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Abstract. Some generalizations of Ostrowski inequality are given by using
biparametric Euler identities involving real Borel measures and harmonic se-
quences of functions.

1. Introduction

The following Ostrowski inequality, see [5], is well known:∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a)M, a ≤ x ≤ b,

where f : [a, b] → R is a differentiable function such that |f ′(x)| ≤ M, for
every x ∈ [a, b]. The constant 1

4
is the best possible. In other words, Ostrowski’s

inequality gives us an estimate for the deviation of the values of a smooth function
from its mean value. It has been generalized in recent years in a number of
ways. In this paper we shall present some new generalizations of Ostrowski-
type inequalities by using biparametric Euler identities which involve real Borel
measures and harmonic sequences of functions.
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For a, b ∈ R a < b, let C[a, b] be the Banach space of all continuous functions
f : [a, b] → R with the max norm, and M [a, b] the Banach space of all real Borel
measures on [a, b] with the total variation norm. In the rest of the paper we use
the notation

∫
[a,b]

F (s)dµ(s) to denote the Lebesgue integral of F over [a, b] with

respect to the measure µ, while for a given function ϕ : [a, b] → R of bounded
variation

∫
[a,b]

F (s)dϕ(s) denotes Lebesgue–Stieltjes integral of F over [a, b] with

respect to ϕ. Also, by
∫ b

a
F (s)ds we denote the usual Lebesgue integral of F over

[a, b] .
For µ ∈ M [a, b] define the function µ̌n : [a, b] → R, n ≥ 1, by

µ̌n(t) =
1

(n− 1)!

∫
[a,t]

(t− s)n−1dµ(s).

For n = 1,

µ̌1(t) =

∫
[a,t]

dµ(s) = µ([a, t]), a ≤ t ≤ b,

which means that µ̌1 is equal to the distribution function of µ.
Substituting µ̌n(s) = 1

(n−1)!

∫
[a,s]

(s − u)n−1dµ(u) in
∫ t

a
µ̌n(s)ds and using the

Fubini theorem we easily get the formula

µ̌n+1(t) =

∫ t

a

µ̌n(s)ds, a ≤ t ≤ b, n ≥ 1.

It means that for n ≥ 1, µ̌n+1 is differentiable at almost all points of [a, b] and
µ̌′n+1 = µ̌n almost everywhere on [a, b] with respect to Lebesgue measure.

Substituting µ̌1(s) =
∫

[a,s]
dµ(u) in

∫ t

a
(t − s)n−2µ̌1(s)ds and using the Fubini

theorem once again we easily get the following formula

µ̌n(t) =
1

(n− 2)!

∫ t

a

(t− s)n−2µ̌1(s)ds, a ≤ t ≤ b, n ≥ 2.

From this formula we get immediately that µ̌n(a) = 0, n ≥ 2.
Also, note that function g(s) = (t−s)n−1 is nonincreasing on [a, t] so that from

the first expression for µ̌n(t) we get the estimate

|µ̌n(t)| ≤ (t− a)n−1

(n− 1)!
‖µ‖ , a ≤ t ≤ b, n ≥ 1,

where ‖µ‖ denotes the total variation of µ.
A sequence of functions Pn : [a, b] → R, n ≥ 1, is called a µ-harmonic sequence

of functions on [a, b] if

P1(t) = c + µ̌1(t), a ≤ t ≤ b,

for some c ∈ R, and

Pn+1(t) = Pn+1(a) +

∫ t

a

Pn(s)ds, a ≤ t ≤ b, n ≥ 1.

Since Pn+1, n ≥ 1 is defined as an indefinite Lebesgue integral of Pn, it is well
known that Pn+1, n ≥ 1 is absolutely continuous function,

P
′

n+1 = Pn, a.e. on [a, b] with respect to Lebesgue measure,
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and for every f ∈ C[a, b] we have∫
[a,b]

f(t)dPn+1(t) =

∫ b

a

f(t)Pn(t)dt, n ≥ 1.

The sequence (µ̌n, n ≥ 1) is an example of a µ-harmonic sequence of functions
on [a, b].

