TSUKUBA J. MATH.
Vol. 36 No. 1 (2012), 79-97

LOOP GROUPS SL>(F[X,X"']), UNIVERSAL CENTRAL
EXTENSIONS AND ADDITIVE STEINBERG SYMBOLS

By

Yasutomo ASAI

Abstract. We determine the group presentations of universal central
extensions derived from loop groups, where loop groups are Che-
valley groups over Laurent polynomial rings. We also show that the
universal central extensions have Tits systems. For our purpose, we
introduce additive Steinberg symbols.

0. Introduction

Let A be an n x n Cartan matrix of finite type and @ the root system defined
from A (cf. [6]). We can construct G,.(4,—), the Chevalley-Demazure group
scheme of universal type associated to 4, i.e., the representable covariant functor
from the category of commutative rings with 1 to that of groups (cf. [1], [4], [5]).
It is known that if 4 =A,, G, (A,,—) is isomorphic to SL,.i(—).

For F[X, X!}, a Laurent polynomial ring over an arbitrary field F, we call
Gs(A,F[X,X71]) the loop group of type A. It is known that if R is a field, a
polynomial ring, a Laurent polynomial ring, the ring of integers or a semi-local
ring all of whose residue fields are infinite, G,.(A4, R) is isomorphic to the group
generated by x,(f) (y€®, e R) with the defining relations (A), (B), (B)" and
(C) (cf. [2], [8], [19]). The relation (A) represents the additivity of each root sub-
groups and the relation (C) represents the multiplicativity of each one dimen-
sional tori.

Let R be an arbitrary commutative ring with 1. We define S#(4, R), the
Steinberg group over R, to be a group generated by X,(¢) (y € @, t € R) with the
defining relations (A), (B) and (B)’ (cf. [14]). In 1960’s, R. Steinberg has shown
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that if R is a field with sufficiently many elements, St(4, R) is centrally closed,
i.e., the identity map of S#(4, R) is its universal central extension (cf. [15], [16]).
In general, M. R. Stein has shown that S#(4, R) is centrally closed provided that
Rank 4 > 4 and A4 # Dy, F4 (cf. [14]). In the case of Rank 4 being small, we can
also prove that St(A4, R) is centrally closed provided that R has many units since
the R. Steinberg’s arguments can be applied to them.

We can construct a canonical homomorphism from S#(4,R) to G,.(4,R)
and we denote the kernel of the homomorphism by K,(A,R). From the facts
mentioned in the previous paragraph, S7(4, R) is the universal central extension
of Gy.(A4,R) and K,(A, R) is the Schur multiplier of G,.(4, R) provided that R is
a field, a polynomial ring, a Laurent polynomial ring or a semi-local ring all of
whose residue fields are infinite, and has many units. For the case of R being a
field, the group presentation of K,(4, R) has been given by H. Matsumoto [10].
In his presentation (called a Matsumoto type presentation), he uses the Steinberg
symbols, which come from the relation (C). For the case of R being a Laurent
polynomial ring, the structures of K,(4, R) have been studied by J. Morita [12]
and its Matsumoto type presentation has been given by M. Tomie [18]. W. van
der Kallen has given a Matsumoto type presentation for the case of R being
U-irreducible (cf. [19]).

Let F be a field and let G’ be a group and « a central extension from G’ to
St(4,F). To prove the universality of Si(4,F), R. Steinberg has detected x/(7)
(ye®,teF) in G’ and he has shown that these elements satisfy the relations
(A), (B) and (B)". If Rank ® and the cardinality of F are small, however, there
are several cases where his method cannot be applied. For example, if G’ is
a universal central extension of St(A;,Fy), the relation (A) doesn’t hold since
x;(6)x,(¢)x, (1 + )" #1 for some ,# € F. To treat the universal Acentral exten-
sions comprehensively, we introduce additive Steinberg symbols 6,(z, "), which
correspond to x;,(t)x;(t’)x;(t—kt’)*l. Using the additive Steinberg symbols, we
will show that the universal central extension of Gy.(Aj,F[X,X!]) is isomorphic
to the group generated by x4(f) (1€ F[X,X!]) with the following defining

relations:
(B) i (0)e (0 (v) ™! = Fx(—v72),
(61) O4(z,t'") is central,
(62) 0 is biadditive,
(03) 0.(1,¢) = 0, (a21, 1),

where 7,7 e F[X, X1, v e F[X, X%, 0,(t,1") = 2 (0% ( &L (1 + )", s (v) =
%1 (0)%z(v"1) "%, (v) and « is a prefixed element of F.
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We will also show that the universal central extension of Gy.(Aj,F[X, X))
has a Tits system.

