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ON THE CARTIER DUALITY OF CERTAIN FINITE
GROUP SCHEMES OF ORDER p”, 1

By

Michio AMANO

Abstract. We explicitly describe the Cartier dual of the /-th Fro-
benius kernel N; of the group scheme % W, which deforms G, to G,,.
Then the Cartier dual of N, is given by a certain Frobenius type
kernel of the Witt scheme. Here we assume that the base ring 4 is a
Z,/(p")-algebra, where p is a prime number. The obtained result
generalizes a previous result by the author [1] which assumes that 4
is an F,-algebra.

1 Introduction

Throughout this paper, we denote by p a prime number. Let A be a
commutative ring with unit and 4 a suitable element of 4. We consider the group
scheme ¥ which deforms the additive group scheme G, 4 to the multiplicative
group scheme G,, 4 determined by A (we recall the group structure of %) in
Section 3 below). The group scheme %) has been treated by F. Oort, T.
Sekiguchi and N. Suwa [5] and by W. Waterhouse and B. Weisfeiler [10] in
detail. The group scheme % is useful for studying the deformation of Artin-
Schreier theory to Kummer theory. In particular, the surjective homomorphism

VERARNN g s 271+ Jx)" =1}

plays an important role in the unified Kummer-Artin-Schreier theory. In this
paper, we explicitly describe the Cartier dual of a certain kernel given by a
homomorphism ") generalized .

We remark that i is nothing but the Frobenius homomorphism over the base
ring of the characteristic p. Under this assumption, Y. Tsuno [9] has shown the
following:
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THEOREM 1 ([9]). Assume that A is an F,-algebra. Then the Cartier dual of
Ker(y) is canonically isomorphic to Ker[F — ' .Gy — Gy 4], where F is the
Frobenius endomorphism.

Note that Tsuno’s result is a special case of the result obtained by F. Oort
and J. Tate [6]. Tsuno’s result, however, is embedding certain classified finite
group schemes of order p into ¥ over A[”’\VE], as . ='vb for an element
beA.

The author has generalized Tsuno’s theorem as follows. Let 4 be an F,-
algebra and / a positive integer. We consider the surjective homomorphism

!

Yy g g(ip,); X lipl{(l +Ax)" — 1}

Then we have ) (x) = x”' by our assumption. Put N, := Ker(y"). Suppose that
W, is the Witt ring scheme over 4. Let F: W, — W, be the Frobenius
endomorphism and [1] : W, — W, the Teichmiiller lifting of Ae 4. Set F) :=
F — [277!]. We restrict F) to the Witt ring scheme W, 4 of length /. The result
of the previous paper [1] is:

THEOREM 2 ([1]). Assume that A is an F,-algebra. Then the Cartier dual of N,
is canonically isomorphic to Ker[F*) : Wi 4 — Wi 4l

To prove Theorem 2, we have used the deformations of Artin-Hasse exponential
series introduced by T. Sekiguchi and N. Suwa [8] and a duality between
Ker[F) : W(A) — W(A)] with a formal completion of ¥ proved by them
[Ibid].

Theorem 2 has been constructed by assuming the characteristic p. We
do not assume it. Our arguments are as follows. Let n be a positive integer.
Suppose that Z,) is a localization of rational integers Z at p. Let 4 be a
Z/(p")-algebra and A a suitable element of A. Here, for each integer
0<k<I—1, we assume that p'*i?" is divided by i* (if =0, we put
p!=k37" /37" .= 0) and that p'~%A”" /2”" is nilpotent. Then the homomorphism i)
is well-defined and N; = Ker(lp(/)) is a finite group scheme of order p’, since
¥(X) is a monic polynomial of the degree p’. For a € W(4), T. Sekiguchi and
N. Suwa [7] have introduced an endomorphism 7, on W(A) (we recall the
definition of 7, in Section 2 below). Put W(4)/T, := Coker[T,: W(A4) —
W(A)). Set T.:=F%oT, Put W(A)/T,:= Coker[T,: W(A) — W(4)]. We
consider the diagram
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W(A) —— W(A)/T,

W(A) —— W(A)/T,.

