
Afrika Statistika

Vol. 12(1), 2017, pages 1199–1218.
DOI: http://dx.doi.org/10.16929/as/2017.1199.100

Afrika Statistika

ISSN 2316-090X

The exact probability law for the approximated
similarity from the Minhashing method

Soumaila Dembele 1,2 and Gane Samb Lo 2,3,4
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Abstract. We propose a probabilistic setting in which we study the probability law of
the Rajaraman and Ullman RU algorithm and a modified version of it denoted by RUM.
These algorithms aim at estimating the similarity index between huge texts in the context
of the web. We give a foundation of this method by showing, in the ideal case of carefully
chosen probability laws, the exact similarity is the mathematical expectation of the random
similarity provided by the algorithm. Some extensions are given.

Résumé. Nous proposons un cadre probabilistique dans lequel nous étudions la loi de
probabilité de l’algorithme de Rajaraman et Ullman RU ainsi qu’une version modifiée de
cet algorithme notée RUM. Ces alogrithmes visent à estimer l’indice de la similarité entre des
textes de grandes tailles dans le contexte du Web. Nous donnons une base de validité de cette
méthode en montrant que pour des lois de probabilités minutieusement choisies, la similarité
exacte est l’espérance mathématique de la similarité aléatoire donnée par l’algorithme RUM.
Des généralisations sont abordées.

Key words: Minshashing, algorithms, similarity, estimation, probability laws, convergence
of algorithm.
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1. Introduction

In this paper, we are concerned with the evaluation of an important algorithm destined to
provide the approximation of the exact similarity of two texts, in the frame of Web mining.
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Rajaraman and Ullman (2011) proposed a detailed algorithm we denote here as the RU one.
This algorithm is based on minhashing methods. To fix the ideas, let us consider two sets
S1 and S2, whose total cardinality is n. The Jaccard similarity between S1 and S2 is defined
by:

p=
#(S1 ∩ S2)

#(S1 ∪ S2)
(1)

Although this expression is simple, its computation is extremely time consuming in the
context in Web mining, where the data may be huge. For this reason, approximations based
on probability theory and statistical methods are used.

Before we come back the our precise subject, it may be useful to say some words on the
general matter. The concept of similarity has been studied and is still studied by researchers
from a variety of disciplines: (see e.g. Stein and Essen, 2006, Gionis et al., 1999, for vi-
sual similarity, Cha, 2007 for the use of density functions in similarity detection, Gower
and Legendre, 1986 and Zezula et al., 2006 for the metric space approach, Strehl et al.,
2000, Formica, 2005 in the context of information sciences, Bilenko and Mooney, 2003 and
Theobald et al., 2008 for focus similarity on large-web collections).

The current work uses a minhashing method (see e.g. de França, 2014) on the Iterative
Universal Hash Function Generator for Minhashing, and the resemblance and containment
of documents (see e.g. Broder, 1997).

One way to deal with such problems is to transform the data into a low dimension
representation, supposed to preserve enough information, and to derive the similarity index
on the transformed data. In order to reduce the dimensionality of a data set, some methods
consist of introducing variables and feature selections or, of using a probabilistic dimension
reduction technique (see e.g. Guyon and Elisseeff, 2003, Guyon, 2006, Lawrence, 2008, etc).
The method we work on it in this papers uses the technique of signatures. Let us explain this.

Consider m subsets of S: S1, ..., Sm. These sets can be represented as in Table 1, that we
will call the representation matrix or simply the signature of S1, ..., Sm. This representation
is set up as follows.

Elements S1 S2 ... Sh ... Sl ... Sm

1 1 0 ... 0 ... 1 ... 1

2 0 0 ... 1 ... 0 ... 0

... 0 ... ... ... ... ... ... ...

i 1 0 ... 1 ... 1 ... 1

... ... ... ... ... ... ... ... ...

n 0 0 ... 0 ... 0 ... 1

Table 1. Representation matrix of S1, . . . , Sm

– We form a rectangular array of m+ 1 columns.
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– We put S, S1, ..., Sm in the first row.
– We put in the column of S all the elements of S, that we might write from 1 to n in an

arbitrary order.
– In each column Sh, 1 ≤ ` ≤ m, we will put 1 or 0 on the row i depending on whether

the ith element of S is in Sh or not.

It is immediate from Table 1 that the following properties hold, for each couple (i, j) such
that 1 ≤ h 6= ` ≤ m :

(a) the cardinality of (Sh ∪ S`) is the number of rows in Table 1 crossing columns Sh and
S` at least with a unity value.
(b) the cardinality of (Sh ∩ S`) is the number of rows in Table 1 crossing both columns Sh
and S` with a unity value.

