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A METHOD FOR FINDING A MINIMAL POINT OF
THE LATTICE IN CUBIC NUMBER FIELDS (II)

By

Kan KANEKO

Abstract. We give a method for finding a minimal point adjacent to
1 of the reduced lattice in cubic number fields using an isotropic
vector of the quadratic form and two-dimensional lattice.

1. Introduction

In the previous paper [3] with the same title, we proved six theorems which
gave candidates of a minimal point adjacent to 1 in a reduced lattice £.

In this paper we shall improve Theorem 6.1B, Theorem 6.2A and Theorem
6.3A in [3]. We also give such an example that does not seem to occur very
frequently in Theorem 6.3B in [3]. We follow the notation and terminology used
in the previous paper [3].

In the rest of this introduction, we shall show that ¢,, need not be included
in [3, Theorem 6.1B,(3),(ii-a)]. Also, we shall show that ¢s need not be included
in [3, Theorem 6.2A,(2),(ii)].

THEOREM 6.1B'. Let # = {1,2,u)> be a reduced lattice of K such that 0 <
A<l 0< X, <X), 0<wi(Ap) <1, wr(Z,p) >0, a>1, 2[b| <1, O <u<l,
¢ <1, F(gs) <1, where a =F(u), b=1Y,. Then

(1) If F(¢y) <1, then the minimal point adjacent to 1 is ¢,.

(2) If ¢, > 1, F(¢y) > 1, then the minimal point adjacent to 1 is ¢s.

(B) If ¢, < 1:

(i) if b <0, then the minimal point adjacent to 1 is ¢g;
(ii) if b > 0, then the minimal point adjacent to 1 is ¢g or ¢y.
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ProOOF. (3) (i) We assume that b >0, 24+ u <1 and 0, = ¢, = 34+ 2.
Since Y, < —1/2 and 0< Y, <1/2, we have Y3;45,=3Y,+2Y,<-3/2+1
= —1/2. From this and —1 < Y3;15,, we have 0 < Yy;3;,5, <1/2. Hence,
F(L+32420) = Y23, 0, + ZT 300 < Yipyou + 23510 = F(34+2u) < 1. Since
F(14+34+42u) <1 and F(¢g) = F(—¢) = F(—1 — 1) < 1, by Remark 1.1 bellow,

1 1 .
we have F(E(_l - 1) +§(1 +34+ 2,u)> = F(2+ u) < 1. Therefore, since 0 <

A+u<1and Z is a reduced lattice, the assumption such that b > 0, 21 +u < 1
and 0, = ¢, leads to a contradiction. Hence, if b >0, 244+ u <1, then
Oy # P10- ]

Remark 1.1. If F(a) <1 and F(f) <1, then F(to+ (1 —1¢)f) <1, where
wfekK, 0<t<1 (teQ).

THEOREM 6.2A'. Let # =<1, u) be a reduced lattice of K such that
0<i<], 0<X,<X;, O0<oi(Au<l, w(dp) >0, a>1, 2/b| <1, u>1,
¢y > 1, where a=F(u), b=1Y,. Then

(1) If Flgy) < 1:

(i) if b <0, then the minimal point adjacent to 1 is ¢y, ¢5 or ¢4
(ii) if b >0, then the minimal point adjacent to 1 is ¢, or ¢,.
(2) If F(¢,) > 1, F(¢g) <1, then the minimal point adjacent to 1 is ¢g.

ProOOF. (2) From [3, Theorem 6.2A,(2),(ii)], suffice it to say that if b > 0,
then 0, # ¢s. We assume that F(¢,) > 1, F(¢s) < 1. From F(¢,) > 1, F(¢; + 1)
= F(¢s) < 1, by Lemma 2.1,(2) in Section 2, we have Y; < —1/2. From this and
Y,=b<1/2, we have Yy =Yy 1=Yy +Y,—1<-1/24+1/2-1=-1.
Hence, F(¢s) > 1. Therefore, 0, # ¢s. O

2. Preliminaries

This section is a preparation for the next section.

Lemma 2.1. (1) K3 1,4, u are independent over Q = wy(A, 1) ¢ Q.

