on countable spaces endowed with the pointwise
convergence topology, see [4].

We can consider that hypo-graph spaces give certain geometric aspect to
function spaces with the pointwise convergence topology. Let Q =1IN be
the Hilbert cube, where N ={1,2,...} is the natural numbers, and ¢, =
{(xi);en € Q|lim;—.o, x; = 0}. In the case that ¥ =1 and 0 =0, we can regard

JUSC(X,I) ={lf|f:X — 1 is upper semi-continuous}

as a subspace in Cld(X x I). Z. Yang [7] showed the following theorem:

THEOREM 4.1. Suppose that X is infinite and locally connected. Then

JUSC(X,1) = |C(X,I) and the pair (JUSC(X,I),|C(X,I)) is homeomorphic to
(Q, ¢o).

For spaces W) and W, the symbol (W;, W,) means that W, < W;. A pair
(W1, W>) of spaces is homeomorphic to (Z;, Z,) if there exists a homeomorphism
f: W1 — Z; such that f(W,) = Z,. In the paper [3], his result is generalized as
follows:

THEOREM 4.2. If X is infinite and has only a finite number of isolated points,

then the pair (|C(X,Y),lC(X,Y)) is homeomorphic to (Q,cp).

The space ¢y is not a Baire space. In fact, it is a Z,-set in itself. According to
the main theorem, we can establish the following immediately.

CorOLLARY 4.3. If |C(X,Y) is homeomorphic to ¢, then the set of isolated
points is not dense in X.

Z. Yang and X. Zhou [8] strengthened Theorem 4.1 as follows:

THEOREM 4.4. The pair (|USC(X 1), |C(X,]I)) is homeomorphic to (Q,¢q) if
and only if the set of isolated points of X is not dense.

It is still unknown whether the same result holds or not in our setting, that is,
the case that Y is a non-degenerate dendrite.
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