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Abstract. In 1987, we established an operator inequality as follows; A ≥

B ≥ 0 =⇒ (A
r
2ApA

r
2 )

1
q ≥ (A

r
2BpA

r
2 )

1
q holds for (*) p ≥ 0, q ≥ 1, r ≥ 0 with

(1+ r)q ≥ p+ r. It is an extension of Löwner-Heinz inequality. The purpose of
this paper is to explain geometrical background of the domain by (*), and to
give brief survey of recent results of its applications.

1. Introduction

A capital letter means a bounded linear operator on a Hilbert space H. An
operator T is called positive (simply A > 0) if T is positive semidefinite (simply
A ≥ 0) and invertble.

Theorem 1.1 (LH(Löwner-Heinz inequality)). A ≥ B ≥ 0 ensures Aα ≥ Bα for
any α ∈ [0, 1].

Although Theorem LH is very useful, but the condition “ α ∈ [0, 1] ” is too
restrictive. In fact Theorem LH does not always hold for α 6∈ [0, 1]. The following
result [25] has been obtained from this point of view.

Theorem 1.2 (F (Furuta inequality)). If A ≥ B ≥ 0, then for each r ≥ 0,
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(i) (B
r
2ApB

r
2 )

1
q ≥ (B

r
2BpB

r
2 )

1
q

and
(ii) (A

r
2ApA

r
2 )

1
q ≥ (A

r
2BpA

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r.

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Figure 1.

The domain drawn for p,q and r in Figure (1) is the best possible one K.
Tanahashi [64].

Theorem F yields Löwner-Heinz inequality asserting that A ≥ B ≥ 0 ensures
Aα ≥ Bα for any α ∈ [0, 1], when we put r = 0 in (i) or (ii). Consider two magic
boxes

f(�) = (B
r
2�B

r
2 )

1
q and g(�) = (A

r
2�A

r
2 )

1
q

.
Although A ≥ B ≥ 0 does not always ensure Ap ≥ Bp for p > 1, Theorem F

asserts the following “ two order preserving operator inequalities”

f(Ap) ≥ f(Bp) and g(Ap) ≥ g(Bp)

hold whenever A ≥ B ≥ 0 under the condition p, q and r in Figure (1).
We have been finding a lot of applications of Theorem F in the following three

branches (A) operator inequalities, (B) norm inequalities, and (C) operator equa-
tions. We would like to concentrate ourselves to state typical examples of recent
applications of Theorem F without their proofs.

(A) OPERATOR INEQUALITIES

(A-1) Several characterizations of operators logA ≥ logB and its applications.
(A-2) Applications to the relative operator entropy.
(A-3) Applications to Ando–Hiai log majorization.
(A-4) Generalized Aluthge transformation on p-hyponormal operators.
(A-5) Several classes associated with log-hyponormal and paranormal operators.
(A-6) Order preserving operator inequalities and operator functions implying

them.
(A-7) Applications to Kantorovich type operator inequalities.
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(A-8) Some variations of Choi inequality.
(A-9) Furuta inequalty of indefinite type on Krein space.

(B) NORM INEQUALITIES

(B-1) Several generalizations of Heinz–Kato theorem.
(B-2) Generalizations of some theorem on norms.
(B-3) An extension of Kosaki trace inequality and parallel results.

(C) OPERATOR EQUATIONS

(C-1) Generalizations of Pedersen-Takesaki theorem and related results.
(C-2) Positive semidefinite solutions of some operator equations.

Lemma 1.3 (Lemma A [28]). Let X be a positive invertible operator and Y be
an invertible operator. For any real number λ,

(Y XY ∗)λ = Y X
1
2 (X

1
2Y ∗Y X

1
2 )λ−1X

1
2Y ∗.

Proof. Let Y X
1
2 = UH be the polar decomposition of Y X

1
2 ,where U is unitary

and H = |Y X
1
2 |. Then we have

(Y XY ∗)λ = (UH2U∗)λ = Y X
1
2H−1H2λH−1X

1
2Y ∗ = Y X

1
2 (X

1
2Y ∗Y X

1
2 )λ−1X

1
2Y ∗.

�

Proof. of Theorem F. At first we prove (ii). In the case 1 ≥ p ≥ 0, the result is
obvious by Theorem LH. We have only to consider p ≥ 1 and q = p+r

1+r
since (ii) of

Theorem F for values q larger than p+r
1+r

follows by Theorem LH, that is, we have
only to prove the following

A1+r ≥ (A
r
2BpA

r
2 )

1+r
p+r for any p ≥ 1 and r ≥ 0. (1.1)

We may assume that A and B are invertible without loss of generality. In the
case r ∈ [0, 1], A ≥ B ≥ 0 ensures Ar ≥ Br holds by Theorem LH. Then we have

(A
r
2BpA

r
2 )

1+r
p+r = A

r
2B

p
2 (B

−p
2 A−rB

−p
2 )

p−1
p+rB

p
2A

r
2 by Lemma 1.3

≤ A
r
2B

p
2 (B

−p
2 B−rB

−p
2 )

p−1
p+rB

p
2A

r
2

= A
r
2BA

r
2 ≤ A1+r,

and the first inequality follows by B−r ≥ A−r and Theorem LH since p−1
p+r

∈ [0, 1]

holds, and the last inequality follows by A ≥ B ≥ 0, so we have the following
(1.2)

A1+r ≥ (A
r
2BpA

r
2 )

1+r
p+r for p ≥ 1 and r ∈ [0, 1]. (1.2)

Put A1 = A1+r and B1 = (A
r
2BpA

r
2 )

1+r
p+r in 1.2. Repeating 1.2 again for A1 ≥

B1 ≥ 0, r1 ∈ [0, 1] and p1 ≥ 1,

A1+r1
1 ≥ (A

r1
2
1 B

p1
1 A

r1
2
1 )

1+r1
p1+r1

Put p1 =
p+r
1+r

≥ 1 and r1 = 1, then

A2(1+r) ≥ (Ar+ 1
2BpAr+ 1

2 )
2(1+r)
p+2r+1 for p ≥ 1, and r ∈ [0, 1] (1.3)
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Put s
2
= r + 1

2
in 1.3. Then 2(1+r)

p+2r+1
= 1+s

p+s
since 2(1 + r) = 1 + s, so that 1.3 can

be rewritten as follows;

A1+s ≥ (A
s
2BpA

s
2 )

1+s
p+s for p ≥ 1, and s ∈ [1, 3] (1.4)

Consequently 1.2 and 1.4 ensure that 1.2 holds for any r ∈ [0, 3] since r ∈ [0, 1]
and s = 2r + 1 ∈ [1, 3] and repeating this process, 1.1 holds for any r ≥ 0, (ii) is
shown.

If A ≥ B > 0, then B−1 ≥ A−1 > 0. Then by (ii), for each r ≥ 0, B
−(p+r)

q ≥

(B
−r
2 A−pB

−r
2 )

1
q holds for each p and q such that p ≥ 0, q ≥ 1 and (1+r)q ≥ p+r.

Taking inverses gives (i), so the proof of Theorem F is complete. �

This one page proof of Theorem F in T. Furuta [26], T. Furuta [30] and the
original one in T. Furuta [25]. Alternative proofs are in M. Fujii [14] and E.
Kamei [53].

Remark 1.4. A ≥ B ≥ 0 ⇐⇒ A1+r ≥ (A
r
2BpA

r
2 )

1+r
p+r for p ≥ 1 and r ≥ 0.

Background of Theorem F

We would like to explain “how to conjecture the form of Theorem F” via
Löwner-Heinz inequality by using “FIGURE” illustration.

A ≥ B ≥ 0

⇐⇒ (a) Aα ≥ Bα for α ∈ [0, 1] (1-dimensional interval α ∈ [0, 1])
(Löwner-Heinz inequality).

� �
0 1

α

Figure 2.

⇐⇒ (b) A
p
q ≥ B

p
q for q ≥ p ≥ 0, q ≥ 1 (2-dimensional (q, p) domain).