(2) Let e K\Q. If F(a) > 1, F(1+a) <1, then Y, < —1/2.

Proor. (1) Let K=Q(0), 0>+ p0+q=0 (p,qeQ) and A= a; + a0+

1
a360? (a; €Q), u="by + b0+ b36? (b; € Q). Then we have Y, = 3 (2ay — 2pas —
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1 _
00— as0), Yo =2 (2by — 2pby — o — 5302, (o pt) = — =Y From these
2 by — b30
and the definition of w,(4,u), we obtain the following formula:
1 a, a a a3 a a a azl,,
) =——— 0 0-1. (2.1
@2(4, ) —b2+b36(b1 P RS I S L PR ) @1)
Suppose that wy(4, ) € Q. Then from (2.1), we have
a dy ay dz ay  ay ay das| o
—wyb b0 = 0 0°.
A S PP L VY Ll PN
Since 1, 0, % are independent over Q, we have Zz Z3 =0. From this and
2 b3
W = —Zz — 232, we have w; € Q. On the other hand, by [3, Proposition 2.2,(3)],
2 — b3
o1(A, 1) ¢ Q. Hence, we have reached a contradiction. Therefore, we have

(2) Since F(1+oa) <1, we have —1 < Y4, < 1. Suppose that Y, > —1/2.
Then Y., =1+4Y,>1/2. From this, we have 1/4+Z} <Yl +Z 6 =
F(14a) < 1. Hence, |Z,| <+/3/2. Since Y, > —1/2 and Y, <0, we have
-1/2<Y,<0. Hence, F(o)=Y}+Z2=Y}+2Z} ,<1/4+3/4=1. Since
F(a) > 1, we have reached a contradiction. Therefore, we have Y, < —1/2.

O

PrOPOSITION 2.2. Let # = <1,A, 1) be a reduced lattice of K such that 0 <
o1(A,u) <1, wr(A,p) >0, a>1, 2lb| <1, O<u<]1, ¢ >1, where a = F(u),
b=1Y, If F(¢,) > 1, F(ds) <1

(1) if F(¢,) <1, b<O0, then the minimal point adjacent to 1 is ¢, or ¢3;

(2) if F(¢,) <1, b>0, then the minimal point adjacent to 1 is ¢,

(3) if F(¢,) > 1, then the minimal point adjacent to 1 is ¢g.

Proor. We assume that F(¢,) > 1, F(gs) < I.

(a) By [3, Lemma 4.5,(1)], we have 0, e {y; ,; »(#0)eZ,1 <i<12}.

(b) We shall prove that y > 1. We note that [yw;] < y[w;] (y < —1) and that
by [3, Propositon 2.2,(3)] and Lemma 2.1,(1), [~w;] = —[w;] — 1. We assume that
y < —1. By [3, Remark 4.4,(1)], we have y; , <y, ,.

The case y < —2: Yy, = [2y] + 2+ yi+ ([01y] + Du < ylwn] +2+ yi+
(ylen]+ D= y([eor] +4) +24+pu < =2(Jowz] +4) + 2+ u < u < 1. The case y =
Ly =] +2- A+ (ol + D= —[w] - 1+2-A=—[m] +1- 4=
—([m2] +4) +1 < 0. Therefore, if y < —1, then we have y, , # 0,.
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(c) We shall prove that y =1 or 2. Since ¢; = Yy | = [w2] + 2> 1, for y >3
we have Y, = [w2y]+ j+ yi+ ([01y] + k)u = ylwa] + j+ yA+ (ylo] + k)u =
2((wa] + 4+ [onlu) + 2]+ + 4+ (1] + Kt = 2([on] + 7 + [on]u) + [o2] + 1+
itlotpu+j—1+kp=20y  +pg+j—1+ku>vg,, where —1<j k<2,
(j,k) #(2,-1),(2,2),(—1,-1),(—1,2). Therefore, if y >3, then we have
Vi, #0, (1<i<12).

(d) We shall prove that y # 2.