Hence, the representation matrix allow to get, visually, the similarity between Sh and S`.
In particular, by denoting Sh = (Sih, 1 ≤ i ≤ n)T for 1 ≤ h ≤ m, where T stands for the
transpose of a matrix, we have

sim(Sh, S`) =
#{i, 1 ≤ i ≤ n, Sih = Si` = 1}

#{i, 1 ≤ i ≤ n, (Sih + Si` = 1) + (Sih = Si` = 1)}
, (2)

which can be written as

sim(Sh, S`) =
#{i, 1 ≤ i ≤ n, Sih + Si` = 2}

#{i, 1 ≤ i ≤ n, (Sih + Si` = 1) + (Sih + Si` = 2)}
. (3)

The RU algorithm consists of reducing this matrix to a much less one with the help of
minhashing functions and, of computing the similarity between two columns which is meant
to approximate the similarity between the sets represented by these columns.

Although it may be empirical observed that the approximation may be relevant, it does
not exist, up to our knowledge, an theoretical evaluation of the discrepancy between the
exact similarity and the estimated similarity provided by the RU method. The papers will
fill this gap. Beyond that, it lays out a probabilistic frame to handle the problem and opens
new research trends.

The rest of the paper is organized as follows. In Section 2, the full description of the RU
algorithm is given. Interesting remarks and properties will be addressed. Computation as-
pects will also be highlighted in this section. New forms, more appropriate to address the
probability problem, will be given and a slightly modified algorithm, named RUM, is pro-
posed. In section 3, the RU algorithm will be approached in a probability theory frame and
the probability law of the random similarity is given and some consequences, among them
the deviation from the true similarity, is characterized. Next, we study some conditions un-
der which convergence of the RU is explained. Finally, in a pure and random scheme, we
completely justify the RU algorithm in the probabilistic approach. Concluding remarks are
stated in Section 4.
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Element S1 S2 ... Sm Z1 ... Zk

1 1 0 ... 0 z1(1) ... zk(1) Z(1)

2 0 0 ... 1 z1(2) ... zk(2) Z(2)

. 0 . ... . . ... . .

i 1 0 ... 1 z1(i) ... zk(i) Z(i)

. . . ... . . . . .

n 0 0 ... 0 z1(n) ... zk(n) Z(n)

Table 2. Extension of the representation matrix by minhashing columns

minhashes t(S1) t(S2) ... t(Sm)

1 c11 c12 ... c1m
2 c21 c22 ... c2m
... ... . ... .

k ck1 ck3 ... ckm

Table 3. Signature matrix

2. RU and RUM algorithms

It is based on the notion of minhashing to reduce sets of huge sizes into sets of small
sizes called signatures. The computation of the similarity is done on their compressed
versions, i.e, on their signatures. To better explain this notion, let us consider m sub-
sets of a reference set S of size n ≥ 1 and let us use their representation matrix as in Table 1.

Let us consider k ≥ 1 functions zα (α = 1, ..., k) from {1, ..., n} to itself in the following
form:

zα(i) = xαi+ yα mod n, (4)

where xα and yα, 1 ≤ α ≤ k, are given integers. We modify this function in the following
way: zα(i) = n when the remainder of the Euclidean division is zero.

Next, we extend Table 1 by adding k columns Z1, ...,Zk, such that each Zi is the transpose
of (zα(1), ..., zα(n)). The resulting table is Table 2. Let us denote by Z the (n × k)-matrix
whose columns are Z1,Z2, ...,Zk and let us denote its lines rows by Z(1),Z(2), ...,Z(n).

The RU algorithm replaces Table 1 by a shorter one called minhashing signature represented
in Table 3

Table 3 is obtained as follows, according to the method described in Rajaraman and Ullman
(2011), page 65.

Algorithm of filling the columns Sj .
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1. Set all the cαj equal to ∞.
2. For each column Sj , proceed like this

2-a. for each element i, from 1 to n, compute z1(i), z2(i), ........, zk(i).
2-b. if i is not in Sj , then do nothing and go to i+ 1
2-c. if i is in Sj , replace all the rows (cαj)1≤r≤k by the minimum: min(cαj , hα(i)).
2-d. go to i+ 1

3. Go to j + 1
4. End.

At the end of the procedure, each column will contain only integers between 1 and n. The
estimated similarity between two subsets Sh and S`, 1 ≤ h ≤6= ` ≤ m, based on this
compressed table, is taken as the similarity of the columns t(S)h and t(S)` in the signature
matrix which is

simRU(Sh, S`) =
#(t(Sh) ∩ t(S`))

k
. (5)

The sets t(Sh) and t(S`) are subsets of {1, 2, ..., n} and stand for transformed sets of Sh
and S` through the minhashing procedure.

From there, it is very important to give this remark. The algorithm is meant to gain time
and to get an approximation of the similarity. It is based on the representation matrix. But,
if we spent the required time to get it, there is nothing else to do, since the exact similarity
is automatically read in virtue of Formulas 2 and 3. We have to modify the RU algorithm
form a practical point of view.