Assume that (Pn, n ≥ 1) is a µ-harmonic sequence of functions on [a, b]. Define
P ∗

n , for n ≥ 1, to be a periodic function of period 1, related to Pn as

P ∗
n(t) =

Pn(a + (b− a)t)

(b− a)n , 0 ≤ t < 1,

and

P ∗
n(t + 1) = P ∗

n(t), t ∈ R .

Thus, for n ≥ 2, P ∗
n is continuous on R\Z and has a jump of

αn =
Pn(a)− Pn(b)

(b− a)n

at every k ∈ Z, whenever αn 6= 0. Note that for n ≥ 1,
(
P ∗

n+1

)′
= P ∗

n a.e. on R.

Let f : [a, b] → R be such that f (n−1) is a continuous function of bounded
variation on [a, b] for some n ≥ 1. In a recent paper [1] the following identity has
been proved:

µ([a, b])f(x) =

∫
[a,b]

fx(t)dµ(t) + Sn(x) + Rn(x), (1.1)

where

Sm(x) =
m∑

k=1

Pk (x)
[
f (k−1)(b)− f (k−1)(a)

]
+

m∑
k=2

[Pk (a)− Pk (b)] f (k−1)(x),

for 1 ≤ m ≤ n, with convention S1(x) = P1 (x) [f(b)− f(a)] , and

fx(t) =

{
f(a + x− t), a ≤ t ≤ x
f(b + x− t), x < t ≤ b

,

while

Rn(x) = −(b− a)n

∫
[a,b]

P ∗
n

(
x− t

b− a

)
df (n−1)(t)

for every x ∈ [a, b] .
Identity (1.1) is called the generalized Euler harmonic identity. It has been used

in [1] to prove some generalizations of Ostrowski’s inequality. The reader can find
further references to some recent results on generalizations and applications of
Euler identities in [2], [4] and [3].

The aim of this paper is to generalize formula (1.1) by replacing the sequence
(P ∗

n

(
x−t
b−a

)
, n ≥ 1) with a more general sequence of functions, and using them to

prove some further generalizations of Ostrowski’s inequality.
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2. Biparametric Euler harmonic identities

For µ ∈ M [a, b] let (Pn, n ≥ 1) be a µ-harmonic sequence of functions on [a, b].
For x, y ∈ [a, b], x ≤ y, define function Kn : [a, b]3 → R, for n ≥ 1, by

Kn(x, y, t) =

{
Pn(b− a + x− y + t), a ≤ t ≤ a + y − x

Pn(x− y + t), a + y − x < t ≤ b
, (2.1)

for y − x < b− a, and

Kn(a, b, t) =

{
Pn(t), a ≤ t < b
Pn(a), t = b

. (2.2)

Thus, for n ≥ 2, Kn(x, y, ·) is continuous on [a, b] \ {a + y− x} and has a jump
of Pn(a)−Pn(b) at a+y−x. Note that Kn(x, y, ·), n ≥ 1 is a function of bounded
variation and for n ≥ 1

K
′

n+1(x, y, ·) = Kn(x, y, ·) a.e. on [a, b] with respect to Lebesgue measure.

Also note that Kn(x, y, a) = Kn(x, y, b) = Pn(b + x− y), n ≥ 1.

Lemma 2.1. For every f ∈ C[a, b] and n ≥ 2 we have∫
[a,b]

f(t)dKn(x, y, t) =

∫ b

a

f(t)Kn−1(x, y, t)dt + f(a + y − x) [Pn(a)− Pn(b)] .

