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Abstract. We give a characterization of convex functions in terms of differ-
ence among values of a function. As an application, we propose an estimation
of operator monotone functions: If A > B ≥ 0 and f is operator monotone on
(0,∞), then f(A)−f(B) ≥ f(‖B‖+ε)−f(‖B‖) > 0, where ε = ‖(A−B)−1‖−1.
Moreover it gives a simple proof to Furuta’s theorem: If log A > log B for
A, B > 0 and f is operator monotone on (0,∞), then there exists a β > 0
such that f(Aα) > f(Bα) for all 0 < α ≤ β.

1. Introduction

For a twice differentiable real-valued function f , its convexity is characterized
by f ′′ ≥ 0. Since there are many non-differentiable convex functions, we consider
a characterization of general convex functions. We cannot use the differentiation,
but the average rate of change is available. Roughly speaking, we claim that the
convexity of a function is characterized by the non-decreasingness of average rate
of change. It seems to be natural as a generalization of the condition f ′′ ≥ 0.
Actually it will be formulated as Lemma 1 in the next section.

To explain operator monotone functions, we introduce the operator order A ≥
B among selfadjoint operators A, B on a Hilbert space H by (Ax, x) ≥ (Bx, x)
for all x ∈ H. In particular, A is positive if A ≥ 0, i.e., (Ax, x) ≥ 0 for all x ∈ H.
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Next, a positive operator A is said to be strictly positive, denoted by A > 0, if
A ≥ c for some constant c > 0. So A > B means that A−B > 0.

A real-valued continuous function f defined on [0,∞) is called operator mono-
tone if it preserves the operator order, i.e., f(A) ≥ f(B) for A ≥ B ≥ 0. One
of the most important examples is the power function t 7→ tp for 0 ≤ p ≤ 1
(Löwner–Heinz inequality). In general, f is called operator monotone on an in-
terval J if f(A) ≥ f(B) for A ≥ B whose spectra contained in J . For this, we
pose log t as a fundamental example of an operator monotone function on (0,∞).

Very recently, Moslehian and Najafi [9] proposed an excellent extension of the
Löwner–Heinz inequality as follows:

Theorem MN. If A > B ≥ 0 and 0 < r ≤ 1, then Ar−Br ≥ ‖A‖r− (‖A‖−
ε)r > 0, and log A−log B ≥ log ‖A‖−log(‖A‖−ε) > 0, where ε = ‖(A−B)−1‖−1.

In this note, we apply our characterization of concave functions and give an
improvement and a generalization of Theorem MN (Theorem 5). As another
application, we can give a short proof to a recent result due to Furuta [6, Theorem
2.1], which is an operator inequality related to operator monotone functions and
chaotic order, i.e., the order defined by log A ≥ log B among positive invertible
operators.

2. A characterization of convex functions

In this section, we propose an elementary characterization of convex functions.
We essentially use average rate of change.

Lemma 2.1. A real valued continuous function f on an interval J = [a, b) with
b ∈ (−∞, +∞] is convex (resp. concave) if and only if, for each 0 < ε < b − a,
Dε(t) = f(t + ε)− f(t) is non-decreasing (resp. non-increasing) on [a, b− ε).

Proof. Suppose that f is convex on J . Take s, t ∈ J with s < t and t+ ε ∈ J . We
may assume that t− s < ε. Let y = L(t) be the linear function through (s, f(s))
and (s + ε, f(s + ε)). Then we have

L(t) ≥ f(t) and L(t + ε) ≤ f(t + ε)

by the convexity of f . Hence it implies that

Dε(t) = f(t + ε)− f(t)

≥ L(t + ε)− L(t)

= L(s + ε)− L(s) by the linearity of L

= f(s + ε)− f(s)

= Dε(s),

as desired.
Conversely suppose that Dε(t) is non-decreasing. Take t, s ∈ J with s < t =

s + 2ε. Since Dε(s) ≤ Dε(s + ε), we have

2f(
s + t

2
) = 2f(s + ε) ≤ f(s + 2ε) + f(s) = f(t) + f(s).

So f is convex. �
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Corollary 2.2. If f is strictly increasing and concave on an interval [a, b + δ] in
R for some δ > 0, then for each 0 < ε ≤ δ, Dε(t) ≥ Dε(b) > 0 for all t ∈ [a, b].

Remark 2.3. Analogous argument on convexity of functions as above has been
done in [8, page 2].

3. Applications to Operator monotone functions

As an application of Corollary 2.2, we give an estimation of operator monotone
functions.

Lemma 3.1. If f is non-constant and operator monotone on the interval R+ =
[0,∞), then f is strictly increasing.

Proof. First of all, we note that f is non-decreasing. Next we suppose that
f ′(c) = 0 for some c > 0. Noting that the Löwner matrix(

f ′(c) f [1](c, d)
f [1](d, c) f ′(d)

)
is positive semidefinite for any d > 0 by the operator monotonicity of f , where

f [1](c, d) = f(c)−f(d)
c−d

is the devided difference.

Therefore its determinant is nonnegative, so that f [1](c, d) = 0 for any d > 0.
This means that f is constant, which is a contradiction. Consequently we have
f ′ > 0. �

Lemma 3.2. If C ≥ 0 and f is a concave and strictly increasing function on
an interval [a, d) containing the spectrum of C, then for each 0 < ε < d − ‖C‖,
f(C + ε) ≥ f(C) + Dε(‖C‖).