The resulting modification, called RUM, consists of the following. Suppose that we want to
find and estimated similarity between Sh and S`. We proceed as follows.

1. Form one set Sh,` by putting the elements of Sh and then the elements of S` by putting
twice elements of the intersection.

1. Form the representation matrix with N = n1 + n2 lines.
2. Apply the RU algorithm to this collection by using Criterion (C ).

We do not seek to find the intersection. Elements of the intersection are counted twice here.
The result is that we do not loose time in forming the representation matrix.

But, we will now have two approximations. First, we replace the representation of the RU
approach by that of the RUM one. Next, we replace the latter by the signature matrix.

How is affected the original similarity? The RUM algorithm actually seeks at estimating
the modified similarity between two subsets Sh and S`, 1 ≤ h, ` ≤ m . Let us denoted
by simM(Sh, S`). It is immediately seen that we still have a zero similarity index, that is
simM(Sh, S`) = 0, if the two sets Sh and S` are disjoint, and a 100% index if the sets are
identical. In the general case, the number of rows is now #(Sh ∪ S`) + #(Sh ∩ S`) and the
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common elements of the columns Sh and S` is #(Sh ∩S`). The modified similarity between
Sh and S`, is

simM(Sh ∩ S`) =
2#(Sh ∩ S`)

#(Sh ∪ S`) + #(Sh ∩ S`)
, (6)

which gives

simM(Sh ∩ S`) =
2sim(Sh ∩ S`)

1 + sim(Sh ∩ S`)
(7)

and, reversely,

sim(Sh ∩ S`) =
simM(Sh ∩ S`)

2− simM(Sh ∩ S`)
(8)

It is also clear that from the previous formulas that sim and simM take any of the value
zero and one simultaneously.

We adopt the following rule : We use the modified RU algorithm in place of the original
one. We will avoid to find the intersection, which in fact would stop our procedure since
the similarity is already found, and by then, we gain a huge amount of time. At the end
of the RU algorithm implementation on the modified set, we apply Formula 8, to get the
approximation

simRU(Sh ∩ S`) =
simRUM(Sh ∩ S`)

2− simRUM(Sh ∩ S`)
(9)

Now, the question is how accurate is the approximation? Empirical studies strongly support
the method. For instance, the four canonical Gospels have been compared with the target
of assessing the hypothesis of the existence of a hidden or lost sources, named Q source,
from which the current gospels are derived. The Gospel have been transformed into sets of
words of p = 3 letters (named p-shingles). The numbers of 3-shingles of the four gospels
are at least 55.000 and at most 110.000. The shortest time to compute the exact similarity
between two gospels is around eight (8) minutes while the computation of the similarity
between John and Matthews Gospels requires 3080 seconds (around 51 minutes). By using
the RUM algorithm with only a small number k = 5 of minhashing functions, estimations
of the similarity indices are obtained with a much smaller time, around 20 seconds. The
estimated values showed clear trends for the exact values.

Clearly here, the choice of the minhashing functions is arbitrary. Without saying it, their
choice is subject to a probability law. Implicitly, the uniform law is assumed. Even in that
implicit choice, we did not see a study on the exact final probability law.

In the forthcoming section, we deal with the probability law of simRU, considered as
a random variable. We will study it with respect to the probability law of the random
coefficients ai and bi, i = 1, ..., k.
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3. Probabilistic approach

Let us give a probabilistic approach of the similarity.

I - The similarity as a conditional probability.

We adopt the notation introduced in the previous section, in particular the representation
matrix in Section 1. Now, we suppose that we pick at random a row X from the number
of lines in Column one in the Table 1 and for each h, 1 ≤ h ≤ m, let Xk,` be the Bernoulli
random variable taking the value at the crossing between the column Sh and the row X.
We are going to see that the random variable X guide the similarity index.

Theorem 1. Let us randomly pick a row X among n rows. Let SX,h be the value of the
row X at the crossing with a column Sh, 1 ≤ h ≤ m in the representation matrix. Then the
similarity between two sets Shand S`, 1 ≤ h ≤ `, is the conditional probability of the event
(SX,h = SX,` = 1) with respect to the event (SX,h + SX,k ≥ 1). i.e

sim(S`, Sh) = P[(SX,h = SX,` = 1)/(SX,h + SX,` ≥ 1)].

Proof. We first observe that for the defined matrix below, the set of rows can be split into
three classes, based on the columns S` and Sh:

1. The rows (A) that cross both columns S` and Sh with unity values.

2. The rows (B) that cross S` and Sh with a unity value and a null value.

3. The rows (C) that cross both S` and Sh with null values.

Let us show that sim(S`, Sh) = P[(SX,h = SX,` = 1)/(SX,h + SX,` ≥ 1)].