(i) The case b <0: By [3, Lemma 4.5,(3),(i)], we have 0, € {; ,, ¥ ,, ¥4 ,,
Vs ¥s Yoy Y00 Vi, - V2= [2w2] = 1424+ 201]u > 2[ws] = 1+ 24 =
([wa] +A) = 1+ [w2] + 2 > ¢;. The case F(¢,) < 1; By [3, Remark 4.4,(1)], we
have Y, , > ¢, (i=1,3,4,5,8,9,10,12). Hence, ¥, , # 0, (i=1,3,4,5,8,9,10,12).
The case F(¢;) >1; By [3, Lemma 4.5,(10),(12)], we have ¥, , = [2m;] — 1 +
22+ 2o p = 2[wa] + 24+ 201 ]p = ([wa] + A) + [@2] + 2+ 2011t > ¢s.  Hence,
by [3, Remark 4.4,(1)], we have ¥, , > ¢4 (i=1,3,4,5,8,9,10,12). Therefore,
Vis # 0, (i=1,3,4,5,8,9,10,12).

(i) The case b > 0: By [3, Lemma 4.5,(3),(ii)], we have 0, € {y, ,, ¥4 ,, Vs ,,
W6,y W7, Ws o Yoy Yin,y}. We have Wy 5 = [2wo] + 24+ 20| > 2[ws] 4 27+
w1 = [@2] + ([@2] + 4) + A+ [2001]u > g | = ¢6. From this and [3, Remark
4.4,(1)], we have ¥, , > ¢ (i=4,56,7,8,9,11). By [3, Lemma 4.5,(12)], for
Y22 = [202] = 1+ 22+ ([2w1] + 1)y, there are four cases:

1) Wy = 20n] + 2+ 201 = 03] + ([a] + 2) + 4+ 2 > .

2) Y0 = 2[wa] + 24+ p = 2] + ([02] + 2) + 2+ > de.

3) Yoo =2]ma] = 1+ 24+ 2u= ([wa] +4) = 1 4 [wa2] + A+ 20> ¢;.

4) g =2l =1+ 24+ p=([w] + 4) =1 + [ + 2+ u> ¢,

The case F(¢;) < 1; we have y, , # 0,.

The case F(¢;) > 1; Since F([wz] +4) > 1, F(jw2] +1+4) <1, by Lemma
2.1,(2), we have Y|4, < —1/2. From this we have Ysu,—1421424 = 2 Y (040 —
142Y,<—-1—-1+1=-1. Hence, we have F(2[w>] — 1 +24+42u) > 1. Similarly,
from Ysju,-142i40 = 2Y(wp)12 — 1 + Y < =1 = 1 +1/2 < =3/2, we have F(2[w,]
—1+24+p) > 1. Hence, we have v, , # 0,. By (i), (ii), we conclude that y # 2.

() We shall prove (1), (2) and (3).

(i) The case b < 0: From (d), 0y € {1 1,¥3 1. V41,51 V8.1, ¥9,1: V10,15 V12,1 }-
By [3, Remark 4.4,(1)], ds =Yg 1 < o1 <101 < V12,15 50 Oy € {Yy 1,¥31, %41,
¥s1,¥s 1} From F(yg,) <1, we have F(; ) > 1. Therefore, we have 0, €
(W31 V410 Y51}

(1) If F(¢,) <1, then we have 0, = ¢, or ¢;.

(3) We assume that F(¢,) > 1. By [3, Lemma 4.5,(4)], F(npm) > F(lp471) > 1.
Hence, we have 6, = ¢.
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(ii) The case b > 0: From (d), 0, € {%,17lP4,17lﬁs,la%,1;%.17'#8.17‘//9,17‘//11,1}-
By [3, Remark 4.4,(1)], ¢¢ =51 <o <11, 0 Oy€ {1, ¥a1,¥s51,V61,
1//7’1,%’1}. By [3, Lemma 4.5,(9)], F(tpz_’l) > 1. Also, by [3, Lemma 4.5,(5)]
F(y7.1) > 1. Therefore, we have 0, € {4 1,¥61,¥s 1} By [3, Lemma 4.2,(1)]
we  have  F(Jg ) — F(Ys,) = ale; +2)° +2bex(er +2) + ¢3 — a(er +1)° -