Notations used here are as follows. For elements g, g’ of a group G, we
denote the commutator gg’g~'¢g'~! by [g,¢'], the commutator group of G by
[G, G| and the center of G by Z(G). The symbol {---> means that the group is
generated by ---. For a set D, we denote the cardinality of D by #D.

The author wishes to represent his hearty gratitude to Professor Jun Morita
for his valuable advice.

1. Central Extensions

Let G and G’ be groups and x a group homomorphism from G’ onto G. A
pair (G, k) is called a central extension of G if Ker x is included in Z(G'). We
abbreviate (G',x) to G’ provided that no confusion occurs.

Notations are as above. The pair (G’,x) is called the universal central
extension of G if the following conditions are satisfied:

(ucl) @ = (6",
(UC2) Let (G”,x') be an another central extension of G. Then, there exist a
group homomorphism x”: G’ — G” such that k¥ = x’ o k”.

It is well-known that a universal central extension of G is uniquely deter-
mined up to isomorphism. It is easily shown that x” of (UC2) is uniquely
determined.

From the definition, G must be perfect if a universal central extension of G
exists. The next proposition indicates that the opposite direction also holds.

ProrosiTiON 1.1 ([16], [17]). Let G be a perfect group. Then, its universal
central extension exists.

Let G be a group. We call G centrally closed if (G,id) is a universal central
extension of G. If G is centrally closed, G must be perfect.

ProposiTION 1.2 ([16], [17]). Let G be a group and (G’ k) a central extension
of G. Then, the following conditions are equivalent:

(@) (G',x) is a universal central extension of G,

(b) G’ is centrally closed,

(c) Let (G" k") be a central extension of G'. Then, (G", k') is split, i.e., there
exists a group homomorphism k" : G' — G” such that k' o k" = id.
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Let G be a group, (G',k) a central extension of G and (G”,x’) a central

extension of G'. Then, is (G”,kox’) a central extension of G? In general, it
doesn’t hold. For example, set G = {1} and

d,g,kGFz ) L=

S O -
S = O

1 d
G" = 0 1
0 0

— x> a

g
0llgeF,}, G =G"/L.
1

But the next proposition holds.

ProposITION 1.3. Let G be a group, (G' k) a central extension of G and
(G" k") a central extension of G'. Assume that G' is perfect (hence, G is also
perfect). Then, (G" k' oK) is a central extension of G.

To prove Proposition 1.3, we use the next lemmas.

LemMa 1.4 ([16]). Let G be a perfect group and (G’ ,x) a central extension
of G. Then, G' = (Kerk)-[G',G'] and [G',G'] is a perfect group.

LemmA 1.5. Let G be a group and g an element of G. Assume that [g,g'] is
included in Z(G) for all g’ € G. Define a map k from G to Z(G) by ¢g' — [g,9’].
Then, x is a group homomorphism. In particular, if G is perfect, g must be central
in G.

Proor. for ¢’,¢" € G,

[ 1 -1 =1\ 1— -1 /-1 " "

9,9'9"1 = 99’9 " (99"97'9" N9 =99'97'9" " 9.9") = 9,91l9,9"). O

ProOF OF ProrosITION 1.3. Let g be an element of Ker(xox’). From
Lemma 1.4, there exists g’ € Ker k¥’ and ¢g” € [G”, G”] such that g =¢'g”. To
prove Proposition 1.3, it is enough to check that ¢” is central in [G", G"].