�
(1, 1)

(1, 0)

p = q

(0, 0)

q = 1

q

p

Figure 3.
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⇐⇒ (c) (A
0
2ApA

0
2 )

1
q ≥ (A

0
2BpA

0
2 )

1
q for

p ≥ 0, q ≥ 1 and (1 + 0)(q − 1) ≥ p− 1.

⇐⇒ (d) (A
r
2ApA

r
2 )

1
q ≥ (A

r
2BpA

r
2 )

1
q for

(?) r ≥ 0, p ≥ 0, q ≥ 1 and (1 + r)(q − 1) ≥ p− 1

⇐⇒ (e) (A
r
2ApA

r
2 )

1
q ≥ (A

r
2BpA

r
2 )

1
q for

(??) r ≥ 0, p ≥ 0, q ≥ 1 and (1 + r)q ≥ p+ r.

Recall that (??) in (e) is equivalent to (?) in (d). Since (d) =⇒ (c) is trivial and
we prove the equivalence relation between (c) and (d) in the proof of Theorem F.

We would like to emphasize that the condition on α ∈ [0, 1] in (a) could be
converted to 2-dimensional domain q ≥ p ≥ 0, q ≥ 1 in (b) and this idea is most
important.

�(1, 1)

(1, 0)

p = q

(1 + r)q = p + r

(0, 0)

(0,−r)

q = 1

q

p

Figure 4.

An excellent and tough proof of the best possibility of Theorem F is obtained
in K. Tanahashi [64], that is, the domain drawn for p,q and r in FIGURE 1 is the
best possible one.

Some of closely related papers in this chapter: [13, 14, 15, 16, 25, 26, 30, 40,
53, 64].

2. (A-6) Further extensions of Furuta inequality and operator
functions implying them

We show the following Theorem G which interpolates Theorem F and the
equality equivalent to log majorization in [8] (see §5 and §10).

Theorem 2.1 (Theorem G [28]). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1]
and p ≥ 1,

A1−t+r ≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+r for s ≥ 1 and r ≥ t. (2.1)
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Proof. We may assume that B is invertible. First of all, we prove that if A ≥
B ≥ 0 with A > 0, then

A ≥ {A
t
2 (A

−t
2 BpA

−t
2 )sA

t
2 }

1
(p−t)s+t for t ∈ [0, 1], p ≥ 1 and s ≥ 1. (2.2)

In case the 2 ≥ s ≥ 1, as s− 1, 1
(p−t)s+t

∈ [0, 1] and At ≥ Bt by Theorem LH, so

by Lemma A and Theorem LH we have

B1 = {A
t
2 (A

−t
2 BpA

−t
2 )sA

t
2 }

1
(p−t)s+t

= {B
p
2 (B

p
2A−tB

p
2 )s−1B

p
2 }

1
(p−t)s+t

≤ {B
p
2 (B

p
2B−tB

p
2 )s−1B

p
2 }

1
(p−t)s+t

= B ≤ A = A1 (2.3)

for t ∈ [0, 1], p ≥ 1 and 2 ≥ s ≥ 1. Repeating (2.3) for A1 ≥ B1 ≥ 0, then we
have

A1 ≥ {A
t1
2
1 (A

−t1
2

1 B
p1
1 A

−t1
2

1 )s1A
t1
2
1 }

1
(p1−t1)s1+t1 for t1 ∈ [0, 1], p1 ≥ 1 and 2 ≥ s1 ≥ 1

(2.4)
Put t1 = t and p1 = (p− t)s+ t ≥ 1 in (2.4). Then we obtain

A ≥ {A
t
2 [A

−t
2 A

t
2 (A

−t
2 BpA

−t
2 )sA

t
2A

−t
2 ]s1A

t
2}

1
(p−t)ss1+t (2.5)

= {A
t
2 (A

−t
2 BpA

−t
2 )ss1A

t
2}

1
(p−t)ss1+t for t ∈ [0, 1], p ≥ 1 and 4 ≥ ss1 ≥ 1

Repeating this process from (2.3) to (2.5), we obtain (2.2) for t ∈ [0, 1], p ≥ 1
and any s ≥ 1.

Put A2 = A and B2 = {A
t
2 (A

−t
2 BpA

−t
2 )sA

t
2 }

1
(p−t)s+t in (2.2).

Applying (ii) of Theorem F for A2 ≥ B2 ≥ 0 by (2.2) for t ∈ [0, 1], p ≥ 1 and
s ≥ 1, so we have

A1+r2
2 ≥ (A

r2
2
2 B

p2
2 A

r2
2
2 )

1+r2
p2+r2 holds for p2 ≥ 1 andr2 ≥ 0 (2.6)

We have only to put r2 = r − t ≥ 0 and p2 = (p − t)s + t ≥ 1 in (2.6) to obtain
the desired inequality (2.1) �

Remark 2.2. Theorem G implies; A ≥ B ≥ 0 =⇒ A1+r ≥ (A
r
2BpA

r
2 )

1+r
p+r for p ≥ 1

and r ≥ 0 so that Theorem G is an extension of Theorem F.

Remark 2.3 (Best possibility of Theorem G [66]). Let p ≥ 1, t ∈ [0, 1], r ≥ t and

s ≥ 1. If
1− t+ r

(p− t)s+ r
< α, then there exist positive invertible operators A and

B such that A ≥ B > 0 and A{(p−t)s+r}α 6≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }α.

Theorem 2.4 ([30, 37]). The following (i),(ii),(iii) and (iv) hold and follow from
each other.

(i) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0, 1] and p ≥ 1,

A1−t+r ≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+r holds for r ≥ t and s ≥ 1

(ii) If A ≥ B ≥ 0 with A > 0, then for each 1 ≥ q ≥ t ≥ 0 and p ≥ q,

Aq−t+r ≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

q−t+r
(p−t)s+r holds for r ≥ t and s ≥ 1
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(iii) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0, 1] and p ≥ 1,

Fp,t(A,B, r, s) = A
−r
2 {A

r
2 (A

−t
2 BpA

−t
2 )sA

r
2}

1−t+r
(p−t)s+rA

−r
2

is decreasing function for r ≥ t and s ≥ 1.
(iv) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0, 1], q ≥ 0 and p ≥ t,

Gp,q,t(A,B, r, s) = A
−r
2 {A

r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

q−t+r
(p−t)s+rA

−r
2

is decreasing function for r ≥ t and s ≥ 1 such that (p− t)s ≥ q − t.

Corollary 2.5 ([30, 37, 53]). If A ≥ B > 0, then the following inequalities (i)
and (ii) hold.

(i) {B
t
2 (B

−t
2 ApB

−t
2 )sB

t
2 }

1
(p−t)s+r ≥ A ≥ B ≥ {A

t
2 (A

−t
2 BpA

−t
2 )sA

t
2 }

1
(p−t)s+r

(ii)

B
−(r−t)

2 (B
r−t
2 ApB

r−t
2 )

1−t+r
p−t+rB

−(r−t)
2 ≥ A ≥ B ≥ A

−(r−t)
2 (A

r−t
2 BpA

r−t
2 )

1−t+r
p−t+rA

−(r−t)
2

for each t ∈ [0, 1], p ≥ 1, r ≥ t and s ≥ 1.

Corollary 2.6 ([30, 53]). If A ≥ B > 0, then the following inequality holds

B
−r
2 (B

r
2ApB

r
2 )

1+r
p+rB

−r
2 ≥ A ≥ B ≥ A

−r
2 (A

r
2BpA

r
2 )

1+r
p+rA

−r
2

for p ≥ 1 and r ≥ 0

Some of closely related papers in this chapter: [21, 23, 24, 28, 30, 39, 40, 41,
50, 51, 52, 53, 66, 70, 72].

3. (A-1) Several characterization of operators logA ≥ logB and
its applications

A function f is said to be operator monotone if f(A) ≥ f(B) whenever A ≥
B ≥ 0.

f(t) = tα is a famous typical example of operator monotone for α ∈ [0, 1] by
Theorem LH. Another typical example of operator monotone is log t. In fact,
then

If A ≥ B > 0, Aα ≥ Bα > 0 for any α ∈ [0, 1] by Theorem L-H, so

Aα − I

α
≥

Bα − I

α
.