Here F@ is defined by F()(¥):= F()(x). It is shown that the homomorphism
F@ is well-defined and that the above diagram is commutative. Put a:=
A7"'p![A] € W(A). Then the result of this paper is:

THEOREM 3. With the above notations, the Cartier dual of N; is canonically
isomorphic to Ker[F%) : W, /T, — W4/T].

The case n = 1 of Theorem 3 is nothing but Theorem 2 except restricting A € A4.
In fact, if n=1, we have T, = V' ([1, Lemma 1, p. 123]), where V is the
Verschiebung endomorphism. Then Theorem 3 is stated by

Ker[F) : Wy /T, — W4/T)] ~Ker[FW : W, 4 — W 4 = W4/T/].

The framework of our proof is similar to the previouslpaper [1]. But we do not
assume the characteristic p. Then the equality Ker(F*")) = Ker(F*) o T,) is our
important tool (we prove this equality in Subsection 4.1 below).

The contents of this paper are as follows. The next two sections are devoted
to recalling the definitions and the some properties of the Witt scheme and of
the deformed Artin-Hasse exponential series. In Section 4 we give our proof of
Theorem 3.
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Notations

G, 4: additive group scheme over A4
G, 4: multiplicative group scheme over A
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G, 4: multiplicative formal group scheme over A4
W, 4: group scheme of Witt vectors of length n over A4
W4: group scheme of Witt vectors over A4
F: Frobenius endomorphism of W,
[4]: Teichmiiller lifting (4,0,0,...) e W(A) of 1€ 4

FW: = F — 37"
T,: homomorphism decided by a € W (A) (recalled in Section 2)
al?: = (af,al,...) for a= (ag,a,...) e W(A)
W)™ =Ker[FW : W(4) — W(4)]

(
W(A)/FY: = Coker[FW : W(A4) — W(A)]
(A)/T,: = Coker[T, : W(A) — W(A4)]

W(A)/T,: = Coker[T,: W(A) — W(A4)]

2 Witt Vectors

In this short section we recall necessary facts on Witt vectors for this paper.
For details, see [3, Chap. V] or [4, Chap. III].

2.1

Let X = (Xo, X1,...) be a sequence of variables. For each n > 0, we denote
by @,(X) = ®,(Xy, Xi,...,X,) the Witt polynomial

O,(X) = X"+ pX!" + -+ pX,

in Z[X]=Z[Xo, X1,...]. Let W,z =Spec(Z[Xo,X1,...,X,—1]) be an n-
dimensional affine space over Z. The phantom map ®" is defined by

O W,z — AL x = (Qox), @p(x), ..., Oy (x)),

where A7 is the usual n-dimensional affine space over Z. The scheme Aj has a
natural ring scheme structure. It is known that W, z has a unique commutative
ring scheme structure over Z such that the phantom map ®" is a homo-
morphism of commutative ring schemes over Z. Then A-valued points W,(A4) are
called Witt vectors of length n over A.

22
We define a morphism F: W(A4) — W(A4) by

®,(F(x)) = iy (x)
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for xe W(A4). If A is an Fj,-algebra, F is nothing but the usual Frobenius
endomorphism. Let [1] be the Teichmiiller lifting [A] = (4,0,0,...) e W(4) for
J e A. Set the endomorphism F*) := F —[i7"'] on W(4).

For a = (ap,a;,...) € W(A), we also define a morphism 7, : W(A4) — W(A)
by

n n—1
O, (T,(x)) = af ©y(x)+ pal” @p_i(x) + -+ p"a,Dy(x)

for x e W(A4) ([7, Chap. 4, p. 20]).

3 Deformed Artin-Hasse Exponential Series

In this short section we recall necessary facts on the deformed Artin-Hasse
exponential series for this paper.

3.1

Let 4 be a ring and A an element of 4. Put %Y := Spec(4[X,1/(1 4+ /X))).
We define a morphism o) by

a? gl G4 x—1+2x

It is known that ¥ has a unique commutative group scheme structure such
that «¥) is a group scheme homomorphism over 4. Then the group scheme
structure of ¥ is given by x - y = x + y + Axy. If 1 is invertible in 4, o® is an
A-isomorphism. On the other hand, if 2 =0, 4% is nothing but the additive
group scheme G 4.