For all de G”, [¢",d] = [g,d] € Z(G") because x’'(g) is central in G'. The
restriction of k' to [G”,G"] is also a central extension of G’ since G’ is perfect.
Applying Lemma 1.5, we can prove Proposition 1.3. O

Using Proposition 1.2 and Proposition 1.3, we have the next corollaries.
COROLLARY 1.6. Let G be a perfect group and (G' k) be a central extension

of G with G’ being perfect. Let (G" k') be a universal central extension of G'.
Then, (G",k’ oK) is a universal central extension of G.
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CorOLLARY 1.7. Let G be a perfect group and (G',k) a central extension
of G. Then,

(a) x71(2(G)) = Z(G").
(b) Let g,g',d,d' € G’ and assume that x(g)x(g’) ", k(d)x(d) " € Z(G).
Then, [g9,d] =[g',d'].

ProoF. (a) x '(Z(G)) > Z(G') is obvious. Let x’ be the canonical group
homomorphism from G to G/Z(G). Then, (G,x’) is a central extension of
G/Z(G) and x~'(Z(G)) = Ker(x' o k). We have x~'(Z(G)) = Z(G') from Prop-
osition 1.3.

(b) is obvious from (a). O

2. The Loop Groups and the Steinberg Groups

Let F be an arbitrary field. The group SL,,|(F[X,X~']) is called the loop
group over F (of type A,). In this article, we treat only the case where n = 1, i.e.,
SL>(F[X,X™']). In general, for an arbitrary root system of finite type, we can
construct the loop group using Chevalley-Demazure group scheme (cf. [4], [5]).

It is known that SL,(F[X,X~!]) (resp. SL,(F)) is isomorphic to the group
generated by x.(f) (te F[X,X!]) (resp. t € F) with the following defining rela-
tions ([2], [8]):

where ¢,¢' € F[X, X~!] (resp. t,¢ € F), v,0’ € F[X, X~']* (resp. v,v' € F*), ny.(v) =
x(0)x: () 'x.(v) and hy(v) = ny(0)ne(1)”'. We denote the multiplicative
group of F[X, X~ !] (resp. F) by F[X,X~!]* (resp. F*). For te F[X,X~!] (resp.
t e F), the generators x, (), x_(t) correspond to:

1 ¢ 1 0
<0 1)’ (l 1>’
respectively in SL>(F[X, X~!]) (resp. SLy(F)).

Let R be a commutative ring with 1. We define the Steinberg group S7>(R)
over R (of type Aj) to be the group generated by X4(¢) (€ R) with the defining
relations (A) and (B)’, where x; is replaced by X;. In this article, we denote
the generators of SL>(F[X,X~']) by x+(f) (te F[X,X~']) and the generators of
St(R) by X4(f) (te€ R). The following propositions are easily proven.
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ProposiTION 2.1 ([18]). Let F be an arbitrary field. The following formulas

hold in SL,(F[X,X™)):

(@) x:£(0) =1, x4(t) " = x3(=1), ne(v) =ne(-v),
(b) hs(1) =1, hs(v)™ = he(v7)),

() ne(v) = nz(—v7"), he(v) = he(v™),

(d) ne(©)ne(v")ne(v) ™" = nz(—v~20"),

(©) ne()he(v)ns(v) " = hz(v"),

(F) he()xs(Dhe(0) ! = x4 (0?0),

(&) he()ns(v)he(v) " = ni (@),

(h) 7 (0)hs(v))he(v) ' = he ('),

where te F[X, X! and v,v" e F[X, X 1]~

ProposITION 2.2 ([18]). Let R be an arbitrary commutative ring with 1. For

v,v" € R, we define

(a) :(0) =1, X:() " = %u(—1), Ax(v)” =i (—v),
(b) he(1) =1, ha(v)™" = he(v Des(v,v )7,

() Aix(v) = Ag(—v1), hy(v) = h(v™")ex(v,—1)7",
(d) nx(v) :i(v/)ﬁi(l)yl = itz (—v"?),

(&) Ax(0)hs(v))its(v) " = he(v))ex(v!, —v72) 7,

() he(v)xe(z ;(0)71 = % (v%1),

(2) e (v))he(v) ™! = ("),

(h) /s (g (v)he(v) ™" = hy(v))s (v, 02) 7",

(i) cx(v,v") € Z(St(R)),

where t€ R and v,v' € R*.