Hence we have the desired result logA ≥ logB by tending α → +0.

Theorem 3.1 ([68]). Let A and B be positive invertible operators. Then the
following (i) and (ii) are equivalent7:

(i) logA ≥ logB.

(ii) Ar ≥ (A
r
2BpA

r
2 )

r
p+r for all p ≥ 0 and r ≥ 0.

Proof. (i) =⇒ (ii). We recall the following obvious and crucial formula

lim
n→∞

(I +
1

n
logX)n = X for any X > 0. (3.1)



AN ORDER PRESERVING OPERATOR INEQUALITY 21

The hypothesis logA ≥ logB ensures

A1 = I +
logA

n
≥ I +

logB

n
= B1

for sufficiently large natural number n. Applying (ii) of Theorem F to A1 and
B1, we have

Anr
1 ≥ (A

nr
2
1 B

np
1 A

nr
2
1 )

nr
np+nr for all p ≥ 0 and r ≥ 0 (3.2)

since (1 + nr)(np+nr
nr

) ≥ np + nr holds and this condition satisfies the required
condition of Theorem F. When n → ∞, (3.2) ensures (ii) by (3.1).

(ii) =⇒ (i). Taking logarithm of both sides of (ii) since log t is operator mono-
tone function , we have

r(p+ r) logA ≥ r log(A
r
2BpA

r
2 ) for all p ≥ 0 and r ≥ 0

and tending r → +0, hence we obtain logA ≥ logB. �

Theorem 3.2 ([17, 27]). Let A and B be positive invertible operators. Then the
following assertions are mutually equivalent.

(i) A � B (i.e., logA ≥ logB).

(ii) For any fixed t ≥ 0, F (p, r) = B
−r
2 (B

r
2ApB

r
2 )

t+r
p+rB

−r
2 is an increasing

function of both p ≥ t and r ≥ 0.

(iii) For any fixed t ≥ 0, G(p, r) = A
−r
2 (A

r
2BpA

r
2 )

t+r
p+rA

−r
2 is a decreasing func-

tion of both p ≥ t and r ≥ 0.

Some of closely related papers in this chapter: [5, 16, 17, 27, 30, 39, 68].

4. (A-4) Generalized Aluthge transformation on p-hyponormal
operators

An operator T on a Hilbert space H is said to be p-hyponormal if (T ∗T )p ≥
(TT ∗)p for positive number p.

Define T̃ as follows:

T̃ = |T |
1
2 |U |T |

1
2

which is called “ Aluthge transformation”.

Theorem 4.1 ([1]). Let T = U |T | be p-hyponormal for p > 0 and U be unitary.
Then

(i) T̃ = |T |
1
2U |T |

1
2 is (p+ 1

2
)-hyponormal if 0 < p < 1

2

(ii) T̃ = |T |
1
2U |T |

1
2 is hyponormal if 1

2
≤ p < 1

Proof. (i) Firstly we recall that if T is p-hyponormal for p > 0 , the following
(4.1) holds obviously

U∗|T |2pU ≥ |T |2p ≥ U |T |2pU∗ for any p > 0. (4.1)

Let A = U∗|T |2pU , B = |T |2p and C = U |T |2pU∗ in (4.1). Then (4.1)
means

A ≥ B ≥ C ≥ 0. (4.2)
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As (1 + 1
2p
) 2
2p+1

= 1
p
= 1

2p
+ 1

2p
holds, we can apply Theorem F, that is,

(T̃ ∗T̃ )p+
1
2 = (|T |

1
2U∗|T |U |T |(

1
2
)p+

1
2 = (B

1
4pA

1
2pB

1
4p )p+

1
2

≥ (B
1
4pB

1
2pB

1
4p )p+

1
2 ≥ (B

1
4pC

1
2pB

1
4p )p+

1
2

= (|T |
1
2U |T |U∗|T |

1
2 )p+

1
2 = (T̃ T̃ ∗)p+

1
2 (4.3)

Hence (4.3) ensure (T̃ ∗T̃ )p+
1
2 ≥ B

1+ 1
2p ≥ (T̃ T̃ ∗)p+

1
2 that is, T̃ is p + 1

2
-hyponormal.

(ii) As |T |2p ≥ |T ∗|2p, we have |T | ≥ |T ∗| by Theorem L-H since 1
2p

∈ [1
2
, 1],

or equivalently

U∗|T |U ≥ |T | ≥ U |T |U∗ (4.4)

Then we have

T̃ ∗T̃ − T̃ T̃ ∗ = |T |
1
2 (U∗|T |U − U |T |U∗)|T |

1
2 ≥ 0 by (4.4) (4.5)

(4.5) implies T̃ ∗T̃ ≥ T̃ T̃ ∗, that is, T̃ is hyponormal.
�

Some of closely related papers in this chapter: [1, 2, 3, 29, 30, 42, 43, 45, 46].

5. (A-3) Applications to Ando–Hiai log majorization

Let us write A �
(log)

B in [8] for positive semidefinite matrices A,B ≥ 0 and

call the log-majorization if

k∏

i=1

λi(A) ≥
k∏

i=1

λi(B), and k = 1, 2, · · · , n − 1, and

n∏

i=1

λi(A) =
n∏

i=1

λi(B), i.e. detA = detB. where λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) are the eigenvalues of A and B respectively
arranged in decreasing order.

The α-power mean of A,B > 0 is defined by A#αB = A1/2(A−1/2BA−1/2)αA1/2.
for 0 ≤ α ≤ 1. Similarly define A \sB by for any s ≥ 0 and for A > 0 and B ≥ 0

A \sB = A1/2(A−1/2BA−1/2)sA1/2.

Using Theorem G and the same way as in the proof of [8, Theorem 2.1], we
can transform Theorem G into the following log-majorization inequality.

Theorem 5.1 ([28]). For every A > 0 , B ≥ 0 , 0 ≤ α ≤ 1 and each t ∈ [0, 1]

(A#αB)h �
(log)

A1−t+r#β (A1−t \sB)

holds for s ≥ 1, and r ≥ t ≥ 0 , where β =
α(1− t+ r)

(1− αt)s+ αr
and h =

(1− t+ r)s

(1− αt)s+ αr
.

Corollary 5.2 ([28]). For every A,B ≥ 0 and 0 ≤ α ≤ 1, (A#αB)h �
(log)

Ar#hα
s
Bs

for r ≥ 1 and s ≥ 1, where h = [αs−1 + (1− α)r−1]−1.
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Corollary 5.2 yields the following result of T. Ando and F. Hiai [8, Theorem
2.1].

Theorem 5.3 (AH [8]). For every A,B ≥ 0 and 0 ≤ α ≤ 1, (A#αB)r �
(log)

Ar#αB
r

for r ≥ 1.

Remark 5.4. The following result is pointed out in [8].

(i) (A#αB)r �
(log)

Ar#αB
r for r ≥ 1 and 0 ≤ α ≤ 1 in Theorem AH ⇐⇒

(ii) if A ≥ B > 0 with A > 0 ensures Ar ≥ {A
r
2 (A

−1
2 BpA

−1
2 )rA

r
2 }

1
p for p ≥ 1

and r ≥ 1.

(ii) follows by Theorem G since we have only to put t = 1 and r = s in Theorem
G.
Theorem G can be transformed into Theorem 5.1 as an extension of Corollary 5.2
containing Theorem AH. Theorem G interpolates both Theorem F and Theorem
AH as follows,

Theorem G

t = 0 ↙ ↘ t = 1 and r = s
Theorem F Theorem AH

Some of closely related papers in this chapter: [6, 8, 15, 16, 28, 30, 34, 44, 69].

6. (A-3) Operator inequalities and log majorization

As stated in section §5, A \sB in the case 0 ≤ s ≤ 1 just coincides with the
usual α-power mean. We shall show a log majorization equivalent to an order
preserving operator inequality.