Clearly, the similarity is the ratio of the number of rows (A) to the sum of the numbers
of rows X and the number of rows (B). The rows (C) are not involved in the similarity
between Sh and Sk. Thus

sim(S`, Sh) =
#{i, 1 ≤ i ≤ n, SX,h = 1, SX,` = 1}

#{i, 1 ≤ i ≤ n, (SX,h + SX,` = 1) + (SX,h = 1, SX,` = 1)}
.

Then, by dividing the numerator and the denominator by n, we will have

sim(S`, Sh) =
#{i,1≤i≤n,SX,h=1, SX,`=1}

n
#{i,1≤i≤n,(SX,h+SX,`=1)+(SX,h=1,SX,`=1)}

n

.

Hence we get the result

sim(S`, Sh) = P[(SX,h = SX,` = 1)/(SX,h + SX,` ≥ 1)].
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This theorem will be the foundation of the statistical estimation of the similarity as a
probability.

Important remark. When we consider the similarity of two subsets, say Sh and Sk and
we use the global space as Sh ∪ S`, we may see that the similarity is, indeed, a probability.
But when we simultaneously study the joint similarities of several subsets, say at least
Sh, Sk and S` with the global set Sh ∪ Sk ∪ S`, the similarity between two subsets is a
conditional probability. Then, using the fact that the similarity is a probability to prove
the triangle inequality is not justified, as claimed in Rajaraman and Ullman (2011), page 76.

II - Expected or Normal Similarity.

Before we begin, we stress that the notation k and m are not related to those in the other
sections. These notation should stay specific to the problem handled here.

We shall use the language of the urns. Suppose that we have a reference set of size n that
we take as an urn U. We pick at random a subset X of size k and a subset Y of size m. If
m and k have not the same value, the picking order of the sets does have an impact on our
results. We then proceed at the beginning by picking at random the first subset, that will be
picked all at once, next put it back in the urn U (reference set). Then we pick the other sub-
set. Let us ask ourselves the question : what is the expected value of the similarity of Jaccard?

The answer at this question allows us later to appreciate the degree of similarity between
the texts. We have the following result :

Proposition 1. Let U be a set of size n. Let us randomly pick two subsets X and Y of U ,
of respective sizes m and k according to the scheme described above. We have

P(Card(X ∩ Y ) = j) =
1

2

(
Cjk C

m−j
n−k

Cnm
+
Cjm Ck−jn−m

Cnk

)
I(0≤j≤min(k,m)). (10)

For all p ≤ 1, the p-th moment of the random similarity sim(X,Y ) is given by

E(sim(X,Y )) =

min(k,m)∑
j=0

j

2(m+ k − j)

{
Cjk C

m−j
n−k

Cnm
+
Cjm Ck−jn−m

Cnk

}
. (11)

Proof. Let us use the scheme described above. Let us first pick the set X. We have L = Ckn
possibilities. Let us denote the subsets that would take X by X1, ..., XL. The searched
probability becomes

P(Card(X ∩ Y ) = j) =

L∑
s=1

P((Card(X ∩ Y ) = j) ∩Xs)

=

L∑
s=1

P((Card(X ∩ Y ) = j)/Xs)P(Xs).
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Once Xs is chosen and fixed, we get

P((Card(X ∩ Y ) = j)/Xs) =
Cjm Ck−jn−m

Ckm
.

To explain this, we start with the fact that Xs is fixed and contains Cjk combinations of j
elements. Now, we have to choose a combination C of m elements from n elements which
contains one of the Cjk combinations of Xs in such a way that none of the other elements of
C is in Xs. This means that on should choose first a combination of j among the k elements
of Xs with Cjk ways, and next one completes with a combination of m− j elements among
the n− k elements of the complement of Xs.

Now, since P(Xs) = 1/Ckn = 1/L, we conclude that

P(Card(X ∩ Y ) = j) =

L∑
s=1

Cjk C
m−j
n−k

Cnm
(1/L) =

Cjk C
m−j
n−k

Cnm
.

The result corresponding to picking up Y first, is obtained by symmetry of roles of k and n.
We then get (10). The formula (11) comes out immediately since

sim(X, Y ) =
#(X ∩ Y )

#(X ∪ Y )
=

#(X ∩ Y )

m+ k −#(X ∩ Y )
. (12)

�

III - Approximated Similarity Based on the Strong Law of Large Number.

Since the similarity is a conditional probability in according to Theorem 1, we can deduce
a strong law of Large numbers, which is by the way a Glivenko-Cantelli property in the
discrete case, in the following way.

Theorem 2. Let sim(S1, S2) be the similarity between two subsets S1 and S2 of a set
whose size is considered very large. Let us pick at random a subset S1,n from S1 with
size n(1) and a subset S2,n from S2 of size n(2) and let us consider the random simi-
larity simn(S1, S2) = sim(S1,n, S2,n) between S1,n and S2,n. Then simn(S1, S2) converges
almost-surely to sim(S1, S2) with at rate of convergence in the order of (n(1) + n(2))−1/4

when n(1) and n(2) become simultaneously large.

