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ABSTRACT. We give a characterization of convex functions in terms of differ-
ence among values of a function. As an application, we propose an estimation
of operator monotone functions: If A > B > 0 and f is operator monotone on
(0,00), then f(A)—£(B) > f(|B|l+¢)— F([B) > 0, where e = | (A—B) 1| -1
Moreover it gives a simple proof to Furuta’s theorem: If log A > log B for
A, B > 0 and f is operator monotone on (0,00), then there exists a 5 > 0
such that f(A%) > f(B®) forall 0 < a < .

1. INTRODUCTION

For a twice differentiable real-valued function f, its convexity is characterized
by f” > 0. Since there are many non-differentiable convex functions, we consider
a characterization of general convex functions. We cannot use the differentiation,
but the average rate of change is available. Roughly speaking, we claim that the
convexity of a function is characterized by the non-decreasingness of average rate
of change. It seems to be natural as a generalization of the condition f” > 0.
Actually it will be formulated as Lemma 1 in the next section.

To explain operator monotone functions, we introduce the operator order A >
B among selfadjoint operators A, B on a Hilbert space H by (Ax,z) > (Bz,z)
for all z € H. In particular, A is positive if A > 0, i.e., (Az,z) > 0 for all z € H.
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Next, a positive operator A is said to be strictly positive, denoted by A > 0, if
A > ¢ for some constant ¢ > 0. So A > B means that A — B > 0.

A real-valued continuous function f defined on [0, 00) is called operator mono-
tone if it preserves the operator order, i.e., f(A) > f(B) for A > B > 0. One
of the most important examples is the power function t — t? for 0 < p < 1
(Lowner—Heinz inequality). In general, f is called operator monotone on an in-
terval J if f(A) > f(B) for A > B whose spectra contained in J. For this, we
pose logt as a fundamental example of an operator monotone function on (0, 00).

Very recently, Moslehian and Najafi [9] proposed an excellent extension of the
Lowner—Heinz inequality as follows:

Theorem MN. I[fA>B>0and0<r <1, then A"— B" > ||A||" — (|| A|| —
€)" > 0, and log A—log B > log || A||—log(||A||—€) > 0, wheree = ||[(A—B)~Y| L.

In this note, we apply our characterization of concave functions and give an
improvement and a generalization of Theorem MN (Theorem 5). As another
application, we can give a short proof to a recent result due to Furuta [0, Theorem
2.1], which is an operator inequality related to operator monotone functions and
chaotic order, i.e., the order defined by log A > log B among positive invertible
operators.

2. A CHARACTERIZATION OF CONVEX FUNCTIONS

In this section, we propose an elementary characterization of convex functions.
We essentially use average rate of change.

Lemma 2.1. A real valued continuous function f on an interval J = [a,b) with
b € (—o0,+0o0] is convex (resp. concave) if and only if, for each 0 < € < b — a,
D.(t) = f(t+¢€) — f(t) is non-decreasing (resp. non-increasing) on [a,b — €).

Proof. Suppose that f is convex on J. Take s,t € J with s <tandt+e € J. We
may assume that ¢ —s < e. Let y = L(t) be the linear function through (s, f(s))
and (s + ¢, f(s+€)). Then we have

L(t) > f(t) and L(t+¢) < f(t+¢)
by the convexity of f. Hence it implies that
D(t) = f(t+€) = f(t)
> L(t+¢€) — L(t)
= L(s+¢€) — L(s) by the linearity of L
= f(s+e€) = [(s)
- DE<S)7
as desired.

Conversely suppose that D.(t) is non-decreasing. Take t, s € J with s <t =
s + 2¢e. Since D.(s) < D.(s + €), we have

2f(*1) =25+ 0) < fls +29) + f(s) = [(6) + [5).

So f is convex. O
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Corollary 2.2. If f is strictly increasing and concave on an interval [a,b+ 0] in
R for some 6 > 0, then for each 0 < € < §, D(t) > D.(b) > 0 for all t € [a,b].

Remark 2.3. Analogous argument on convexity of functions as above has been
done in [8, page 2].

3. APPLICATIONS TO OPERATOR MONOTONE FUNCTIONS

As an application of Corollary 2.2, we give an estimation of operator monotone
functions.

Lemma 3.1. If f is non-constant and operator monotone on the interval R, =
[0,00), then f is strictly increasing.

Proof. First of all, we note that f is non-decreasing. Next we suppose that
f'(¢) = 0 for some ¢ > 0. Noting that the Léwner matrix

f'le)  fM(c,d)
fU(d.c)  f'(d)
is positive semldeﬁmte for any d > 0 by the operator monotonicity of f, where

e, d) =1 (C d is the devided difference.