Using Theorem G and the same way as in the proof of [8, Theorem 2.1], we
can transform Theorem G into the following log majorization inequality different
from Theorem 5.1.

Theorem 6.1 ([31]). The following (i) and (ii) hold and are equivalent:

(i) If A,B ≥ 0, then for each t ∈ [0, 1] and r ≥ t

A
1
2 (A

r−t
2 BpA

r−t
2 )

q
pA

1
2 �
(log)

A
(p−tq)s+rq

2ps {B
p
2 (B

p
2ArB

p
2 )s−1B

p
2 }

q
psA

(p−tq)s+rq

2ps

holds for any s ≥ 1 and p ≥ q > 0.
ii) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0, 1] and r ≥ t

A
(p−tq)s+rq

ps ≥ {A
r
2 (A

−t
2 B

p
qA

−t
2 )sA

r
2 }

q
ps

holds for any s ≥ 1 and p ≥ q > 0

Corollary 6.2 ([31]). The following (i) and (ii) hold and are equivalent:

(i) If A,B ≥ 0, then for each r ≥ 0

A
1
2 (A

r
2BpA

r
2 )

q
pA

1
2 �
(log)

A
1
2
(1+ r

p
q)
BqA

1
2
(1+ r

p
q)

holds for any p ≥ q > 0.
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(ii) If A ≥ B ≥ 0, then for each r ≥ 0

A1+ r
p
q ≥ (A

r
2B

p
qA

r
2 )

q
p

holds for any p ≥ q > 0.

Theorem 6.3 ([31]). If A,B ≥ 0, then, for every t ∈ [0, 1] and p ≥ 0,

Tr[A log(A
r−t
2 BpA

r−t
2 )s] ≥ (r − ts)Tr[A logA] + Tr[A log{B

p
2 (B

p
2ArB

p
2 )s−1B

p
2 }]

holds for any r ≥ t and s ≥ 1.

Sketch of the proof of Theorem 6.3. Since log majorization yields weak
mojorization, (ii) of Theorem 6.1 ensures the following

pTr[A(A
r−t
2 BpA

r−t
2 )

q
p ] ≥ Tr[A

(p−tq)s+rq

2 {B
p
2 (B

p
2ApB

p
2 )s−1B

p
2 }

q
ps ]

holds for t ∈ [0, 1], r ≥ t, s ≥ 1 and p ≥ q > 0. Since both sides of the inequality
stated above are equal to Tr[A] when q = 0, we have

d

dq
Tr
[
A(A

r−t
2 BpA

r−t
2

) q
p
]∣∣∣∣∣

q=0

≥
d

dq
Tr
[
A

(p−tq)s+rq

2 {B
p
2 (B

p
2ApB

p
2 )s−1B

p
2 }

q
ps

]∣∣∣∣∣
q=0

and the desired result follows by simple calculation of q derivation.
Theorem 6.3 easily implies the following result.

Corollary 6.4 ([31]). If A,B ≥ 0, then, for every p ≥ 0 and r ≥ 0,

Tr[A log(A
r
2BpA

r
2 )s] ≥ Tr[A logAr] + Tr[A log{B

p
2 (B

p
2ArB

p
2 )s−1B

p
2 }]

holds for any s ≥ 1. In particular,

Tr[A log(A
r
2BpA

r
2 )] ≥ Tr[A logAr + A logBp]

and
Tr[A log(A

r
2BpA

r
2 )2] ≥ Tr[A logAr] + Tr[A log(BpArBp)].

We need the following useful lemma to prove Theorem 6.7 and Theorem 6.9

Lemma 6.5 ([31]). If A,B,C and D are Hermitian, then for any positive num-
bers α and β

eA+αB+αβ(C+D) = lim
p↓0

{e
pA
2 (e

pB
2 (e

pC
2 epDe

pC
2 )βe

pB
2 )αe

pA
2 }

1
p

in particular,

eA+α(B+C) = lim
p↓0

{epA(e
pB
2 epCe

pB
2 )αepA}

1
p

Remark 6.6. When C = 0 and α = 1, Lemma 6.5 implies the famous Lie-Trotter
formula

eA+B = lim
p↓0

(e
pA
2 epBe

A
2 )

1
p .

When B = −A and C = B, Lemma 6.5 implies the well known α− mean version
of the Lie-Trotter formula by Hiai and Petz

e(1−α)A+αB = lim
p↓0

(epA]αe
pB)

1
p .
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We remark that by using Theorem 6.1 and Lemma 6.5, we have Theorem 6.7 and
Theorem 6.9.

Theorem 6.7 ([31]). If A,B ≥ 0, then, for every p ≥ 0,

s

p
Tr[A log(A

p
2BpA

p
2 )]−

1

p
Tr[A log{B

p
2 (B

p
2ApB

p
2 )s−1B

p
2 }] ≥ Tr[A logA]

holds for any p ≥ 0 and s ≥ 1, and the left hand side converges to the right hand
side as p ↓ 0.

Corollary 6.8 ([31]).
(i) If A,B ≥ 0, then, for every p ≥ 0,

1

p
Tr[A log(A

p
2BpA

p
2 )] ≥ Tr[A logA + A logB]

holds and the left hand side converges to the right hand side as p ↓ 0.
(ii) If A,B ≥ 0, then, for every p ≥ 0,

2

p
Tr[A log(A

p
2BpA

p
2 )]−

1

p
Tr[A log(BpApBp)]≥ Tr[A logA]

holds and the left hand side converges to the right hand side as p ↓ 0.

Theorem 6.9 ([31]). If A > 0 and B ≥ 0, then, for every positive number β,

s

p
Tr[A log(Ap\βB

p)]−
1

p
Tr[A log{A

−p
2 (Ap\βB

p)sA
−p
2 }] ≥ Tr[A logA]

holds for any p ≥ 0, s ≥ 1, and the left hand side converges to the right hand side
as p ↓ 0.

Closely related papers in this chapter: [6, 8, 31, 44]

7. (A-5) log-hyponormal =⇒ class A operator =⇒ paranormal

An operator T is said to be paranormal if ||T 2x|| ≥ ||Tx||2 for ||x|| = 1 and T is
said to be lass A operator if |T 2| ≥ |T |2 and also T is said to be log-hyponormal
if T is invertible and log |T | ≥ log |T ∗|

We recall that log |T | ≥ log |T ∗| implies |T |2p ≥ (|T |p|T ∗|2p|T |p)
1
2 for all p ≥ 0

by Theorem 3.1, so that we have easily the following Theorem 7.1

Theorem 7.1 ([30, 38]). log |T | ≥ log |T ∗| => |T 2| ≥ |T |2 => ||T 2x|| ≥ ||Tx||2

for ||x|| = 1, that is,

log-hyponormal =⇒ class A operator =⇒ paranormal.

We show the following interesting parallelism between Theorem 7.2 on paranormal
operators and Theorem 7.3 on class A operators.

Theorem 7.2 ([47]).

(1) If T is a paranormal, then ||T nx||
1
n ≥ ||Tx|| holds for every unit vector x

and for all positive integer n.
(2) If T is a paranormal, then T n is also a paranormal operator for all positive

integer n.
(3) If T is invertible and paranormal, then T−1 is also a paranormal operator.
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(4) If T is a paranormal, then

||Tx|| ≤ ||T 2x||
1
2 ≤ · · · ≤ ||T nx||

1
n

holds for every unit vector x and for all positive integer n.

Theorem 7.3 ([47]).

(1) If T is an invertible class A operator, then |T n|
2
n ≥ |T |2 holds for all

positive integer n.
(2) If T is an invertible class A operator, then T n is also a class A operator

for all positive integer n.
(3) If T is an invertible class A operator, then T−1 is also a class A operator.

(4) If T is an invertible class A operator , then |T |2 ≤ |T 2| · · · ≤ |T n|
2
n holds

for all positive integer n.

Some of closely related papers in this chapter: [30, 38, 46, 47, 65, 71, 73].