That is a direct consequence of the classical theorem of Glivenko-Cantelli.

Finally, we come to the probability law induced by the RU algorithm.

IV - Probability law induced by the minhashing method and application.
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A - Two other alternative versions A simple criterion.

Before to give two alternate versions of the RU/RUM algorithm. The first will be particu-
larly useful while addressing the probability law. Also it leads to a new procedure that will
be the base of the implementation of the algorithm in computer packages.

(a) A simple criterion.

If we look carefully at the algorithm, we may see that we have the following criteria.

Criterion (C). The transpose of each column

t(Sh) = [(cαh)1≤α≤k], 1 ≤ h ≤ m,

in Table 3 is the minimum of the rows Z(i) = (z1(i), ..., zk(i)) of Table 2, when i covers the
elements i of Sh, where the minimum is operated coordinate-wisely.

The proof comes easily by looking at simple cases with small cardinalities. The induction
to arbitrary cardinalities is immediate.

This simple remark allows to set up programs in a much easier way through a kind of
Markov process.

(b) A version if form a Markov process.

We want to form the final transformed matrix signature as defined in Table 3 by denoting
Uh as the column associated with t(Sh) and U` as the column associated with t(S`). We
remind that Uh and U` are vectors of dimension k. This procedure will be implemented is
easy to implement into computer packages.

We remind that in the original matrix signature, the elements of Sh ∪ S` are given in an
arbitrary order (σ0(i), 1 ≤ i ≤ N). We denote by C(i, h) the value at which the row i and
the column h cross each other in Table 2. In what follows, for any Boolean variable C,
I(C) stands for the indicator function of C, which takes the value one if C holds and zero
otherwise.

Let us express RU algorithm as a final step of Markov process.

We fix h, 1 ≤ h ≤ m. The following procedure iteratively forms the final value of Uh.

Step 1. Do for each h, 1 ≤ h ≤ m : (1a). Take U0
h = (n+ 1, n+ 1, ..., n+ 1)t ∈ Rk. Put U0

h

in the column t(Sh) of Table 3.

Sub-step (1b). For each i from 1 to n, we take

U ih = U i−1
h I(C(i, h) = 0) + min(U i−1

h , (Z(i))T )I(C(i, h) = 1).
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.
Step 2. For each 1 ≤ h 6= ` ≤ m, compute the estimated similarity :

simRU(Sh, S`, σ0) =
1

k

k∑
α=1

I(Uh(α) = U`(α)). (13)

This second algorithm is more simple to implement.

B - Probability laws.

Now we are going to compute the estimated similarity simrum in a complete randomly
experience. We consider two subsets S` and S`′ of S. We allow the elements of S be ordered
according to a permutation σ of {1, 2, ..., n}. We denote set of permutations of {1, 2, ..., n}
as Sn and consider the probability space (Sn,P(Sn),P0), where P(Sn) is the power set of
Sn and P0 is the uniform probability measure on Sn defined by P0({σ}) = 1

N ! for σ ∈ Sn.

Next, we choose the following minhashing function

Zα(i) = Xαi+ Yα mod n, i = 1, ..., n.

with a random generation of the integers (X1, Y1),. . . , (Xk, Yk).

From there, a number of possibilities may be conceived. Do we take the (Xα, Yα)’s as
independent? independent and identically independent? dependent according a what
copula? etc. We may also discuss about the dependence between Xα and Yα for each
α = 1, . . . , k?

As a first step, let us suppose that :

(H) (X1, Y1),. . . , (Xk, Yk) are independent and identically distributed with common
probability law P(X,Y ).

We apply the RUM algorithm and observe the estimated random similarity between S` and
S`′

simrum(S`, S`′) =
1

k

k∑
α=1

I(U`(α) = U`′(α)).

If there is no risk of confusion, we simply write simrum at the place simrum(S`, S`′) as we
also use sim and simru at the place of sim(S`, S`′) and simru(S`, S`′) respectively. We are
now going to give the probability law of simrum after the following notations. The matrix
Z in Table 2 is random now and we denote

Γ`(σ) = {i ∈ [1, n], C(i, `, σ) = 1} .
Introduce the following notation. Let 1 ≤ t ≤ k define Bt as the set of all t-tuples. For
(β1, ..., βt) ∈ Bt, define (β1, ..., βt)

c as the complement of the set of {β1, ..., βt} in {1, ..., n}.
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Define also for 1 ≤ p, q ≤ n, 1 ≤ `, `′ ≤ m, σ ∈ S,

m(p, q, σ, `) = min{p+ iq mod n, i ∈ Γ(σ)}
and

B(`, `′, σ) = {(p, q), 1 ≤ p, q ≤ n,m(p, q, σ, `) = m(p, q, σ, `′)}
The probability law of the estimated similarity is the following.

Theorem 3. By Criterion (C) Uh is given as follows.