There is a group homomorphism ¢ from St>(F[X, X !]) to SL,(F[X,X"!])
given by @(x4 (1)) = x4(1) (te F[X,X!]). The pair (St,(F[X,X"!]),p) is obvi-

ously a central extension of SL,(F[X,X~!]).

If Fis F» or F3, SLy(F[X, X!]) is not perfect since there is a group homo-

morphism from SL,(F[X,X~!]) onto SL,(F) and SL,(F) is not perfect.
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On the other hand, if F has more than 4 elements, we can choose a element
ueF* such that u> — 1 e F*. For all te F[X, X ],

e (u0), s (10 = 1)) = () (e = 1) () e (e(@® = 1)7) ™!

Thus, SL,(F[X, X)) is perfect if F has more than 4 elements and its universal
central extension exists (proposition 1.1). We will give a group presentation of the
universal central extension in Section 3.

Next, we introduce Tits systems. Let G’ be a group and B’, N’ subgroups of
G'. Let S’ be a subset of all left cosets set N'/(B’NN’). We call (G',B’,N’,S') a
Tits system if the following conditions are satisfied (cf. [3], [13], [17]):

(T1) G’ is generated by B, N’, and T'=B'NN' < N/,

(T2) N'/T’ =<S), the order of s is 2 for all s€ S,

(T3) s'B'w' < B's'w'B"UB'w'B’ for all s'eS’, weN'/T,

(T4) s'B's' ¢ B'.
We call N'/T’ the Weyl group of the Tits system. It is known that N'/T’ is a
Coxeter group (cf. [7]).

ProposiTION 2.3 (Bruhat decomposition). Let (G',B',N’,S') be a Tits
system. Then, we have

G'= |J BWB.
WeN/ /T

This is a disjoint union and N'/T' is in bijective correspondence with the double
cosets B'\G'/B'.
We define the following subgroups of SL,(F[X,X~!]) by:
U,y = x4+ (sX™) |seF)y (for all meZ),
U= Uy, Uiyl €lso, k' € L1,
T = <hy(u) [ueF*),
B=<U,T>,

N = {ni(v) | v e FIX, X717,
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Set S ={n.(1),n_(X) Mod T}. Then,

PropoOSITION 2.4 ([11]). The quadruplet (SL,(F[X,X~']),B,N,S) is a Tits
system, BON =T and N/T is isomorphic to the infinite dihedral group.

3. The Universal Central Extension of the Loop Group SL,(F[X, X !])

Let F be a field with more than 4 elements. As mentioned in the last of
Section 2, SL,(F[X,X~!]) is perfect and its universal central extension exists.
If #F is large enough, we can prove that St(F[X,X!]) is a universal central
extension of SL,(F[X,X~!]) as in R. Steinberg’s paper [15], in which he proved
that if F # F4, Fy, St,(F) is a universal central extension of SL,(F). On the other
hand, if F=F4 or Fy, St,(F) is not a universal central extension of SL;(F).

In this section, we assume that R is a commutative ring with 1 such that
there exists o € R* satisfying o> — 1 € R*. We fix such an element o for each R.
Define S1,(R) to be the group generated by %.(s) (€ R) with the following
defining relations:

(B) s (0) % (1)t (0) ™" = F(—v720),
(01) 04(z,t) is central,
(62) 6 is biadditive, i.c.,
0, (1,0)04(1,1") = 04 (2,1 +1"),
0:(1,1)0+(1',1") = 0=t + 1/, 1"),
(63) 0:-(1,1") = 0:(, 1),

where r,/'e R, veR*, i () =x(0)xs(w ) "% (v) and  O.(r,1) =
51 (Nx:(1)%4(t+ 1), We define:

ha(v) = iy (v)as (1),
é1(v,0") = ha(v)hs (v)hs (v0)

We can construct the canonical group homomorphism ¢ from SAtz(R) onto
St(R) given by ¢(%4(1)) = x.(1) (1€ R). Obviously, (St:(R),$) is a central
extension of St(R), whose kernel is the subgroup of SAtz(R) generated by
0. (t,1") (t,1' € R). As in the last of Section 2, we can prove that St,(R) is perfect
and its universal central extension exists. We will show that St,(R) is a universal
central extension of Sz (R), later.