3.2

The Artin-Hasse exponential series E,(X) is given by

e
E,(X) =exp <Z . ) € Z,[[X7]].
=0 P
We define a formal power series E,(U,A;X) in Q[U,AJ[[X]] by
E,(U,A; X) = (1 +AX) U/A ﬁ(] 4 APkXPk)(l/lfk>((U/A)”k%U/A)P"’l).
k=1

As in [8, Corollary 2.5.] or [7, Lemma 4.8.], we see that the formal power series
E,(U,A; X) is integral over Z,). Note that E,(1,0;X) = E,(X).
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Let 4 be a Z,-algebra. For A€ A and v = (vo, v1,...) € W(A), we define a
formal power series E,(v,4;X) in A[[X]] by

o0
Ey(0,2:X) = [[ Ep(vr, 27" X7
k=0

, = ok ;
= (14 2X) " T (1 4 22" x 2ty et )@ o) (1)
k=1

Moreover we define a formal power series F,(v,4;X,Y) as follows:

ﬂ ( (L+ 27 x4+ 2 Yp")>(l/pk“k)‘l’kl<u>

v,;X,Y) ,
,H 14+ 7 (X + Y +2x7)"

(2)

As in [8, Lemma 2.16.] or [7, Lemma 4.9.], we see that the formal power series
F,(v,A; X, Y) is integral over Z,.

T. Sekiguchi and N. Suwa [8, Theorem 2.19.1.] have shown the following
isomorphisms with the formal power series (1) and (2):

w(A) " = Hom(@W, G, ) v Ep(v, 45 X), (3)
W(A)/FYD = HYGD,Gpu); w— Fy(w, A X, Y). (4)

Here HZ(G,H) denotes the Hochschild cohomology group consisting of sym-
metric 2-cocycles of G with coefficients in H for formal group schemes G and H
([3, Chap. IL.3 and Chap. IIL.6]).

4 Proof of Theorem 3

In this section we prove Theorem 3. Subsection 4.1 is a technical part in our
proof. In Subsection 4.2 we complete our proof of Theorem 3.

4.1

Suppose that A4 is a ring. Let A be an element of 4 and / a positive integer.
Assume that p/~%3?" is divided by A”' for each integer 0 <k </ —1. Put a :=
A7 plA] e W(A).

LemMA 1. With the above notations, we have

4 i
Ker(FW o T,) = Ker(F“")).
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PROOF. As a preparation, we calculate the components of b := p'[i] € W(A)
by using the phantom map. For b = (by,b1,...), we have by = p'i by (Do(b) =
®o(p'[4]). Similarly, we have by = p!~1A7(1 — p(r=U. Put oy := (1 — 0,
For k =2, the components of b is inductively given by

by = pi7 (1= plr 0 g R g )
where we put
k=1

o =1 — pP*=1l Zp(pk,,-,l)(,,%}_,w (k>2). (5)
i=1

Note that we have the congruences
bi=2" (modp) if k=1 and by =0 (mod p) if k#1L  (6)
Therefore b is stated by
b=p'[A]=(p'2 p"~12u, pl_z/ll'zocz, . ,)vplochp_llp[qoclﬂ, o). (7)

Moreover we also obtain the components of a =177 'be W(A).
Next, we show the equality of Lemma 1. Ker(F Wl)) c Ker(FYoT,) is
proved as follows For x € Ker(F* )), we have @y (x) = /1”1+k<”_l>d)k(x) since
F(x)=[27"""D] . x. We must show F® o T,(x)=o. The claim is proved by
induction on k. Put y := F* o T,(x). For y = (yo, y1, ¥2,...), we have

¥o = Do(p) = @o(F o Tu(x)) — A7~ '@y (T,(x)) = (agipl<p71) + pay — 27" ag)®o(x).