Uh = min(Z(i), i ∈ Γh(σ))T ∈ Rk, h = `, `′, (14)

where the minimum of rows is done by coordinate-wisely. Then 1 ≤ α ≤ k,the probability of
the event (U`(α) = U`′(α)) is given by

P(U`(α) = U`′(α)) =
1

n!

∑
σ∈Sn

∑
(p,q)∈B(`,`′,σ)

P(Xα = p, Yα = q). (15)

Moreover, the probability law of simrum is given by the discrete probability measure defined
on V = {s ∈ [0, 1], ks ∈ N} by

P(simrum = s) =
∑
C∈Bt

∏
α∈C

P((U`(α) = U`′(α))×
∏
α/∈C

P((U`(α) 6= U`′(α)). (16)

for s ∈ V.

Proof. We are going to compute the probability of the event (U`(α) = U`′(α)). First, it
follows from the algorithm that (14) is straightforward, that is

U` = min(Z(i), i ∈ Γ`(σ))T ∈ Rk, ` = 1, 2.

Now we are going to estimate the probability law of the event (U`(α) = U`′(α)). We point
out that, conditionally on σ, the couples (U`(α), U`′(α)) are independent, and probabilities
for events only depending on (U`(α), U`′(α)), are computed with P(Xα,Yα). We get

P(U`(α) = U`′(α))

= P(min(Zα(i), i ∈ Γ`(σ)) = min(Zα(i), i ∈ Γ`′(σ))

= P( min(Xα + iYα mod N, i ∈ Γ`(σ)) = min(Xα + iYα mod N, i ∈ Γ`′(σ)).

By using the notation m(p, q, σ, `) and B(`, `′, σ) introduced above, we finally get

P(U`(α) = U`′(α)) = P(σ,Xα,Yα)(B(`, `′, σ))

= Pσ ⊗ P(Xα,Yα)(B(`, `′, σ))

=
1

n!

∑
σ∈Sn

P(Xα,Yα)(B(`, `′, σ))

=
1

n!

∑
σ∈Sn

∑
(p,q)∈B(`,`′,σ)

P(Xα = p, Yα = q)
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and (15) is proved. Next, we recall that

simrum =
# {1 ≤ α ≤ k, U`(α) = U`′(α)}

k
,

which entails

simrum ∈ #

{
t

k
, 1 ≤ α ≤ k

}
, s =

t

k
, t = sk ∈ N.

Hence,

P(simrum = s) = P(simrum = t)

= P
(

# {1 ≤ α ≤ k, U`(α) = U`′(α) = t}
k

)
.

Let us put

Bt = {αi1 < αi2 < ... < αit : U`(αi) = U`′(αi), ∀1 ≤ i ≤ t, U`(r) 6= U`′(r), ∀r ∈ {1, ..., k}, r 6= αi}.

Let Dt be the ordered subsets of {1, ..., k} of size t. If (αi1 , αi2 , ..., αit) ∈ Dt, we denote
(αi1 , αi2 , ..., αit)

c as its complement in Dt.

Thus, we have

Bt = {c = (αi1 , αi2 , ..., αit) ∈ Dt : ∀1 ≤ i ≤ t, U`(αi) = U`′(αi), ∀r ∈ cc , U`(r) 6= U`′(r)}.

Let B ∈ Bt, we have

B(c) =
⋂
α∈c

(U`(α) = U`′(α))
⋂⋂

α/∈c

(U`(α) 6= U`′(α))

= B1(c)
⋂
B2(c).

We conclude that

P(simrum = s) =
∑
c∈Bt

P(B1(c)
⋂
B2(c))

=
∑
c∈Bt

∏
α∈c

P(U`(α) = U`′(α))×
∏
α/∈c

P(U`(α) 6= U`′(α))

This completes the proof of Theorem.�

We have the following consequence.
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Corollary 1. For any p ∈ [0, 1], we have

P(|simrum− p| ≤ ε) =
∑

p−ε≤s≤p+ε

P(simrum = s) (17)

=
∑

[k(p−ε)≤t≤k(p+ε)]

P(simrum =
t

k
).

Proof. Let us put p = s in (1).

We get

P(|simrum− p| ≤ ε) = P(p− ε ≤ simrum ≤ p+ ε)

=
∑

p−ε≤s≤p+ε

P(p3 = s).

Since s = t/k, we obtain

P(|simrum− p| < ε) =
∑

[k(p−ε)≤t≤k(p+ε)]

P(simrum =
t

k
).

�

As a first application, Formula 16 allows to compute the p-th moment of simrum, for p ≥ 1,
which is

fiE(simrump) =
∑
s∈V

spP(simrum = s).

Let us denote by SIMRUM the mathematical expectation of simrum, that is
SIMRUM = E(simrum). In the context of discrete random variables, we may use
Formula 17 to find a 95%-confidence interval by using an iterative procedure.