The group presentation of .S%(R) depends on the fixed element «. There-
fore, S?tz(R) should be written as SAtg(R) Let o' be an another such element. A
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universal central extension defined from o« is isomorphic to the first one since a
universal central extension is uniquely determined up to isomorphism. There is a

direct proof of ﬁg(R) ~ §t§"(R) See Remark 3.9 for the proof.

ProposiTION 3.1.  The following relations hold in SAtz(R):

(a) he(1) =1, (1)
(b) 0:(1,0) = 6:(0,0) = 1, 2)
(c) £:(0) = 1, (3)
(d) Os(t,1) " = Os(=1,1) = 0:(1, 1), 4)
(e) 0:=(1,1) = Ox(—1,—1)), (5)
(F) 0:(1,7') = 0x(1,1"), (6)
(2) Ox(t, ") = 0= (071,071, (7)
(h) [£2(2), %2(1")] = 0x((o% = 1)1',0), (8)

)
oe]
<
—~
~
o
=]
o
S

(e) is obvious from (4).
(f) is proven by:
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(g) is proven by:

0.(t,0") = Ay (v )% (D% (xs(t+ ) g™ by (01)

= 23 (—0* 0% (=01 F5 (=07 (1 + 1)) by (B)'

= 0= (=021, —v*t)
=0, (v%1,0*1") by (5)(6).

(h) is proven by:

[0 (), % ()] = (Rp (D% () %u (0 + ) ) (Ee(t 4+ )2u () 20 () 7

éi(t7 t/)éi(t/7 t)_l

0

I+

(o1, 0)0s(~t',1) by (03)(4)

0.((«®> — 1)t',1) by (62).

PROPOSITION 3.2. The following relations hold in §tz(R):

(@) x:()7" = xu(=004(1,1),

where t € R and v e R*.
PrOOF. (a) is proven by:
%2 (0)(%e(=0)0x (1, 1)) = 0=(1, =)+ (1,1) by (3)

=1 by (62)(2).
(b) is proven by:

= &4 (=) (=0 R (—0)0 (v, =0 ) 0. (v,0)7 by (91)(9)
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e (—0)0(~v,—v) ' 0:(v,0)* by (7)

(=0)0=(v,0) by (5)(6).

(©): By (1), () (s (v,07) ! = eu(o, 0 es(o, o) = 1.
(d) is proven by:

fl

I+

(f) is proven by:

x5 (v i (—v)xx (07105 (v, 0)

= 0z(v7", —v )xe(—0) ' 0z(—v " v )05(v,0) by (3)
= 05 (v, —0) %+ (0)0 (v, —0)x(—v, )0 (v,0) by (7)(9)

—&.(v) by (01)(02)(2)(6). 0

ProposITION 3.3.  The following relations hold in ﬁz(R):

(a) %o ()% ()% (0)" = %4()0L (e — 1)1, 1), (15)
(b) Ay (0)%s(D)Ay(v) " = Z_s(—v"%1), (16)
(€) hy(v)Zs5()hy(v) " = %5(%°0), (17)

where t,t' € R, ve R* and &,0 € {+,—}. Notice that €6 =+ if e =0, and ed = — if
& #0.

PROOF. (a) is obvious from (A1) and (8).
(b) is obvious from (B)’ and (12).
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(c) is proven by:

(a) A,(v)As (V)i (v) " = A_s(—o 20", (18)
(b) ho(v)its (v )h(v) ™" = s (v**0"), (19)

where v,v" € R and ¢,0 € {+, —}. Notice that ed = + if e =0, and &6 = — if ¢ # 0.
Proor. (a) and (b) are obvious from (16) and (17). O

PROPOSITION 3.5. The following relations hold in Sty(R):

(a) éy(v,v") is central in Sty(R), (20)
(b) 7 (0)hs (v )ie(v) " = hos(v))é s(0), —v7) 7!, (21)
(©) u(v) hs(v))iu(v) = hs(v")és(v, —v7) 7, (22)
(d) (o) () (0) ™" = hs(v")és(v',07) 7, (23)
(e) ho(v)ho(v'Yhu(v) = hs(v)és(v',07) 7, (24)

where v,v" € R* and ¢,0 € {+, —}. Notice that ed = + if ¢ =0, and &6 = — if ¢ # 0.