By components of a, we have }f’l@*l)ag + pa; — 2’"'ag = 0. Hence y, = 0.
Assume y; =0 for 1 <j<k—1. Then we have ®; |(F*" o T,(x)) =0, ie.,

k— 1

O (Ta(x)) = 27 P D@, (T,(x)). By using the phantom map and the relations
(5), we have

O (FP o Ty(x))
= Oy (To(x)) — 22 P70 07D 0 Ly (T, (x))

=m0 el e D gy (x)

l-k—l(

a0 g ) gy ()

/c+l_1

4+ 4 pk+1ak+1(1)()(x) — A an)O(x)

I+k+1_ k+1_q

I pk+l Itk _ 1 pk
= (7 I)ag + piP I'af +"'+Pk+lak+1—/1p

ag)Po(x)
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k+1 1 1k+1 ! k+1_1y; k_1)(1-1 k
_{p+ pi+/},p(1—p(” )_p(P ) )oclp

e p(”_l)(l_k)lpkﬂa,f)}dDO(x)
14 p*Ht o p! P k PRI 1) pl\'-l—i
=p' A /AP Ca— 1 - Zp o Dy(x) =0.
i=1

7/ N .
Therefore, for x e Ker(F*")), we have F o T,(x) =o0. We consider the fol-
lowing diagram in order to prove the reverse inclusion:

W(A) & W(A)
A
W(A) x W(A)
(F, 7))
W(A) x W(A) £
m W(A) X W(A)
W(4) \‘ W(A),

where homomorphisms m, A and ¢, are defined by
m: W(A) x W(A4) - W(A); (x1,x2) — x1 + x2,
A:W(A) - W(A) x W(A); x+— (x,x) and
i W(A) x W(A) — W(A) x W(A);

(x1,%2) = (Tyin (x1), Tuin © F(x3) — F o Te(x2) + [A77 "] 0 Te(x2)).

Here we put ¢ := o p'[4]. Note that the homomorphism ¢/ is well-defined over
(Im(F)) x (Im(—[2”?"1])). Hence we obtain

) N
FAoT,=mot o(F,—[i'")oA and F¥)=mo (F,—[""V))oA
By the above equalities, we have

Sl !
W(A)/Ker(FUV) oT,) ~ Im(Fw oT,) c Im(F(// )) ~ W(A)/Ker(F()“p )).
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1
Therefore, if x e Ker(F” o T,), then we have ¥ =6 € W(4)/Ker(F*")). Hence
x e Ker(F*")). Thus we obtain the result. O

4.2

Let n be a positive integer. Suppose that 4 is a Z,) /(p")-algebra. Let 4
be an element of A. For each integer 0 <k </ — 1, we assume that p/%i”" is
divided by A”' and that p'~%1”/?" is nilpotent. In particular, if =0, we set
pRart 1t = o.

Let ¥ be the deformation group scheme defined in Subsection 3.1 and %(*
the formal completion of ¥*) along the zero section. We consider the homo-
morphism

b0 gD g i (14 ) — 1)
Then we have

p-1 1
p (X)) =271+ 1y =27y (i)mk + X7
k=1
Note that w(” is well-defined under our assumptions (even A = 0). By the nil-
potency of p'~%”" /3”', the class X is nilpotent ([2, Chap. 1, Ex. 2]). If 2 =0, we
have X?' = 0. In particular, if p/*2?" /7" is divided by p, the nilpotency of p is
used in the coordinate ring. Hence the kernel of ) has the equalities

Np = Ker(y") = Spf(A[[X]]/ (" (X))) = Spec(4[x]/ (4" (X))).

Note that N, is a finite group scheme of order p! of 4. The following short
exact sequence (8) is induced by y:

Ay (ORI
0— N g\ LA g(i’l) — 0,

where 1 is a canonical inclusion. The exact sequence (8) deduces the long exact
sequence

araply A (y* Aoy A 0* ~
0—— Hom(g(”[ ), G, 4) (w—)> Hom(g(’”), G a) L Hom(N;, Gy, 4)

5 ol 0y o
_2 Extl(g(ﬂ )’ Gm,A) M EXt](g(m,Gm,A) - .,

Since the image of the boundaryl map 0 is given by cllirect product of formal
schemes, we can replace Ext' (4" ) G,, 4) with H}(%*") G, 4) (1, Lemma 3)).
Therefore the exact sequence (9) is given by
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P N ()y* N R * "
Hom(g(/f ),Gm,A) & Hom(g(;')7 G, 4) L Hom(N;, Gy, 4)

9 ~apl ~
— S HY (G Gy ).