In conclusion, this result allows to have relevant confidence intervals of random modified
similarity, and by then, of the random similarity through Formula 9. The comparison
between the true similarity and the estimated similarity will no longer be done with a sole
observation, but with respect to the whole confidence interval. This makes the comparison
more reliable.

Several interesting questions remain open. For example, what is the efficiency of the estima-
tion? What is the impact of the probability law of R2k-random variable

((X1, Y1), . . . , (Xk, Yk)),

on the quality of the estimation? What happens as k gets bigger?
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Answering all these questions are beyond the scope of this paper. But, at least, we are
going to give definite results on the RU algorithm as a statistical method and lay out the
general case.

C - Assessment of the RU algorithm as an estimation method.

Let us begin to give the main idea of the method. This time suppose that the set S =
{1, ..., n} is given in a fixed order in the representation matrix and we write it from yhe top
to the bottom in its natural order. It is attempted to consider k random and independent
permutations Zα, 1 ≤ α ≤ k of the set S = {1, ..., n}. Suppose we are able to get them. We
may complete the algorithm. At the arrival, we have the probability law of simrum through
the following notation. Let us introduce this new notation, for L ⊂ {1, 2, ..., n}, σ ∈ Sn,

MinL(σ) = min
i∈L

σ(i),

For 1 ≤ ` ≤ n, we make the following abuse of notation and write MinΓ(`) = Min`. Now,
denote for 1 ≤ ` ≤ n, 1 ≤ ` ≤ `′ ≤ m,

B(`, `′) = {σ ∈ Sn, π`(σ) = π`′(σ)}.
The probability law simrum is still given by

P(simrum = s)
∑
c∈Bt

∏
α∈c

P(U`(α) = U`′(α))×
∏
α/∈c

P(U`(α) 6= U`′(α))

with

P(U`(α) = U`′(α)) = PZα(B(`, `′)).

for ks ∈ N.

Here, what is expected is that two different rows Zi and Zj , 1 ≤ i ≤ j ≤ will be probably
disjoint, or at the least, that the probability they are not disjoints is very low. Suppose for
a while that this is the case. Let us denote by I(` − `′) =: I1 the set of lines pertaining to
elements of S` \ S`′ , I(`′ − `) =: I3 the set of lines pertaining to elements of S`′ \ S` and
I(`+ `′) =: I2 the set of lines pertaining to elements of S` ∩ S`′ . It is clear that

U` = min

(
min
i∈I2
Zi, min

i∈I1
Zi
)

and

U`′ = min

(
min
i∈I2
Zi, min

i∈I3
Zi
)
.

Thus, in the hypothesis of disjoint lines Zi’s, any event BU(α) = (U`(α) = U`′(α)) is surely
achieved through the part

min
i∈I2
Zi,
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meaning that (U`(α) = U`′(α)) is equivalent to the event(
min
i∈I2
Ziα < min

i∈I1∪I3
Zi
)

and hence, by denoting

qrum = #{α,BU(α)holds}.

Similarly to the previous steps, we may denote

t(B)(`, `′) = {σ ∈ Sn,min
i∈I2

σ(i) < min
i∈I1∪I3

σ(i)}. (18)

The probability law simrum is still given by

P(simrum = s) =
∑
C∈Bt

∏
α∈C

PZα(t(B)(`, `′)),

for ks ∈ N.

Before we conclude, let us address two points.

Point (a) The previous developments are based on choosing random permutations. This is
very time-consuming when n is large. Consider functions of the form Zα(i) = iXα + Yα
mod n, 1 ≤ i ≤ n, 1 ≤ α ≤ k, is a way to quickly have almost permutations of a small
number of repetitions among the set {Zα(i), 1 ≤ i ≤ n}.

Point (b) To achieve the target property in Point (a), we may simply consider a random
variable

Zα = (Zα(i), 1 ≤ i ≤ n)

with values in some space D, with a size at least equal to n. For 1 ≤ i 6= j ≤ n, 1 ≤ α ≤ k,
denote the probability of the event that the two lines Ziα and Zjα) have at least on common
coordinate by

pi,j = P(Ziα = Zjα))

= PZα({σ ∈ Sn, σ(i) = σ(j)})

By independence and stationary, the probability of the complement of the event Di,j that
the lines Zi and Zj , 1 ≤ i ≤ j ≤, are disjoint is

P(Di,j) = (1− pi,j)k .

Next, denote by Cn,r the class of lines 1 ≤ i 6= j ≤ n such that the lines Zi and Zj have
exactly r ≥ 1 common coordinates. Denote the probability of the event Dn that all the lines
are mutually disjoint each other. We have

P(Dn) = 1−

(
k∑
r=1

#(Cn,r)pri,j(1− pi,j)k−r
)
,
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or

P(Dn) = 1−

(
k∑
r=1

#(Cn,r)PZα(Di,j)r(1− PZα(Di,j))k−r
)
, (19)

with

Di,j = {σ ∈ Sn, σ(i) = σ(j)}.