PrOOF. (a) is obvious from (17).
(b) is proven by:
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(c) is obvious from (01), (10) and (21).
(d) is proven by:

(e) is obvious from (11), (20) and (23). O

Using the relations of St>(R) and that of St(R), we can prove the uni-
versality of St,(R).

THEOREM 3.6. (St,(R),§) is the universal central extension of Sty(R).

The idea of the proof is in Steinberg’s lecture notes [16]. We will check that
(St2(R), @) satisfies (UC1) and (UC2).

LemmaA 3.7. The group S7tz(R) is perfect.

Proor. We have:
(%2 (1), 22((#7 = 1)7'0)] = 0s(2,4') by (8).
Hence, 0. (1,1') € [St2(R), Stz(R)] for all t,7' € R. Then, for all te R,

[ha(2), 24(1)] = 22(0)%(0)”" by (17)

Thus, %4(7) € [St2(R), St,(R)] for all 1€ R. 0O

Let (G',x) be a central extension of Sz;(R). We have to show there exists a
group homomorphism ' : §12(R) — G’ such that kox' = ¢.

Define the element x/(#) of G’ to be [k~ (fs(2)), k' (Z=((«> — 1)""¢))] for all
t€ R. The element x/ (¢) € G’ is uniquely determined by Corollary 1.7. We also
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define:

LEMMA 3.8. Notations are as above.

(a) n ()X, (Onl(v) " = xL(—v720)

(b) A ()X, () (v) " = X (v%)

(¢) xi(0) =1,

(d) 0,(1, 1), [x\.(0),x(")] is central in G',

(€) [X4(n), xL(")xL(¢")] =[x (2), x (¢")][x] (1), XL (¢")],
(£) XL ()xL("), XL (1")] = x4 (0), xh ()] [x(e), XL (e")],
(&) [xL(0),xL ()] = 04((e? = 1)1, 1),
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(b): In Stz(R), we have by Proposition 2.2:

(d) is clear from x(0(¢,1)) = rw([x}.(¢),x\.(¢")]) = 1.
(e): From (d),

(g): From the definition of x’ and (d),

0(t,1") = ()0, (1, ¢ )h! (o)™

93
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x’i((oc2 — l)t)xﬁr(l‘)xﬁ_r((oc2 - l)t’)xﬁr(t’)xﬁ_r(t—i- l')_]xﬁ_r((oc2 —1)(¢+ l'))_]

(o7 = DX ()xL (o7 = D) ()7 04 (e £)x (o7 = Dt + 1))

(22 = DO, (0, (0 = DY (22 = D)0, (1, 1)

o~

X,

H O~

x X (@ =1)(t+1)"!

=0 (o — 1)1, (o — 1)) [x}. (1), XL (2 = 1)e")]O (1, 1").

Replacing 7, ¢ by ¢, (a®> —1)"'¢ respectively, we can get

0L((27 = 1), 1) = [XL(1"), XL (0] = [(0), x4 (1) O
To prove Theorem 3.6, we must show that x!(z),n)(u),0.(t,¢") satisfy
the relation (B)’, (1), (62), (63), where (B)’, (01), (62) are obvious from Lemma
3.8.
(03): By Lemma 3.8 and the biadditivity of 0.,

0, (1,1") = [xL.(1),x\(¢)]0,.(¢' 1)
=0, ((«> = 1)t',00.(f',1)
=0 (o1, 1).

Then, we can construct a group homomorphism x’ : S/'}z(R) — G’ such that
k'(X+(2)) = xL.(¢) and it is easily shown that xox’ = ¢.

REMARK 3.9. Let o, o/ be elements of R* satisfying o> — 1, a/> — 1€ R*
respectively, and denote by §t§‘(R), SAtg'(R), the groups defined by the relations
(B), (01), (82), (63) respectively. Then, we can prove §t§-(R) ~ §t§-’(R) directly,
as follows.