2b
2bcy(er + 1) — €3 =2c1a + 3a + 2bcy =2a(c) + 1) —|—a<1 +;cz> >0, where ¢; =

[w1] — w1, ¢2 = [w] — wa. Hence, F(g ) > F(s,). From this and F(is5,) > 1,
we have F (Y ;) > 1. Therefore, 0, € {{4 1,5 }. From this we have (2) F(¢,) <
1=0,=¢, and (3) F(¢)) > 1= 0, = ¢. O

COROLLARY 2.3. Let # =<1,A,u> be a reduced lattice of K such that 0 <
o1(Ap) <1, o(A,u) >0,a>1,0<b<1/2,0<u<], ¢, > 1, where a = F(u),
b=7Y, If F(¢,) > 1, F(¢s) < 1, then the minimal point adjacent to 1 is ¢; or ¢s.

REMARK 2.4. From the proof in [4, Theorem 2.1] and Proposition 2.2,(3),
we can see that Theorem 6.1A in [3] does not require the assumption
0<X, <X, 0<i<l

The following two lemmas are used to prove Lemma 3.1 in Section 3.

LemmA 2.5 ([5, Chapter 4, Section 2, p. 51]). Let # be a reduced lattice with
the normalized basis {1,N,M}. If 0; = (N + M)*, then F(My)) > 1.

LemmA 2.6 ([6, Lemma 4.3]). Let # be a reduced lattice. For o€ X such
o1y lf F(OC(])) <1
%(2) lf F(OC(I)) > 1.
X, >0, |Z,| <V3/2, F(B)< L. If X, < Xy, Z,Z5 >0, then o, < p.

that F(o3)) <1, we define o, ::{ Let o,f e R such that

3. Improved form of the Theorem 6.3A in [3]

In this section we shall improve Theorem 6.3A,(1),(ii-a) and Theorem
6.3A,(2) in [3]. If we improve Theorem 6.3A,(2) in [3], we can further reduce
the maximum number of candidates ¢ € # such that we must check whether
F(p) <1 or not from at most four to at most three (see Remark 4.4).

To improve Theorem 6.3A,(1),(ii-a), we need the following lemma.

Lemma 3.1. Let 2 = 1,4, 1) be a reduced lattice of K such that 0 < 1 < 1,
0<X,<X),0<wi(Ap) <1, 0(Au)>0,a>1,2b <1, u<0, ¢ >1, where
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a=F(p), b=7Y, Then if F(¢|) <1, [wa] =1, A+u<0, then O, #1+ ¢y =
14+244 0

Proor. We assume that F(¢)) <1, [wa] =1, A+u<0 and 6, =1+ ¢
=142+ u. We take a normalized basis {I,N,M} of # and fix it. 1+
21+ u appears only in the following two cases of the proof of [3, Theorem
6.3A,(1)]:

1) (1-2) in [3, Table 1] ie., ¥, (w1 >1/2),

2) (1-3) in [3, Table 1] ie., ¥y 44y (d=1).

We note that by [3, Theorem 3.6], A* = N*, (N — M)® or M*. Moreover, by
[3, Theorem 3.3], we see that A* = (N - M)" = u*=—dN"+ (d+1)M* and
that A" = M"= u* = N"—dM". In the case (1-2) in [3, Table 1], we have only
one case that A" = N7, u* = M". In the case (1-3) in [3, Table 1], we have two
cases, that is, A" = (N — M)" and A* = M". Hence, only the following three cases
are possible:

(i) The case A" = N7, 0; = (2N + M)", (4, 1) > 1/2 which corresponds to
(1-2) in [3, Table 1],

(ii) The case A" = M", 0;=(N+ M)’, d(Z,p) =1 which corresponds to
(1-3) in [3, Table 1],

(iii) The case A" = (N —M)", 0, =N", d(/,u) =1 which corresponds to
(1-3) in [3, Table 1].