Proof. Follows directly from properties of Lebesgue-Stieltjes integral of continu-
ous function f over [a, b] with respect to Kn, and given properties of the function
Kn. Namely, the function Kn(x, y, ·), n ≥ 2 is almost everywhere differentiable
on [a, b] and its derivative is equal to Kn−1(x, y, ·) a.e. on [a, b] with respect to
Lebesgue measure. Further, it has a jump at a+y−x of magnitude Pn(a)−Pn(b),
which proves our assertion. �

Lemma 2.2. For every µ ∈ M [a, b] and f ∈ C[a, b] we have∫
[a,b]

f(t)dK1(x, y, t) =

∫
[a,b]

fx,y(t)dµ(t)− f(a + y − x)µ([a, b]), (2.3)

where

fx,y(t) =

{
f(y − x + t), a ≤ t ≤ b + x− y

f(a− b + y − x + t), b + x− y < t ≤ b
. (2.4)

Proof. Define I, J : C[a, b]×M [a, b] → R by

I(f, µ) =

∫
[a,b]

f(t)dK1(x, y, t)

and

J(f, µ) =

∫
[a,b]

fx,y(t)dµ(t)− f(a + y − x)µ([a, b]).

Then I and J are continuous bilinear functionals with

|I(f, µ)| ≤ ‖f‖ ‖µ‖ , |J(f, µ)| ≤ 2 ‖f‖ ‖µ‖ .

Let us prove that I(f, µ) = J(f, µ) for every f ∈ C[a, b] and every µ ∈ M [a, b].
Since P1(t) = c + µ([a, t]), a ≤ t ≤ b, for some constant c, and obviously the

integral on the left hand side of (2.3) is independent of the choice of the constant
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c, we may assume that c = 0. Therefore, from (2.1) and (2.2) we easily see that
for n = 1

K1(x, y, t) =

{
µ([a, b− a + x− y + t]), a ≤ t ≤ a + y − x

µ([a, x− y + t]), a + y − x < t ≤ b
, (2.5)

for y − x < b− a, and

K1(a, b, t) =

{
µ([a, t]), a ≤ t < b
µ({a}), t = b

. (2.6)

(1) For z ∈ [a, b] let µ = δz be the Dirac measure at z, i.e., the measure defined
by ∫

[a,b]

f(t)dδz(t) = f(z).

If z ∈ [a, b] and a ≤ z ≤ b + x− y, from (2.5) and (2.6) we get

K1(x, y, t) =

{
0, a + y − x < t < z + y − x
1, (a ≤ t ≤ a + y − x) or (z + y − x ≤ t ≤ b)

,

for y − x < b− a, and

K1(a, b, t) = 1, a ≤ t ≤ b.

Now, by a simple calculation we have

I(f, δz) = f(y − x + z)− f(a + y − x)

=

∫
[a,b]

f(y − x + t)dδz(t)− f(a + y − x)δz([a, b])

=

∫
[a,b]

fx,y(t)dδz(t)− f(a + y − x)δz([a, b]) = J(f, δz),

for y − x < b− a, and

I(f, δz) = I(f, δa) = 0 = f(b)− f(a + b− a)

=

∫
[a,b]

f(b)dδa(t)− f(a + b− a)δz([a, b])

=

∫
[a,b]

fa,b(t)dδa(t)− f(a + y − x)δa([a, b]) = J(f, δa) = J(f, δz),

for y − x = b − a. Similarly, if z ∈ [a, b] and b + x − y < z ≤ b, from (2.5) and
(2.6) we find

K1(x, y, t) =

{
0, (a ≤ t < a + y − x− b + z) or (a + y − x < t ≤ b)
1, a + y − x− b + z ≤ t ≤ a + y − x

,

for y − x < b− a, and

K1(a, b, t) =

{
0, (a ≤ t < z) or (t = b)
1, z ≤ t < b

.
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Now, by analogous calculation we have

I(f, δz) = f(a− b + y − x + z)− f(a + y − x)

=

∫
[a,b]

f(a− b + y − x + t)dδz(t)− f(a + y − x)δz([a, b])

=

∫
[a,b]

fx,y(t)dδz(t)− f(a + y − x)δz([a, b]) = J(f, δz),

for y − x < b− a, and

I(f, δz) = f(z)− f(b)

=

∫
[a,b]

f(t)dδz(t)− f(a + b− a)δz([a, b])

=

∫
[a,b]

fa,b(t)dδz(t)− f(a + y − x)δz([a, b]) = J(f, δz),

for y − x = b − a. Therefore, for every f ∈ C [a, b] and every z ∈ [a, b] we have
I(f, δz) = J(f, δz).