Conclusion. We are now able to have a partial conclusion.

(a) If the probability in Formula (19), which is P(Dn) is zero, then set on which we compute
the estimated similarity is given by Formula (18) and the probability law of the estimated
similarity is given by Formula (3).

(b) If the probability in Formula (19), which is P(Dn), is small enough, we approximate the
probability law of the estimated similarity is given by Formula (3).

(c) If we go back to the minhashing functions and consider the functions Zα as random
permutations picked on the uniform sampling, the estimated similarity, on the base of
Point (a) and (b), the exact mathematical expectation of any event U`(α) = U`′(α) for any
1 ≤ α ≤ k. Why?

In this pure and uniform random scheme, all the lines of Z are disjoint and the realization
of the event

t(B)(`, `′) = {σ ∈ Sn,min
i∈I2

σ(i) < min
i∈I1∪I3

σ(i)},

is a pure matter of combinatorics. To realize this event, we have to choose of the {σ(i), i ∈ I2}
to be the unity and we have #(I2) = #(S` ∩S`′) ways to do it. So the probability of having
this is

#(S` ∩ S`′)
n

.

At the arrival, for all α, 1 ≤ α ≤ k, the binary random variable S(α) that is equal one if
U`(α) = U`′(α) and zero otherwise, is a Bernoulli random variable with parameter sim =
#(I2)/n, the number we can uniformly choose a permutation σ such that 1 ∈ {σ(i), i ∈ I2}.
We have k independent Bernoulli random variables. Besides, the random variable

Sk =
∑

1≤α≤k

S(α)

is k times the estimated similarity simrum. We may then apply the probability formulas :

(1) Moments :

E(simrum) = sim and Var(simrum) = sim(1− sim)/k.

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



S. Dembele and G.S. Lo, Afrika Statistika, Vol. 12(1), 2017, pages 1199–1218. The exact
probability law for the approximated similarity from the Minhashing method. 1216

(2) Tchebychev Inequality.

P(|simrum sim| > λ) ≤ sim(1− sim)

kλ2
, λ > 0.

(3) Gaussian Approximation. If the similarity is non-zero, we have√
k

sim(1− sim)

(
simrtm− sim

)
→ N (0, 1);

which gives the approximated confidence interval of 95% percent

sim ∈ [simrum− 1.96

√
simrum(1− simrum)

k
, simrum+ 1.96

√
simrum(1− simrum)

k
]

Of course, we may have given more properties of the Binomial law and apply them to the
similarity.
We achieved the result we were targeting. Nevertheless, we want to give preliminary results
for the general.

D - General Case.

We suppose that the Zα’s are independent observations a the random variable defined on
{1, . . . , 2} represented by (Z(1), . . . , Z(n)) taking with values set Z which is finite and let
z0 its minimum member. We may use again the reasoning above. Given the event Dn - the
lines Zi’s disjoint - the random variable S(α) is one if and only if

z0 ∈ {Zα(i), i ∈ I2}

Let us denote by PDn the conditional probability on Dn, that is PDn(B) = PDn(B/Dn) for
all B ⊂ {1, 2, . . . , n}, and by EDn the mathematical expectation with respect to PDn .

We then have that Sk follows a binomial law with parameter k and

p = PDn(z0 ∈ {Zα(i), i ∈ I2})

In this case, simrum→ p in probability as k → +∞, since

P(|simrum− p| > λ) = PDn(|simrum− p| > λ / Dn)P(Dn)

= P(Dn)
p(1− p)
kλ2

, λ.

With such a lay out, we will be able to find out possible other choices of the Zα’s we have
very quickly while P(Dn) close to one as near as possible. It is thought that the choice
Zα(i) = iXα + Yα mod n is justified. We will come back to this.
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E - Interesting remark.

At the light of what precedes, we see that the RU algorithm might have been done with max-
imum of the lines at the place of the minimum. The probability parameter of the Bernoulli
random variables S(α) would the number of ways to uniformly chose a permutation σ such
that n ∈ {σ(i), i ∈ I2}. From then, we proceed as above.

4. Conclusions and perspectives

At the end, we unveil the validity of the RU algorithm, justified the convergence of estimated
similarity index, and completely described its probability law of this index in the pure and
uniform scheme. But, we applied the method by using it on the set that is easily formed.
The building of the modified set allows to gain a great amount. A formula describing the
similarity indices obtained from the direct algorithm and the modified one allows to work
with the second and, at the end of procedure, to find the first. Beyond the uniform scheme,
we extended the method to general probability law and provided the limit of the estimated
similarity. From there, we provided a way to have a reasonable estimation based on random
variables that may be formed in short times, to the contrary to random permutations. The
impact of using minhashing function should be evaluated in the frame developed here.
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