(i) The case "= N7, 0; = 2N+ M)", o(4,p) >1/2: From o) =|Zy|/
|Zy| > 1/2, we have 2|Zy| > |Zy|. From this, we have Z,,;Z .21y = ZnZon+m
> 0. So, since |Z1;| = |Zn| < V3/2, F(1+24+u) < 1,0 < X141, < Xi12:4, and
Z143Z 4244 >0, Lemma 2.6 leads to (1+4), <1424+ pu. Since F(4) > 1,
F(l1+24) <1, wesee 1+ A= (1+4),. Hence, 1 + 4 < 1+ 24+ . Therefore, this
case is impossible.

(ii) The case A" = M*, 0; = (N + M)", d(%,u) = 1: By Lemma 2.5, this case
is impossible.

(iii) The case A" = (N —M)%, 0, = N7, d(4,u) = 1:

(a) The case |Z;]< \/§/2; Since 0 < Xi4) < Xisiipw Z14iZ142i4p =
Zn-mZy >0, |Ziyi| =1Z;] <V/3/2, Lemma 2.6 leads to 14+ 4= (1+2), <
1 4+ 24 4 u. Therefore, 0, # 1+ 21+ p.

(b) The case |Z;| >+/3/2; Since |Z1.;| =|Z;| >+3/2, F(1+1) <1, we
have |Y]+;V| < 1/2 If —1/2 < Y14, <0, then Y1+2)v+,u < -1, so F(l +21+,U) > 1.
Hence, we conclude that

0< Y., < 1/2 (31)
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Since 0 <A< 1, —1/2<u<0, we see 1/2<1+A+u<1. Hence, as # is a
reduced lattice, we have

F(14+A+u > 1. (3.2)
Since 17+ A"=N"—M", 1°+2."+u* = N7, we see
M®=1"+u". (3.3)
From (3.1), we have —1 < Y; < —1/2 and —1/2 < Y1,,,,. Hence, we see
Y, < Yigiipu (3.4)
Since M" is adjacent to (N — M)", we have
| Zum| < |Zy-ml. (3.5)

If ‘Y1+/l+,u‘ < |Y1+;~‘, then by |Zl+/1+y| = |ZM‘ < |ZN—M| = ‘Zl+i|, we obtain
F(l+A+w) =2}, + Y, <Zi,+ Y7, =F(+7) <l From this, by
(3.2), we conclude that

| Yitaul > Y144l (3.6)

If Y1), >0, then we have |Yy4,4,| < |Y14,|. From this, by (3.6), we conclude
that

Yl-HH—,u < 0. (37)

By (3.6), (3.7) and (3.1), we see — Y1, > 1+ Y;, so Y24, < —1. From this,
F(1+24+u)>1. Hence, 0, # 1+ 21+ p.

By (a), (b), this case is impossible. Therefore, by (i), (ii), (iil), the assumption
leads to a contradiction. O

THEOREM 6.3A’. Let # =<1, u> be a reduced lattice of K such that 0 <
A<1,0<X, <X;,0<wi(Apu) <l,odu)>0,a>1,2b <1, u<0, ¢ >1,
where a = F(u), b=1Y,. Then

(1) If F(¢,) <1, then the minimal point adjacent to 1 is ¢, ¢, or ¢,.

Q) If 4> 1:

(i) if F(¢)) > 1, F(¢g) <1, then the minimal point adjacent to 1 is ¢,
or ¢s;
(i) if F(¢y) > 1, F(¢g) > 1, F(dg) < 1, then the minimal point adjacent to
1 is ¢
(3) If ¢, <1, F(¢)) > 1, F(¢dg) < 1, then the minimal point adjacent to 1 is ¢

or ¢g.
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Proor. (1) is followed by [3, Theorem 6.3A,(1)] and Lemma 3.1.

(2) We assume that ¢,(4, 1) = [w2(A, )] + A+ p > 1.

(i) We assume that F(¢,) > 1, F(¢g) < 1. We put A" :=A+pu, pu= = —p

(a) Since (A" p17) = ~Zju/Z oy = ~(Z:+ Z,)[(~Zy) = 1 — 1 (4, ), We
have 0 < (A", 07) =1—w;(4,u) < 1.

(b) Since (AT, 1) ==Y+ —01(AT, 0 ) Y- ==Y, — Yyt 01 (AT, 1) Y, =
~Y, =Y+ (1= (Aw)Y, ==Y, —o1(A 1) Y, = o2(4,p), we have wp(A7,u™)
= wz(;»,ﬂ) > 0.