8. (A-9) Furuta inequality of indefinite type on Krein space

Let Mn(C) denote the algebra of n × n complex matrices. For a selfadjoint
involution, J = J∗ and J2 = I, we consider an indefinite inner product [, ] on Cn

given by
[x, y] = 〈Jx, y〉 (x, y ∈ C

n)

where 〈·, ·〉 denotes the standard inner product in Cn.
The J- adjoint matrix A] of A is defined by

[Ax, y] = [x,A]y] (x, y ∈ C
n)

equivalently, A] = JA∗J.
A matrix A is said to be J-selfadjoit if A] = A or JA is selfadjoint: JA = A∗J.
For a pair of J-selfadjoint matrices A,B, the J-order, denoted as A ≥J B, is

defined by
[Ax, x] ≥ [Bx, x] (x ∈ C

n),

that is, JA ≥ JB.
A matrix A is called J-positive if [Ax, x] ≥ 0 for x ∈ Cn, that is, JA ≥ 0.
A matrix A is said to be a J-contraction if I ≥J A]A or [x, x] ≥ [Ax,Ax] for

x ∈ Cn.

Theorem 8.1 ([62]). Let A,B be J-selfadjoint matrices with non-negative eigen-
values and I ≥J A ≥J B. Then for each r ≥ 0,

(A
r
2ApA

r
2 )

1
q ≥J (A

r
2BpA

r
2 )

1
q

holds for p ≥ 0, q ≥ 1 with (1 + r)q ≥ p+ r.

As an application of Theorem 8.1, the following characterization of the J-
chaotic order has been obtained.

Theorem 8.2 ([63]). If A,B are J-selfadjoint matrices with positive eigenvalues
and I ≥J A and I ≥J B. Then the following statements are equivalent:

(i) Log(A) ≥J Log(B)

(ii) Ar ≥J (A
r
2BpA

r
2 )

r
p+r for all p ≥ 0 and r ≥ 0.
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Remark 8.3. Theorem 8.1 is regarded as Theorem F of indefinite type (compare
Theorem 8.1 with Theorem F). Also Theorem 8.2 is regarded as Theorem 3.1 of
indefinite type (compare Theorem 8.2 with Theorem 3.1)

Some of closely related papers in this chapter: [7, 9, 10, 62, 63].

9. (C-2) Positive semidefinite solutions of the operator equation
n∑

j=1

An−jXAj−1 = B

In [13], the following result is shown; let A be positive definite matrix and B
is positive semidefinite matrix. The solution X of the following matrix equation
is always positive semidefinite

A2X +XB2 = AB +BA.

In [13], the following question was posed. How can one characterize all the func-
tions f such that the solution of the matrix equation

f(A)X +Xf(B) = AB +BA

is positive semidefinite?
Although Theorem F in §1 itself is operator inequality, we show that Theorem

F is useful to discuss positive semidefinite solutions of the following operator
equation:

n∑

j=1

An−jXAj−1 = B

where B is of special type.
We need the following lemma to prove Theorem 9.2 which is the main result.

Lemma 9.1 ([35]). Let A be a positive definite matrix and B be a positive semi-
definite matrix. Let m be a natural number and t ≥ 0. Let the following equation
be the polynomial expansion of (A+ tB)m with respect to t:

(A+ tB)m = Am + tF1(A,B,m)+ t2F2(A,B,m)+ · · ·+ tjFj(A,B,m)+ · · · tmBm

Then F1(A,B,m) can be expressed as

F1(A,B,m) = Am−1B + Am−2BA + · · ·+ Am−jBAj−1 + · · ·+BAm−1.

Theorem 9.2 ([35]).

Let A be a positive definite operator and B be a positive semidefinite operator.
Let m and n be natural numbers. There exists positive semidefinite operator
solution X of the following operator equation:

n∑

j=1

An−jXAj−1 = A
nr

2(m+r)

( m∑

j=1

A
n(m−j)
m+r BA

n(j−1)
m+r

)
A

nr
2(m+r)

m for r such that




r ≥ 0 if n ≥ m (i)

r ≥
m− n

n− 1
if m ≥ n ≥ 2 (ii).
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Sketch of the proof of Theorem (9.2). The inequality (i) of Theorem F and
Theorem LH ensure

A ≥ B ≥ 0 ensures (B
r
2ApB

r
2 )

1+r
p+r

α ≥ B(1+r)α for p ≥ 1, r ≥ 0 and α ∈ [0, 1]
(9.1)

Since A + tB ≥ B holds for t ≥ 0, so that we replace A by A + tB and B by A
in (9.1) and we have

(A
r
2 (A+ tB)mA

r
2 )

1+r
m+r

α ≥ A(1+r)α for m ≥ 1, t ≥ 0, r ≥ 0 and α ∈ [0, 1] (9.2)

For 1+r
m+r

α = 1
n
in (9.2), we take α as follows: α = m+r

n(1+r)
∈ [0, 1] for r such that



r ≥ 0 if n ≥ m (i)

r ≥
m− n

n− 1
if m ≥ n ≥ 2 (ii).

Then (9.2) implies

Y (t) = [A
r
2 (A+ tB)mA

r
2 ]

1
n ≥ A

m+r
n for r under the condition (i) or (ii). (9.3)

Then (9.3) ensures Y (t) ≥ Y (0) = A
m+r
n for any t ≥ 0. Therefore

X = Y
′

(0) ≥ 0. (9.4)

Differentiating the equation Y n(t) = A
r
2 (A+ tB)mA

r
2 and then letting t = 0,

Y (0)n−1Y
′

(0) + · · ·+ Y (0)n−jY
′

(0)Y (0)j−1 + · · ·+ Y
′

(0)Y (0)n−1

=
d

dt
[A

r
2 (A+ tB)mA

r
2 ]t=0

= A
r
2 (Am−1B + Am−2BA+ · · ·+ Am−jBAj−1 + · · ·+BAm−1)A

r
2 by Lemma 9.1

and we have the following operator equation for X = Y
′
(0) since Y (0) = A

m+r
n

holds:

A
(m+r)(n−1)

n X + A
(m+r)(n−2)

n XA
(m+r)

n + · · ·+ A
(m+r)(n−j)

n XA
(m+r)(j−1)

n + · · ·

+XA
(m+r)(n−1)

2 A
r
2 (Am−1B + Am−2BA+ · · ·+ Am−jBAj−1 + · · ·

+ Am−2BA+ · · ·+ Am−jBAj−1 + · · ·+BAm−1)A
r
2 (9.5)

and we can replace A by A
n

m+n in (9.5) and (9.5) can be rewritten as
n∑

j=1

An−jXAj−1 = A
nr

2(m+r)

( m∑

j=1

A
n(m−j)
m+r BA

n(j−1)
m+r

)
A

nr
2(m+r)

for r such that




r ≥ 0 if n ≥ m (i)

r ≥
m− n

n− 1
if m ≥ n ≥ 2 (ii).

Corollary 9.3. [35] Let A be a positive definite operator and B be a positive
semidefinite operator. There exists positive semidefinite operator solution X of
the following operator equation (i),(ii), (iii), (iv) and (v) respectively:

(i) A
2+r
2 X +XA

2+r
2 = A

r
2 (AB +BA)A

r
2 for r ≥ 0.
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(ii) A
(2+r)2

3 X + A
2+r
3 XA

2+r
3 +XA

(2+r)2
3 = A

r
2 (AB +BA)A

r
2 for r ≥ 0.

(iii) A
(3+r)2

3 X+A
3+r
3 XA

3+r
3 +XA

(3+r)2
3 = A

r
2 (A2B+ABA+BA2)A

r
2 for r ≥ 0

(iv) A
3+r
2 X +XA

3+r
2 = A

r
2 (A2B + ABA +BA2)A

r
2 for r ≥ 1.

(v) A
5+r
2 X + XA

5+r
2 = A

r
2 (A4B + A3BA + A2BA2 + ABA3 + BA4)A

r
2 for

r ≥ 3.