On the other hand, we show that the following sequence (10) is exact:
!

W' = W)t S %o,

where we put M; := Ker[F") : W(A)/T, — W(A)/T)] and = is a homomorphism
induced by the natural projection W(A4) — W (A)/T,. We show that Im(7,) =
Ker(z) and Im(zn) = M;. Im(T,) = Ker(n) is obvious. To prove the reverse
inclusion, if n(x)=0e M; (x€ W(A)Fm), then we have xeIm(7,). Hence
x=T,(z) (z€ W(A)). Then we have F"(x) = F% o T,(z) = 0. Therefore we
have

ol !
zeKer(FW o T,) = Ker(F*)) = w()F""

Next, we prove the surjectivity of 7. Let ¥(# 0) € M;. Hence x ¢ Im(7,). Since
FO(x) = FW(x) =0 and FW(x) # FW o T,(z) (z€ W(A)), we have FW(x) ¢
Im(7!) = Im(F% o T,) and F"(x)=o0. Hence xe W(A)"" . Therefore n is
surjective, i.e., we have W(A)F@/Im(T,,) ~ M.

Now, by combining the exact sequences (9), (10) and the isomorphisms (3),
(4), we have the following diagram (11) consisting of exact horizontal lines and
vertical isomorphisms except ¢:

R R )y * A * R B R .
Hom(¢), G a) -1 Hom(@D), Gy i) —— Hom(Ny, G ) —— H2(GW), G )

A 1

) b4 0

wa)™ T ™ M, W(A4)/FU),

where ¢ is the following homomorphism induced from the exact sequence (8) and
the isomorphism (3):

¢ M; — Hom(N;, G a); X — E,(X,2;x) == Ep(x, A; x).

We must show the well-definedness of ¢. For ¥ € M;, we Ichoose an inverse iImage
x+ T,(z) €e W(A), where x € W(A)Fw and z € W(A)F(/'I ' By z e W(A)Fw ), we
can use the equality E,(z, )f’l;xp(l)(x)) = E,(T,(z),4;x) ([1, Lemma 1, p. 123]).

Hence we have
Ep(fa l; X) = Ep(x7 }*3 X) : EP(Ta(z)> /1; X) = Ep(xa 15 X) : Ep(za A; lp(l)(x))

= E,(x, 4;x) (mod Y ().
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If the diagram (11) is commutative, by using the five lemma, ¢ becomes an

isomorphism, i.e., M; ~ Hom(N,, G, 4). Therefore we must prove the equalities

(12) W) op =¢y0Tu, (13) () 0gy=¢on, (14) dop=¢s00.

For (12), we must show the equality E,(x,2”:y")(x)) = E,(Tu(x), 4 x). This
is nothing but the equality in [1, Lemma 1, p. 123]. The equality of (13) fol-
lows from the definition of ¢. The calculation of the boundary 0(E,(X,4;x))
(Xe M;) is similar to the previous paper [l, Lemma 3]. Hence we have
O(Ey(%,2;x)) = Fy(FW(x + T,(z)), 4; x1,x2), where x + [Ta(z) is an inverse image
of X for w: W(A) — W(A)/T,. Note that z € W(A)FW ', Since z e W(A)FW g
Ker(F* o T,), we have

Fy(FY (x4 Ta(2)), 2 x1,x2) = F,(FP (x) + F% o T,(z), 25 x1, x2)
= Fp(0,2;x1,x2) = 1.

Therefore the equality (14) is a conclusion from 0(E,(¥,4;x)) =1 and d(M;) =
{o}. Hence we obtain Theorem 3.
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