(2) Every discrete measure µ ∈ M [a, b], with finite support, is a linear com-
bination of Dirac measures, i.e., it has the form µ =

∑n
k=1 ckδxk

, for some real
numbers ck, and xk ∈ [a, b]. By linearity of I and J, we get

I(f, µ) = I(f,
n∑

k=1

ckδxk
) =

n∑
k=1

ckI(f, δxk
)

=
n∑

k=1

ckJ(f, δxk
) = J(f,

n∑
k=1

ckδxk
) = J(f, µ).

for every f ∈ C[a, b] and every discrete measure µ ∈ M [a, b] with finite support.
(3) Let T be the minimal topology on M [a, b] such that linear functionals µ 7→∫
Fdµ are continuous, for every bounded Borel function F : [a, b] → R. By the

definition we see that T contains the weak∗ topology on M [a, b] and is contained
in the weak topology on M [a, b]. Further, the curve x 7→ δx is bounded and T -
measurable since x 7→

∫
Fdδx = F (x) is measurable by assumption. Therefore,

the integral
∫

δxdµ(x) exists in the T topology, for every µ ∈ M [a, b]. It is easy
to see that this integral is equal to µ, i.e.

∫
δxdµ(x) = µ, for every measure

µ ∈ M [a, b], which means that µ is a T -limit of a sequence of discrete measures
with finite support. Thus, we conclude that the subspace of all discrete measures
with finite support is T -dense in M [a, b], and therefore the functionals I(f, ·) and
J(f, ·) are equal, for every f ∈ C[a, b], since they are equal on a dense subspace
and they are T -continuous. This completes the proof. �

Theorem 2.3. For µ ∈ M [a, b] let (Pn, n ≥ 1) be a µ-harmonic sequence of
functions on [a, b] and f : [a, b] → R such that f (n−1) is a continuous function of
bounded variation for some n ≥ 1. Then we have∫

[a,b]

fx,y(t)dµ(t)− µ({a})f(a + y − x) + Sn(x, y) = Rn(x, y),
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for every x, y ∈ [a, b] , x ≤ y, where fx,y(t) is defined by (2.4),

Sn(x, y) =
n∑

k=1

(−1)kPk(b + x− y)
[
f (k−1)(b)− f (k−1)(a)

]
+

n∑
k=1

(−1)kf (k−1)(a + y − x) [Pk(b)− Pk(a)]

and

Rn(x, y) = (−1)n

∫
[a,b]

Kn (x, y, t) df (n−1)(t).

Proof. For 1 ≤ k ≤ n consider the integral

Rk(x, y) = (−1)k

∫
[a,b]

Kk (x, y, t) df (k−1)(t).

Integrating by parts we get

Rk(x, y) = (−1)kKk (x, y, t) f (k−1)(t)
∣∣b
a

(2.7)

−(−1)k

∫
[a,b]

f (k−1)(t)dKk (x, y, t) .

For every k ≥ 2, by Lemma 2.1, we get

Rk(x, y) = (−1)kPk(b + x− y)
[
f (k−1)(b)− f (k−1)(a)

]
−(−1)kf (k−1)(a + y − x) [Pk(a)− Pk(b)]

−(−1)k

∫ b

a

f (k−1)(t)Kk−1 (x, y, t) dt

= (−1)kPk(b + x− y)
[
f (k−1)(b)− f (k−1)(a)

]
(2.8)

+(−1)kf (k−1)(a + y − x) [Pk(b)− Pk(a)]

+Rk−1(x, y),

since

Kk(x, y, a) = Kk(x, y, b) = Pk(b + x− y).