Proof. We first note that for a given 0 < ε < d−‖C‖, we can take c > 0 satisfying
0 < c < d and ε < c−‖C‖. Applying Corollary 2.2 to b = ‖C‖ and δ = c−‖C‖,
it follows that

f(C + ε)− f(C) ≥ Dε(‖C‖).
�

We here give a precise estimation of [6, Theorem 2.1] and [8, Proposition 2.2],
cf. [9].

Theorem 3.3. If A > B ≥ 0 and f is non-constant operator monotone on
[0,∞), then f(A)− f(B) ≥ f(‖B‖+ ε)− f(‖B‖) > 0, where ε = ‖(A−B)−1‖−1.

Proof. Since A ≥ B + ε for ε = ‖(A−B)−1‖−1 > 0, we have

f(A) ≥ f(B + ε).

Furthermore Lemmas 3.1 and 3.2 imply that

f(B + ε) ≥ f(B) + Dε(‖B‖).
Hence we have

f(A)− f(B) ≥ Dε(‖B‖) = f(‖B‖+ ε)− f(‖B‖) > 0.

�
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As a consequence, we have an improvement of the estimation due to Moslehian
and Najafi [9]:

Corollary 3.4. If A > B ≥ 0 and 0 < r ≤ 1, then Ar − Br ≥ (‖B‖ + ε)r −
(‖B‖)r > 0, and log A − log B ≥ log(‖B‖ + ε) − log ‖B‖ > 0, where ε = ‖(A −
B)−1‖−1.

Remark 3.5. We note that Corollary 3.4 actually improves Theorem MN. Since
‖A‖−(‖A‖−ε) = ε = (‖B‖+ε)−‖B‖ and the function t 7→ tr is strictly concave,
it follows that

‖A‖r − (‖A‖ − ε)r ≤ (‖B‖+ ε)r − ‖B‖r.

We here pose an example:

A =

(
4 0
0 2

)
and B =

(
2 0
0 1

)
.

Then A−B =

(
2 0
0 1

)
≥ 1 and so ε = 1. Hence we have

‖A‖r − (‖A‖ − ε)r = 4r − 3r < (‖B‖+ ε)r − ‖B‖r = 3r − 2r.

Now Theorem 3.3 can be regarded as a difference version. So we give a ratio
version of it. It is obtained by Theorem 3.3 itself:

Corollary 3.6. If A > B > 0 and f is non-constant operator monotone on
(0,∞), then

f(B)−
1
2 f(A)f(B)−

1
2 ≥ 1 + (f(‖B‖+ ε)− f(‖B‖))‖f(B)‖−1,

where ε = ‖(A−B)−1‖−1.

Proof. Put δ = f(‖B‖+ ε)− f(‖B‖). It follows from Theorem 3.3 that

f(B)−
1
2 f(A)f(B)−

1
2 ≥ f(B)−

1
2 f(B + δ)f(B)−

1
2

= 1 + δf(B)−1 ≥ 1 + δ‖f(B)‖−1.

�

As another application of Theorem 3.3, we need the chaotic order: For A > 0,
we can define the selfadjoint operator log A. So a weaker order than the operator
order appears by log A ≥ log B for A, B > 0. We call it the chaotic order. The
chaotic order plays an substantial role in operator inequalities. Among others, it
brightens the Furuta inequality [5], [2], [3], [1], [4], [7] and recent development of
Karcher mean theory [11].

Now we give a simple and elementary proof to the following recent theorem [6,
Theorem 2.1] due to Furuta, in which we don’t use any integral representation of
operator monotone functions.

Theorem 3.7. If log A > log B for A, B > 0 and f is operator monotone on
(0,∞), then there exists β > 0 such that

f(Aα) > f(Bα) for all 0 < α ≤ β.
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Proof. Since log A > log B, it is known that there exists β > 0 such that

Aα > Bα for all 0 < α ≤ β.

Therefore it follows from Theorem 3.3 that, for each fixed α ∈ (0, β],

f(Aα) > f(Bα),

as desired. �

4. A concluding remark.

Finally we discuss an operator extension of Lemma 2.1. Namely we may expect
the following conjecture:
A real valued function f on an interval J = (a, b) with b ∈ (−∞, +∞] is operator
convex if and only if, for each 0 < ε < b − a, Dε(t) is operator monotone on
(a, b − ε). Unfortunately we have a negative answer as follows: We choose the
function f(t) = 1

t
on (0,∞). It is a typical example of operator convex functions.

Nevertheless, D1(t) = − 1
t(t+1)

is not operator monotone. As a matter of fact, we

take two 2× 2 matrices A and B:

A =

(
3 1
1 2

)
and B =

(
2 0
0 1

)
.

Note that D1(A) ≥ D1(B) if and only if A(A + 1) ≥ B(B + 1). Clearly A ≥ B,
but

A(A + 1)−B(B + 1) =

(
13 6
6 7

)
−

(
6 0
0 2

)
=

(
7 6
6 5

)
6≥ 0.

This is a counterexample.
Incidentally, the operator convexity of the function 1

t
is easily shown as follows:

It is enough to prove the inequality(
A + B

2

)−1

≤ 1

2
(A−1 + B−1).

And it is simplified by putting C = A
1
2 B−1A

1
2 that

4(1 + C−1)−1 ≤ 1 + C,

which follows from the numerical inequality 4 ≤ (1 + x−1)(1 + x).
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