Proposition 9.4 ([35]). Let the diagonal matrix A = diag(a1, a2, · · · , al) with
each aj > 0 and B be the l × l matrix all of whose entries are 1. Let m and n
be natural numbers. There exists positive semidefinite matrix solution X of the
following matrix equation:

n∑

j=1

A
(m+r)(n−j)

n XA
(m+r)(j−1)

n = A
r
2

( m∑

j=1

Am−jBAj−1
)
A

r
2

for r such that





r ≥ 0 if n ≥ m (i)

r ≥
m− n

n− 1
if m ≥ n ≥ 2 (ii).

The positive semidefinite matrix solution X can be expressed as:

X =

( a
r
2
i a

r
2
j

( m∑

k=1

am−ki ak−1j

)

n∑

k=1

a
(m+r)(n−k)

n

i a
(m+r)(k−1)

n

j

)

i,j=1,2,...,l

.

Examples of positive semidefinite matrices. Let the diagonal matrix A =
(a1, a2, · · · , an) with each aj > 0 and B be n×n matrix all of whose entries are 1.
Then the positive semidefinite solutions Xi of (i),(ii),(iii),(iv) and (v) of Corollary
2 are given by:

X1 =

(
a

r
2
i a

r
2
j (ai + aj)

a
2+r
2

i + a
2+r
2

j

)

i,j=1,2,...,n

for r ≥ 0.

X2 =

(
a

r
2
i a

r
2
j (ai + aj)

a
2(2+r)

3
i + a

2+r
3

i a
2+r
3

j + a
2(2+r)

3
j

)

i,j=1,2,...,n

for r ≥ 0.

X3 =

(
a

r
2
i a

r
2
j (a

2
i + aiaj + a2j)

a
2(3+r)

3
i + a

3+r
3

i a
3+r
3

j + a
2(3+r)

3
j

)

i,j=1,2,...,n

for r ≥ 0.

X4 =

(
a

r
2
i a

r
2
j (a

2
i + aiaj + a2j)

a
3+r
2

i + a
3+r
2

j

)

i,j=1,2,...,n

for r ≥ 1.

X5 =

(
a

r
2
i a

r
2
j (a

4
i + a3iaj + a2i a

2
j + aia

3
j + a4j)

a
5+r
2

i + a
5+r
2

j

)

i,j=1,2,...,n

for r ≥ 3.

Some of closely related papers in this chapter: [4, 11, 12, 13, 35, 60, 61, 80, 81].
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10. (A-6) Further extensions of order preserving operator
inequalities

We recall the following order preserving operator inequalities:

(i) A ≥ B ≥ 0 =⇒ A1+r ≥ (A
r
2BpA

r
2 )

1+r
p+r for p ≥ 1 and r ≥ 0.

(ii) A ≥ B ≥ 0 with A > 0 =⇒ A1−t+r ≥ {(A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 )}

1−t+r
(p−t)s+r for

t ∈ [0, 1], r ≥ t, p ≥ 1 and s ≥ 1.

In fact (i) is the essential part of Theorem F in §1 (see Remark 1.4) and also (ii)
is (G-1) itself of Theorem G in §2 which is an extension of (i).

In this chapter we study further extensions of order preserving operator in-
equalities including (i) and (ii) by applications of Theorem F and Lemma A.

Theorem 10.1 ([32]). Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p1, p2, · · · , p2n ≥
1 for natural number n. Then the following inequality holds for r ≥ t:

A1−t+r

≥

{

A
r
2

[

A
−t
2 {A

t
2 · · · ....[A

−t
2
{
A

t
2 (A

−t
2

︸ ︷︷ ︸

←A
−t
2 n times and A

t
2 n − 1 times by turns

Bp1 A
−t
2 )p2A

t
2
}p3A

−t
2
]p4A

t
2 · · ·A

−t
2

︸ ︷︷ ︸

→ A
−t
2 n times and A

t
2 n− 1 times by turns

]p2n
A

r
2

} 1−t+r
ϕ[2n;r,t]

where ϕ[2n; r, t] is defined by

ϕ[2n; r, t] =
{
.....[{[(p1 − t)p2 + t]p3 − t}p4 + t]p5 − · · · − t

}
p2n + r

︸ ︷︷ ︸
-t appears n times and t appears n-1 times by turns

= r +
2n∏

i=1

pi + (
2n∏

i=3

pi +
2n∏

i=5

pi + · · ·+
2n∏

i=7

pi + · · ·+ p2n−1p2n

︸ ︷︷ ︸
n-1 terms

)t

− (

2n∏

i=2

pi +

2n∏

i=4

pi +

2n∏

i=6

pi + · · ·+ p2(n−1)p2n−1p2n + p2n

︸ ︷︷ ︸
n terms

)t.

Theorem 10.1 easily yields the following result.

Corollary 10.2 ([32]). If A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p1, p2, p3, p4 ≥ 1,

A1−t+r≥

{
A

r
2

[
A
−t
2

{
A

t
2 (A

−t
2 Bp1A

−t
2 )p2A

t
2

}p3
A
−t
2

]p4
A

r
2

} 1−t+r
[{(p1−t)p2+t}p3−t]p4+r

holds for r ≥ t, where [{(p1 − t)p2 + t}p3 − t]p4 + r = p1p2p3p4 + (p3p4 − p2p3p4 −
p4)t + r.
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Theorem 10.3 ([33]). Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p1, p2, · · · , p2n ≥
1 for natural number n. Then

GA,B [r, p2n] = A
−r
2

.

{

A
r
2

[

A
−t
2 {A

t
2 · · · ....[A

−t
2
{
A

t
2 (A

−t
2

︸ ︷︷ ︸

← A
−t
2 n times and A

t
2 n− 1 times by turns

Bp1 A
−t
2 )p2A

t
2
}p3A

−t
2
]p4A

t
2 · · ·A

−t
2

︸ ︷︷ ︸

→ A
−t
2 n times and A

t
2 n− 1 times by turns

]p2n
A

r
2

} 1+r−t
ϕ[2n;r,t]

A
−r
2

is a decreasing function of p2n ≥ 1 and r ≥ t, and the following inequality holds
GA,A[r, p2n] ≥ GA,B[r, p2n], that is,

A1−t+r

≥

{

A
r
2

[

A
−t
2 {A

t
2 .......[A

−t
2

{
A

t
2 (A

−t
2

︸ ︷︷ ︸
←A

−t
2 n times and A

t
2 n − 1 times by turns

Bp1 A
−t
2 )p2A

t
2

}p3
A

−t
2

]p4
A

t
2 ...}A

−t
2

︸ ︷︷ ︸
→ A

−t
2 n times and A

t
2 n− 1 times by turns

]p2n
A

r
2

} 1−t+r
ϕ[2n;r,t]

.

Corollary 10.4 ([32]). If A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p1, p2, p3, p4 ≥ 1,

GA,B [r, p4]= A
−r
2

{
A

r
2

[
A

−t
2

{
A

t
2 (A

−t
2 Bp1A

−t
2 )p2A

t
2

}p3
A

−t
2

]p4

A
r
2

} 1−t+r
[{(p1−t)p2+t}p3−t]p4+r

A
−r
2

is a decreasing function of p4 ≥ 1 and r ≥ t, and the following inequality holds
GA,A[r, p4] ≥ GA,B[r, p4], that is,

A1−t+r≥

{
A

r
2

[
A
−t
2

{
A

t
2 (A

−t
2 Bp1A

−t
2 )p2A

t
2

}p3
A
−t
2

]p4
A

r
2

} 1−t+r
[{(p1−t)p2+t}p3−t]p4+r

holds for t ∈ [0, 1], r ≥ t and p1, p2, p3, p4 ≥ 1.