(© a(p™) =F(u)=F(-p) = F(u) =a(p) > 1.

(d) b(u~) =Y, =—Y,=—b(n). From this and —1/2 < b(x) <0, we have
0<b(p)<1/2. Also from —1/2 <u<0, we have 0 <y~ <1/2 < 1.

(©) Since dy(2*,47) = s (i, 1) + 4 + = = [ )] + 4 = 1 (o ), we
have F(gy(2*, 1)) = F(gh (3 0)) > 1. Also, we have ¢y (A%, 1) = [a(2 ", 1)) +
AT = (022, )] + 2+ = 4 (2, ).

(f) Since (AT 1) = [0a(AT u )]+ 1+ 4T =[] +1+A+u=
dg(2, 1), we have F(gg(At,u7)) = F(dg(4, 1)) < 1. With (a) to (f), Corollary 2.3
for # = (1, 4,1y =<1, 2%, 1> leads to 0, = ¢, (27, u7) or ¢s(A", ™). Hence, we
have 0, = ¢,(4, 1) or ¢g(4,n).

(i) We assume that F(¢,) > 1, F(¢g) > 1, F(¢s) < 1. By [3, Lemma 4.2,(1)],
we have F(ds) — Fldy) = F(o,1) — F(s,) = a(er +1)>+2b(er + (e + 1)+
(2 + 1) —aler + 1) =2b(c; + 1)ea — 2 =2b(c1 + 1) +2c2+ 1,  where ¢ =
[01] — w1, ¢2 = [w2] — wy. By [3, Lemma 4.5,(10)], we have ¢; < —1/2. From this
and b <0, we have F(¢dg) — F(p,) =2b(c1 + 1) +2¢; +1 < 0. Therefore, we
have F(¢,) > F(¢g). From this and F(¢g) > 1, we have 0, # ¢g, #,. Therefore,
by [3, Theorem 6.3A,(2)], we have 0, = ¢.

(3) We assume that ¢, < 1, F(¢,) > 1, F(¢s) < 1. By [3, Theorem 6.3A,(2)],
we have 0, = ¢ or ¢s. ]

4. Revised Main Theorems

In this section, we shall summarize main theorems in [3, Section 6]. We also
give an example such that 0, = ¢¢ + @9 =1+ 31 + 1.

For the simplicity, we denote the following conditions by (#):

(#) 0<A<1, 0<X, <X, 0<wi(4,p) <1, wrd,u) >0, a>1, 2|b| <1,
where a = F(u), b=1Y,.

THEOREM 4.1A. Let # =<1,A,u) be a reduced lattice of K such that (#),
O<u<l, ¢ >1. Then
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(1) If F(g)) < 1:
(i) if b <0, then the minimal point adjacent to 1 is ¢y, ¢35 or ¢,;
(ii) if b >0, then the minimal point adjacent to 1 is ¢, or ¢s.
Q) If Fg) > 1, F(gy) < 1:
(i) if b <0, then the minimal point adjacent to 1 is ¢;
(i) if b > 0, then the minimal point adjacent to 1 is ¢, or ¢s.
(3) If F(¢)) > 1, F(¢y) > 1, F(¢g) < 1, then the minimal point adjacent to 1
is ¢e.

THEOREM 4.2A. Let # =<1,A,u> be a reduced lattice of K such that (#),
u>1, ¢, >1. Then
(1) If Flg) < 1:
(i) if b <0, then the minimal point adjacent to 1 is ¢y, ¢5 or ¢,;
(i) if b >0, then the minimal point adjacent to 1 is ¢, or ¢,.
(2) If F(¢)) > 1, F(¢g) <1, then the minimal point adjacent to 1 is ¢g.