Therefore 1ts determinant is nonnegative, so that fl!/(c,d) = 0 for any d > 0.
This means that f is constant, which is a contradiction. Consequently we have
f'>0. O

Lemma 3.2. If C' > 0 and f is a concave and strictly increasing function on
an interval [a,d) containing the spectrum of C, then for each 0 < e < d — ||C]],
F(C+e) = f(C)+ D(|IC])-

Proof. We first note that for a given 0 < ¢ < d—||C/||, we can take ¢ > 0 satisfying
0<c<dande < c—||C|. Applying Corollary 2.2 to b = ||C|| and 6 = ¢ — ||C||,
it follows that

F(C+¢e) = F(C) = D([|C]))-
O

We here give a precise estimation of [, Theorem 2.1] and [3, Proposition 2.2],

cf. [9].

Theorem 3.3. If A > B > 0 and f is non-constant operator monotone on
[0,00), then f(A) = f(B) = f(IIB]| +€) — f(IBIl) > 0, where e = ||(A—B)~*||"".

Proof. Since A > B+ ¢ for e = ||[(A— B) ™' > 0, we have

F(A) = f(B+e).
Furthermore Lemmas 3.1 and 3.2 imply that

f(B+e€) = f(B)+ D Bl])-

Hence we have

f(A) = f(B) = D|BI)) = f(I1BI[ +¢) = f([B]) > 0



OPERATOR MONOTONE FUNCTIONS 121

As a consequence, we have an improvement of the estimation due to Moslehian
and Najafi [9]:

Corollary 3.4. If A> B >0 and 0 <r <1, then A" — B" > (||B|| + ¢)" —
(IBI)" > 0, and log A — log B > log(||B|| + €) — log || B|| > 0, where ¢ = ||(A —
B)~H|~.

Remark 3.5. We note that Corollary 3.4 actually improves Theorem MN. Since
Al = (||Al| —€) = € = (|| B]|+¢€) — || B|| and the function ¢ — ¢" is strictly concave,
it follows that

[AI" = ([[All = )" < (Bl +€)" = [ BII".

We here pose an example:

4 0 20
A:(O 2) and B:(O 1).

2 0) > 1 and so € = 1. Hence we have

0 1
|A" = (|A —e)" =4"=3" < (| Bl + )" — | B||" = 3" —2".

ThenA—B:(

Now Theorem 3.3 can be regarded as a difference version. So we give a ratio
version of it. It is obtained by Theorem 3.3 itself:

Corollary 3.6. If A > B > 0 and f is non-constant operator monotone on
(0,00), then

F(B) = f(AVF(B)™2 = 1+ (F(IBl +€¢) = FUBINIFBIIT,
where € = ||(A — B)™|| 7.

Proof. Put 6 = f(||B]| +¢) — f(||B||). It follows from Theorem 3.3 that
FBYTRf(A)f(B)% > f(B) 2 f(B+0)f(B)*

— 1+5(B) 2 1+4ll/(B)]| .
O

As another application of Theorem 3.3, we need the chaotic order: For A > 0,
we can define the selfadjoint operator log A. So a weaker order than the operator
order appears by log A > log B for A, B > 0. We call it the chaotic order. The
chaotic order plays an substantial role in operator inequalities. Among others, it
brightens the Furuta inequality [5], [2], [3], [1], [1], [7] and recent development of
Karcher mean theory [11].

Now we give a simple and elementary proof to the following recent theorem [0,
Theorem 2.1] due to Furuta, in which we don’t use any integral representation of
operator monotone functions.

Theorem 3.7. Iflog A > log B for A, B > 0 and [ is operator monotone on
(0,00), then there exists 3 > 0 such that

f(AY) > f(BY) forall0 <a<p.
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Proof. Since log A > log B, it is known that there exists # > 0 such that
A* > B* forall 0 <a<p.
Therefore it follows from Theorem 3.3 that, for each fixed a € (0, 3],

f(A%) > f(BY),
as desired. 0

4. A CONCLUDING REMARK.

Finally we discuss an operator extension of Lemma 2.1. Namely we may expect
the following conjecture:
A real valued function f on an interval J = (a,b) with b € (—oo, +00] is operator
convex if and only if, for each 0 < ¢ < b — a, D.(t) is operator monotone on
(a,b —¢€). Unfortunately we have a negative answer as follows: We choose the
function f(t) = 1 on (0,00). It is a typical example of operator convex functions.
Nevertheless, D (t) = —m is not operator monotone. As a matter of fact, we
take two 2 x 2 matrices A and B:

3 1 2 0
() i 0o (20).

Note that D;(A) > D;(B) if and only if A(A+1) > B(B +1). Clearly A > B,

M e men= (8O =( Y0

This is a counterexample.
Incidentally, the operator convexity of the function % is easily shown as follows:
It is enough to prove the inequality

A+B\ ' 1
< (A '+ B™h.

And it is simplified by putting C' = A2 B~'Az that
41+CcH ' <1+0,

which follows from the numerical inequality 4 < (1 + 27 1)(1 + ).
Acknowledgement. The authors would like to express their hearty thanks
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