Theorem 10.5 ([33]). If A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p1, p2, · · · , p2n ≥
1, then

A ≥ B

≥ {A
t
2 (A

−t
2 Bp1A

−t
2 )p2A

t
2 }

1
(p1−t)p2+t

≥
{
A

t
2

[
A
−t
2

{
A

t
2 (A

−t
2 Bp1A

−t
2 )p2A

t
2

}p3
A
−t
2

]p4
A

t
2

} 1
{[(p1−t)p2+t]p3−t}p4+t

· · ·

≥

[
A

t
2

{

A
−t
2

[

A
t
2 · · ·

[

A
−t
2
{
A

t
2 (A

−t
2

︸ ︷︷ ︸

← A
−t
2 and A

t
2 alternately n times

Bp1 A
−t
2 )p2A

t
2
}p3A

−t
2

]p4
· · ·A

t
2

]p2n−1
A

−t
2

}p2n
A

t
2

︸ ︷︷ ︸

→ A
−t
2 and A

t
2 alternately n times

] 1
q[2n]

(10.1)

where q[2n] is defined by

q[2n] =
{
.....[{[(p1 − t)p2 + t]p3 − t}p4 + t]p5 − · · · − t

}
p2n + t

︸ ︷︷ ︸
-t and t alternatively n times appear

.
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Although Corollary 10.6 is nothing but a simple corollary of Theorem 10.1, we
shall show an interesting relation among Corollary 10.6, Theorem G, Theorem F,
and log majorization (Theorem AH under below) by Ando–Hiai [8].

In fact, we recall in Remark 5.4 that Theorem G interpolates Theorem F and
an inequality equivalent to this log majorization.

Corollary 10.6 ([33]). If A ≥ B ≥ 0 with A > 0, t ∈ [0, 1], p1, p2, p3, p4 ≥ 1
and r ≥ t, then

A1−t+r≥

{
A

r
2

[
A
−t
2

{
A

t
2 (A

−t
2 Bp1A

−t
2 )p2A

t
2

}p3
A
−t
2

]p4
A

r
2

} 1−t+r
[{(p1−t)p2+t}p3−t]p4+r

p2 = p3 = 1 ↓
Theorem 10.7 (G). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and p ≥ 1,

A1−t+r ≥ {A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 }

1−t+r
(p−t)s+r

holds for r ≥ t and s ≥ 1.

t = 0 and s = 1 t = 1 and r = s
↙ ↘

Theorem 10.8 (F).

A ≥ B ≥ 0 =⇒ A1+r ≥ (A
r
2BpA

r
2 )

1+r
p+r

for p ≥ 1 and r ≥ 0.

If A ≥ B ≥ 0 with A > 0, then

Ar ≥ {A
r
2 (A

−1
2 BpA

−1
2 )rA

r
2 }

1
p

for r, p ≥ 1.

m
Theorem 10.9 (AH). For every A,B ≥ 0, 0 ≤ α ≤ 1 and r ≥ 1

(A#αB)r �
(log)

Ar#αB
r

Some of closely related papers in this chapter: [15, 16, 18, 19, 20, 21, 24, 25, 30,
32, 34, 39, 40, 41, 44, 48, 49, 52, 54, 55, 56, 57, 58, 59, 67, 72, 74, 75, 76, 77, 78, 79].

11. (A-6) Operator functions on chaotic order involving order
preserving operator inequalities

The purpose of this paper is to emphasize that the chaotic order A � B is
sometimes more convenient and more useful than the usual order A ≥ B ≥ 0.
Definitions of CA,B

[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]
, (denoted

by CA,B[n] or C[n] briefly) and q
[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]
(de-

noted by q[n] briefly):

Let A,B ≥ 0 , p1, p2, · · · , pn ≥ 0 and r1, r2, · · · , rn ≥ 0 for a natural number n.

Let CA,B

[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]
be defined by
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CA,B

[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]

= A
rn
2

{
A

rn−1
2 [· · ·A

r3
2 {A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 }p3A

r3
2 · · · ]pn−1A

rn−1
2

}pn
A

rn
2

(11.1)

For examples,

CA,B[1] = A
r1
2 Bp1A

r1
2 and CA,B[2] = A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2

Particularly put A = B in CA,B[n] in (11.1). Then

CA,A

[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]

= A
rn
2

{
A

rn−1
2 [· · ·A

r3
2 {A

r2
2 (A

r1
2 Ap1A

r1
2 )p2A

r2
2 }p3A

r3
2 · · · ]pn−1A

rn−1
2

}pn
A

rn
2

= A[···{(p1+r1)p2+r2}p3+···rn−1]pn+rn. (11.2)

Next let q
[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]
be defined by

q
[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]
= the exponential power of A in (11.2)

= [· · · {(p1 + r1)p2 + r2}p3 + · · · rn−1]pn + rn. (11.3)

q
[
n; p1, p2, · · · , pn−1, pn|r1, r2, · · · , rn−1, rn

]
denoted by q[p1, p2, · · · , pn−1, pn]

or denoted by q[r1, r2, · · · , rn−1, rn] or by q[n] briefly.
For examples, q[1] = p1 + r1 and q[2] = (p1 + r1)p2 + r2
For the sake of convenience, we define

CA,B[0] = B and q[0] = 1. (11.4)

We have the following basic and fundamental relations.

CA,B[n] = A
rn
2 CA,B[n− 1]pnA

rn
2 (11.5)

q[n] = q[n− 1]pn + rn (11.6)

In this chapter §11, we shall state further extensions of the results in §2 and §3.
By using Theorem 3.1 in §3 and Mathematical Induction we can easily show

the following result.

Theorem 11.1 ([36]). Let A � B and r1, r2, · · · , rn ≥ 0 for a natural number
n. Then the following inequality holds,

Ar1+r2···+rn = CA,A[n]
r1+r2···+rn

q[n] ≥ CA,B[n]
r1+r2···+rn

q[n] (11.7)

for p1, p2, · · · , pn satisfying

pj ≥
r1 + r2 + · · ·+ rj−1

q[j − 1]
for j = 1, 2, · · · , n (r0 = 0 and q[0] = 1), (11.8)

that is,

p1 ≥ 0, p2 ≥
r1

p1 + r1
, p3 ≥

r1 + r2

(p1 + r1)p2 + r2
, · · · , pn ≥

r1 + r2 + · · ·+ rn−1

q[n− 1]
.

Corollary 11.2 ([36]). Let A � B and r1, r2, r3 ≥ 0. Then
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(i) Ar1+r2+r3 ≥ {A
r3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

r1+r2+r3
[(p1+r1)p2+r2]p3+r3 .

holds for p2 ≥
r1

p1+r1
and p3 ≥

r1+r2
(p1+r1)p2+r2

.

(ii) Ar1+r2 ≥ {A
r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 }

r1+r2
(p1+r1)p2+r2

holds for p1 ≥ 0 and p2 ≥
r1

p1+r1
.

Similarly we have the following two results on usual order which are contained in
Corollary 11.7 and also this Corollary 11.7 is a simple corollary of the forthcoming
Theorem 11.6 on chaotic order.

Theorem 11.3 ([36]). Let A ≥ B ≥ 0 and r1, r2, · · · , rn ≥ 0 for a natural number
n. Then the following inequality holds,

A1+r1+r2···+rn = CA,A[n]
1+r1+r2···+rn

q[n] ≥ CA,B[n]
1+r1+r2···+rn

q[n] (11.9)

for p1, p2, · · · , pn satisfying

p1 ≥ 1, p2 ≥
1 + r1

p1 + r1
, p3 ≥

1 + r1 + r2

(p1 + r1)p2 + r2
, · · · , pn ≥

1 + r1 + r2 + · · ·+ rn−1

q[n− 1]
.

(11.10)

Corollary 11.4 ([46]). Let A ≥ B ≥ 0 and r1, r2, r3 ≥ 0. Then

(i) A1+r1+r2+r3 ≥ {A
r3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

1+r1+r2+r3
[(p1+r1)p2+r2]p3+r3

holds for p1 ≥ 1, p2 ≥
1+r1
p1+r1

and p3 ≥
1+r1+r2

(p1+r1)p2+r2
.

(ii) A1+r1+r2 ≥ {A
r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 }

1+r1+r2
(p1+r1)p2+r2

holds for p1 ≥ 1 and p2 ≥
1+r1
p1+r1

.