THEOREM 4.3A. Let # = {1, u) be a reduced lattice of K such that (#),
u<0, ¢ >1. Then
(1) If F(¢,) <1, then the minimal point adjacent to 1 is ¢;, ¢, or ¢,.
(2) If $;> 1
(1) if F(¢)) > 1, F(¢g) <1, then the minimal point adjacent to 1 is ¢, or

s
(i) if F(¢) > 1, F(pg) > 1, F(¢g) < 1, then the minimal point adjacent to
1 is ¢.
<1, > 1, < 1, then the minimal point adjacent to 1 is
3) If 9, <1, F(¢, 1, F(ds 1, then th / d 1
ds or ¢g.

THEOREM 4.1B. Let # =<1,4,u) be a reduced lattice of K such that (#),
O<u<l, ¢, <1, Fl¢g) < 1. Then
(1) If F(¢,y) <1, then the minimal point adjacent to 1 is ¢,.
(2) If ¢, > 1, F(¢,) > 1, then the minimal point adjacent to 1 is ¢
(B) If g <1
(i) if b <0, then the minimal point adjacent to 1 is ¢g;
(ii) if b >0, then the minimal point adjacent to 1 is ¢g or ¢y.

THEOREM 4.2B. Let # =<1, u) be a reduced lattice of K such that (#),
u>1, ¢, <1, F(¢s) < 1. Then the minimal point adjacent to 1 is ¢.
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THEOREM 4.3B. Let # = {1,2,u) be a reduced lattice of K such that (#),
1w<0, ¢y <1, F(gg) < 1. Then
(1) If F(¢g) <1, then the minimal point adjacent to 1 is ¢g.
Q) If F(dy) > 1:
(i) if @9 <O, then the minimal point adjacent to 1 is ¢g or ¢g + ¢o;
(i) if ¢g > 0, then the minimal point adjacent to 1 is ¢¢ or 1+ ¢

RemMARK 4.4. From these six theorems above, we see that

(i) Oy € S:= {41, b2, b3. bus b5. b6: #7: P35 b0, | + o, b + ¢o },

(ii) in each case of the theorems, the maximum number of candidates ¢ € S
such that we must check whether F(p) < 1 or not is at most three.

REMARK 4.5. In practical computation, if we take a F-point as A, then we
can change (2) in Theorem 4.1A as follows:
Q) It F(dy) > 1, F(d) < 1, F(g) < 1,
then the minimal point adjacent to 1 is ¢,.
Indeed, by the proof of Theorem 6.2A’, F(¢,) > 1 and F(¢s) <1 imply that
0y # 5.

ExaMpLE 4.6. Let K=Q(0) be a cubic number field defined by
0} — 51589 =0 (0 =37.22651403). Then Zogs = {1, (—3553 — 760 + 50%)/9912,
(—1352 44150 — 1160%)/9912)> = {1, A, up. 0<i<l, u<0. 0<X,<X;.
w1 (A, 1) = %. Y; :2ic(—7106 +760 — 50%) (c = 9912). Y, = zic
4150 + 110%). ; = 0.31793235. ¥, = —0.56526693. Y, = —0.14674417. w, =
0.61192165. Hence [w] =0, ¢ = [wa] + A=A < 1.

(1) Nijg(x+ y0+z0%) = x* — 3 x 51589xyz + 51589y + 51589223,

(a) By (1), F(gg) =F([an]+14+2)=F(1+1) = F(% (6359 — 760 + 502))
1 Nij(6359 — 760 +50°) 1 941151982680

2 6359760+ 50> 26359 — 760+ 50°

(—2704 —

1

= 5 F(6359 — 760 + 50%) =

0.91591078 < 1.
(b) By (1), F(1+ 34+ u) —F<

1 Ngjo(—2099+ 1870 +46%) 1 741426600096

—2099 + 1870 + 467 1
+c + >_02F(_2o99+1879+

460%) = — — == 5 = 0.72523368 < 1.
¢ —2099 + 18760 + 40 ¢ 2099 + 1870 + 40
—84 2630 — 0*
(c) Since —8458 42630 —0% <0, 2i4u= 8458 +C630 % < 0. From

this gg=1+1+u<1. So F(gg) > 1.
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(d) Since 24+ u <0, we have 1434+ u <1+ A. Therefore, by Theorem
4.3B,(2),(i), we have 0, =1 + 341+ p = ¢g + ¢y.
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