From the proof of Theorem 3.6, we can construct a group homomorphism
Ty from §t§‘(R) to .Sﬁ{(R) sending x.(f) (€ R) to:
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Similarly, we can construct a group homomorphism 7, from S/'\IE‘/(R) to
St2(R) sending %4 (1) (1€ R) to x4(1)0s(t,(2'* —1)"'t)"". Then,

Tty © Ty (X4 (1))

= TR (005 (1, (22— 1)7'0)7)

Using the relations (61)—(63) and (1)-(7), we can prove that () = %4 ().
This means that 7,/ o m,, is the identity map of §t§(R) Similarly, we can show
that n,, o m,, is the identity map of §t§"(R) Therefore, 7,, is an isomorphism.

In the remainder of this section, we assume that R is a Laurent polynomial
ring F[X, X~'] and F is a field with more than 4 elements. we choose the element
« e F* satisfying o> — 1 e F* and fix it. Denote the canonical group homomor-
phism from S5, (F[X,X"!]) to St(F[X,X"']) by ¢, again.

Let ¢ be the group homomorphism from St (F[X,X!]) to SLy(F[X, X))
introduced in Section 2. From Corollary 1.6, we have:

COROLLARY 3.10. Notations are as above. Then, (§t2(F[X, X)), p0¢) is a
universal central extension of SLy(F[X,X™")). The kernel of o ¢ is the subgroup
of SL(FIX,X]) generated by 0.(t,¢') (t,/' e F[X, X)) and é.(v,v') (v,v' €
FIX, X~ ')

In the remainder of this section, we will show that SAtz(F[X ,X71) has a Tits
system.

LemMma 3.11.  Let (G',B',N',S") be a Tits system. Let G" be a group and B,
N" subgroups of G", S" a subset of left cosets set N"/(B" N\ N") and Kk a surjective
group homomorphism from G" to G'. We assume:

(@) B =x'(B),

(b) K(N") = N,

(c) (B"NN"y<a N,

(d) Let & be the group homomorphism from N”/(B"NN") to N'/(B'NN')
canonically induced by x. Then, K is the isomorphism,

(e) ®(S")=S".
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Then, (G",B",N",S") is also a Tits system with a Weyl group isomorphic to
N'/(B'NN").

Proor. We check (T1)—(T4) where, (T1), (T2) are obvious.
(T3): Suppose that s” € S” and w” € N”/(B” N N"). Then, we have (T3) since
Ker x = B” and

K(SNBNW”) c B,I?(S”W")B/ U BIK(WN)B, _ K(BNS”W”BN U B”W”BH).

(T4) holds since x(s”B"s") ¢ B' for all s” € S”. O

We define the subgroups of St (F[X, X)) by:
C=<0.(1,0)) 1,1 eFIX, X '],
M = (e (v,0"), Clo, 0" e FIX, X1,

(wm) = {Xs(sX™),M|seFy for all meZ,

U=<Uq 1), Uy |keZso,k' €Ly,

T = <hy(u), M|ueF~),
B

Let S be a {ii (1), (X)Mod(BNN)}. Using Lemma 3.11, we can prove the
next theorem.

TueorREM 3.12.  Notations are as above. Then, (St(F[X,X~')),B,N.S) is a
Tits system and its Weyl group is isomorphic to the infinite dihedral group.

Proor. By Corollary 3.10, (§tg(F[X ,X7!),#0¢) is a universal central ex-
tension of SL,(F[X,X']) and Ker %o ¢ = M. Obviously, we have (po ¢) ' (B)
=B, (pop) '(N)=N and (po¢) (T)=T=BNN. By Proposition 2.4,
(SLo(F[X, X)), B,N,S) is a Tits system, BAN = T and N/T is isomorphic to
the infinite dihedral group. Then, we can easily check (a)—(¢) of Lemma 3.11.

0

Here, this Tits system is actually of affine A; type, and the group B is

corresponding to the so-called Iwahori subgroup (cf. [9]).
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