Theorem 11.5 ([36]). Let A � B and r1, r2, · · · , rn ≥ 0 for a natural number
n. For any fixed δ ≥ 0, let p1, p2, · · · , pn be satisfied by

p1 ≥ δ, p2 ≥
δ + r1

p1 + r1
, · · · , pk ≥

δ + r1 + r2 + · · ·+ rk−1

q[k − 1]
, · · · , pn ≥

δ + r1 + r2 + · · ·+ rn−1

q[n− 1]
.

(11.11)

The operator function Fk(pk, rk) for any natural number k such that 1 ≤ k ≤ n
is defined by

Fk(pk, rk) = A
−rk
2 CA,B[k]

δ+r1+r2+···+rk
q[k] A

−rk
2 . (11.12)

Then the following inequality holds:

A
rk−1

2 Fk−1(pk−1, rk−1)A
rk−1

2 ≥ Fk(pk, rk) (F0(p0, r0) = Bδ) (11.13)

for every natural number k such that 1 ≤ k ≤ n.

Proof. Since CA,B[0] = B, q[0] = 1 in (11.4) and p0 = r0 = 0 in (11.8), we may
define F0(p0, r0) = Bδ in (11.13). Let A � B. Then for any fixed δ ≥ 0,

Bδ ≥ A
−r1
2 (A

r1
2 Bp1A

r1
2 )

δ+r1
p1+r1A

−r1
2 for p1 ≥ δ and r1 ≥ 0 (11.14)

since FA,B(δ, r1) ≥ FA,B(p1, r1) holds by (iii) of Theorem 3.2 in §3. And (11.14)
can be expressed as

Bδ = A
r0
2 F0(p0, r0)A

r0
2 ≥ A

−r1
2 CA,B[1]

δ+r1
q[1] A

−r1
2 = F1(p1, r1) by (11.12). (11.15)
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Since the condition (11.11) with δ ≥ 0 suffices (11.8) in Theorem 11.1, in fact,
(11.8) is itself (11.11) without δ ≥ 0, we can apply Theorem 11.1 and we have
the following (11.16) for natural number k such that 1 ≤ k ≤ n

Ar1+r2+···+rk ≥ CA,B[k]
r1+r2+···+rk

q[k] . (11.16)

Since X ≥ Y > 0 implies X � Y and then X t � Y t holds for any t ≥ 0, (11.16)
ensures

Aδ+r1+r2+···+rk � CA,B[k]
δ+r1+r2+···+rk

q[k] .

Put A1 = Aδ+r1+r2+···+rk and B1 = CA,B [k]
δ+r1+r2+···+rk

q[k] and applying (11.14) for
δ = 1 and A1 � B1, we have

B1 ≥ A
−r
2

1 (A
r
2
1B

p
1A

r
2
1 )

1+r
p+rA

−r
2

1 holds for p ≥ 1 and r ≥ 0. (11.17)

Put rk+1 = r(δ + r1 + r2 + · · ·+ rk) in (11.17). Then (11.17) can be rewritten by

B1 ≥ A
−rk+1

2 (A
rk+1

2 CA,B[k]
δ+r1+···+rk

q[k]
p
A

rk+1
2 )

1+r
p+rA

−rk+1
2 . (11.18)

Put p = q[k]
δ+r1+···+rk

pk+1 ≥ 1, that is, pk+1 ≥
δ+r1+···+rk

q[k]
in (11.18), then we have

A
rk
2 Fk(pk, rk)A

rk
2 = CA,B[k]

δ+r1+r2+···+rk
q[k] = B1 by (11.12)

≥ A
−rk+1

2 (A
rk+1

2 CA,B[k]
pk+1A

rk+1
2 )

δ+r1+r2+···+rk+rk+1
q[k]pk+1+rk+1 A

−rk+1
2

= A
−rk+1

2 (CA,B[k + 1])
δ+r1+r2+···+rk+rk+1

q[k+1] A
−rsk+1

2

by (11.5) and (11.6)

= Fk+1(pk+1, rk+1) by (11.12) for k + 1 (11.19)

and we have (11.13) for k such that 1 ≤ k ≤ n by (11.19) and (11.15) since
(11.15) means (11.13) for k = 1. �

Theorem 11.5 easily implies Theorem 11.6 and Corollary 11.7.

Theorem 11.6 ([36]). Let A � B and r1, r2, · · · , rn ≥ 0 for a natural number
n. Then the following inequalities hold for any fixed δ ≥ 0:

Bδ ≥ A
−r1
2 (A

r1
2 Bp1A

r1
2 )

δ+r1
p1+r1A

−r1
2

≥ A
−(r1+r2)

2

{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2

} δ+r1+r2
(p1+r1)p2+r2A

−(r1+r2)
2

≥ A
−(r1+r2+r3)

2 {A
r3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

δ+r1+r2+r3
{(p1+r1)p2+r2}p3+r3A

−(r1+r2+r3)
2 .

· · ·

≥ A
−(r1+r2+···+rn)

2 CA,B[n]
δ+r1+r2+···+rn

q[n] A
−(r1+r2+···+rn)

2

for p1, p2, · · · , pn satisfying

p1 ≥ δ, p2 ≥
δ + r1

p1 + r1
, · · · , pk ≥

δ + r1 + r2 + · · ·+ rk−1

q[k − 1]
, · · · , pn ≥

δ + r1 + r2 + · · ·+ rn−1

q[n− 1]
.
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Corollary 11.7 ([36]). Let A ≥ B ≥ 0 and r1, r2, · · · , rn ≥ 0 for a natural
number n. Then

A ≥ B ≥ A
−r1
2 (A

r1
2 Bp1A

r1
2 )

1+r1
p1+r1 A

−r1
2

≥ A
−(r1+r2)

2

{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2

} 1+r1+r2
(p1+r1)p2+r2A

−(r1+r2)
2

≥ A
−(r1+r2+r3)

2 {A
r3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

1+r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

· · ·

≥ A
−(r1+r2+···+rn)

2 CA,B [n]
1+r1+r2+···+rn

q[n] A
−(r1+r2+···+rn)

2

holds for p1, p2, · · · , pn satisfying

p1 ≥ 1, p2 ≥
1 + r1

p1 + r1
, p3 ≥

1 + r1 + r2

(p1 + r1)p2 + r2
, · · · , pn ≥

1 + r1 + r2 + · · ·+ rn−1

q[n− 1]
.

By using Theorem F and Lemma A in §1, we have the following Theorem,
which is further extension of both Theorem 2.4 in §2 and Theorem 3.2 in §3

Theorem 11.8 ([36]). Let A � B and r1, r2, · · · , rn ≥ 0 for a natural number
n. For any fixed δ ≥ 0, let p1, p2, · · · , pn be satisfied by

p1 ≥ δ, p2 ≥
δ + r1

p1 + r1
, · · · , pk ≥

δ + r1 + r2 + · · ·+ rk−1

q[k − 1]
, · · · , pn ≥

δ + r1 + r2 + · · ·+ rn−1

q[n− 1]
.

Then

Fn(pn, rn) = A
−rn

2 CA,B [n]
δ+r1+r2+···+rn

q[n] A
−rn

2

is a decreasing function of both rn ≥ 0 and pn which satisfies

pn ≥
δ + r1 + r2 + · · ·+ rn−1

q[n− 1]
.

Corollary 11.9 ([36]). Let A � B and r1, r2, · · · , rn ≥ 0 and also p1, p2, · · · , pn ≥
1 for a natural number n. Then

Fn(pn, rn) = A
−rn
2 CA,B[n]

1+r1+r2+···+rn
q[n] A

−rn
2

is a decreasing function of both rn ≥ 0 and pn ≥ 1.

We remark that we can give an alternative proof of Theorem 11.5 via Theorem
11.8.

Theorem 11.6 can be considered as further extension of the following result.

Theorem 11.10 (FKN. [22]). If A � B for A,B > 0, then

At−r] 1+r−t
(p−t)s+r

(At\sB
p) ≤ At] 1−t

p−t
Bp ≤ B

holds for p ≥ 1, s ≥ 1, r ≥ 0 and t < 0.

Some of closely related papers in this chapter: [15, 15, 18, 20, 21, 22, 28, 30,
32, 33, 36, 49].
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