By Lemma 2.2, for k = 1, (2.7) becomes

R1(x, y) = −P1(b + x− y) [f(b)− f(a)] +

∫
[a,b]

f(t)dK1 (x, y, t)

= −P1(b + x− y) [f(b)− f(a)]− f(a + y − x)µ([a, b]) (2.9)

+

∫
[a,b]

fx,y(t)dµ(t)
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where fx,y(t) is defined by (2.4). From (2.8) and (2.9) it follows, by iteration

Rn(x, y) =
n∑

k=1

(−1)kPk(b + x− y)
[
f (k−1)(b)− f (k−1)(a)

]
+

n∑
k=1

(−1)kf (k−1)(a + y − x) [Pk(b)− Pk(a)]

−f(a + y − x)µ({a}) +

∫
[a,b]

fx,y(t)dµ(t)

since

f(a + y − x)µ([a, b]) = f(a + y − x) [P1(b)− P1(a) + µ({a})] ,

which proves our assertion. �

Corollary 2.4. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation for some n ≥ 1. Then we have∫

[a,b]

fx,y(t)dµ(t) + Šn(x, y) = Řn(x, y).

for every x, y ∈ [a, b] , x ≤ y, where

Šn(x, y) =
n∑

k=1

(−1)kµ̌k(b + x− y)
[
f (k−1)(b)− f (k−1)(a)

]
+

n∑
k=1

(−1)kf (k−1)(a + y − x)µ̌k(b),

Řn(x, y) = (−1)n

∫
[a,b]

Ǩn (x, y, t) df (n−1)(t)

and

Ǩn(x, y, t) =

{
µ̌n(b− a + x− y + t), a ≤ t ≤ a + y − x

µ̌n(x− y + t), a + y − x < t ≤ b

for y − x < b− a, while

Ǩn(a, b, t) =

{
µ̌n(t), a ≤ t < b
µ̌n(a), t = b

.

Proof. Apply the theorem above to the special case Pn = µ̌n, n ≥ 1, and note
that µ̌k(a) = 0 for k ≥ 2. �

Corollary 2.5. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation for some n ≥ 1. Then we have∫ b

a

f(t)dt + S̄n(x, y) = R̄n(x, y).
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for every x, y ∈ [a, b] , x ≤ y, where

S̄n(x, y) =
n∑

k=1

(−1)k

k!
(b− a + x− y)k

[
f (k−1)(b)− f (k−1)(a)

]
+

n∑
k=1

(−1)k

k!
(b− a)kf (k−1)(a + y − x),

R̄n(x, y) = (−1)n

∫
[a,b]

K̄n (x, y, t) df (n−1)(t)

and

K̄n(x, y, t) =

{
1
n!

(b− 2a + x− y + t)n, a ≤ t ≤ a + y − x
1
n!

(x− y + t− a)n, a + y − x < t ≤ b

for y − x < b− a, while

K̄n(a, b, t) =

{
1
n!

(t− a)n, a < t < b
0, (t = a) or (t = b)

.

Proof. Apply Corollary 2.4 in the special case when µ is the Lebesgue measure
on [a, b]. In this case

µ̌k(t) =
(t− a)k

k!
, k ≥ 1

and ∫
[a,b]

fx,y(t)dµ(t) =

∫ b

a

fx,y(t)dt =

∫ b

a

f(t)dt.

�

3. Generalizations of Ostrowski’s inequality

In this section we use the identity obtained in Theorem 2.3 to prove a number of
Ostrowski-type inequalities which hold for a class of functions f whose derivatives
f (n−1) are either L-Lipschitzian on [a, b] or continuous and of bounded variation
on [a, b]. Analogous results are obtained for a class of functions f possessing
derivatives f (n) in Lp[a, b], 1 ≤ p ≤ ∞. Throughout this section we use the same
notations as above.

Lemma 3.1. For every µ-harmonic sequence (Pn, n ≥ 1) and f ∈ C[a, b] we
have ∫ b

a

f(Kn (x, y, t))dt =

∫ b

a

f(Pn (t))dt.

Proof. Follows from (2.1) and (2.2) using simple calculations,∫ b

a

f(Kn (x, y, t))dt

=

∫ a+y−x

a

f(Pn (b− a + x− y + t))dt +

∫ b

a+y−x

f(Pn (x− y + t))dt

=

∫ b

b+x−y

f(Pn (t))dt +

∫ b+x−y

a

f(Pn (t))dt =

∫ b

a

f(Pn (t))dt.
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�

Theorem 3.2. Let f : [a, b] → R be such that f (n−1) is L-Lipschitzian on [a, b]
for some n ≥ 1. Then∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ({a})f(a + y − x) + Sn(x, y)

∣∣∣∣ ≤ L

∫ b

a

|Pn(t)| dt,

for every x, y ∈ [a, b], x ≤ y.

Proof. By Lemma 3.1 we have

|Rn(x, y)| =

∣∣∣∣∫
[a,b]

Kn (x, y, t) df (n−1)(t)

∣∣∣∣
≤ L

∫ b

a

|Kn (x, y, t)| dt

= L

∫ b

a

|Pn(t)| dt.

Therefore, our assertion follows from Theorem 2.3. �

Corollary 3.3. If f is L-Lipschitzian on [a, b], then for every x, y ∈ [a, b], x ≤ y,
and c ∈ R we have ∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ([a, b])f(a + y − x)

−[c + µ̌1(b + x− y)] [f(b)− f(a)]|

≤ L

∫ b

a

|c + µ̌1(t)|dt.

Proof. Put n = 1 in the theorem above. �

Corollary 3.4. If f is L-Lipschitzian on [a, b] and µ ≥ 0, then for every x, y, z ∈
[a, b], x ≤ y, we have ∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ([a, b])f(a + y − x)

−[µ̌1(b + x− y)− µ̌1(z)] [f(b)− f(a)]|
≤ L [(2z − a− b)µ̌1(z)− 2µ̌2(z) + µ̌2(b)] .

Proof. Put c = −µ̌1(z) in Corollary 3.3 and note that in this case∫ b

a

|µ̌1(t)− µ̌1 (z)| dt = (2z − a− b)µ̌1(z)− 2µ̌2(z) + µ̌2(b).

�

Corollary 3.5. Let f : [a, b] → R be such that f (n−1) is L-Lipschitzian on [a, b]
for some n ≥ 1. Then for µ ≥ 0 we have∣∣∣∣∫

[a,b]

fx,y(t)dµ(t) + Šn(x, y)

∣∣∣∣ ≤ Lµ̌n+1(b) ≤
(b− a)n

n!
L ‖µ‖ ,

for every x, y ∈ [a, b], x ≤ y.
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Proof. Apply the theorem above to the µ-harmonic sequence (µ̌n, n ≥ 1). Then∫ b

a

|µ̌n(t)| dt =

∫ b

a

µ̌n(t)dt = µ̌n+1(b) ≤
(b− a)n

n!
‖µ‖ .

�

Corollary 3.6. Let f : [a, b] → R be such that f (n−1) is L-Lipschitzian on [a, b]
for some n ≥ 1. Then we have∣∣∣∣∫ b

a

f(t)dt + S̄n(x, y)

∣∣∣∣ ≤ L
(b− a)n+1

(n + 1)!
,

for every x, y ∈ [a, b], x ≤ y.

Proof. Apply the corollary above to the Lebesgue measure on [a, b]. �

Corollary 3.7. Let f : [a, b] → R be such that f (n−1) is L-Lipschitzian on [a, b]
for some n ≥ 1. Then

|f(y − x + z) + Tn(x, y, z)| ≤ L
(b− z)n

n!
,

for every x, y, z ∈ [a, b], x ≤ y and z ≤ b + x− y, where

Tn(x, y, z) =
n∑

k=1

(−1)k (b + x− y − z)k−1

(k − 1)!

[
f (k−1)(b)− f (k−1)(a)

]
+

n∑
k=1

(−1)k (b− z)k−1

(k − 1)!
f (k−1)(a + y − x).

Proof. Apply Corollary 3.5 to µ = δz, z ≤ b + x− y. �

Corollary 3.8. Let f : [a, b] → R be such that f (n−1) is L-Lipschitzian on [a, b]
for some n ≥ 1. Then∣∣f(a− b + y − x + z) + T 2

n(x, y, z)
∣∣ ≤ L

(b− z)n

n!
,

for every x, y, z ∈ [a, b], x ≤ y and b + x− y < z ≤ b, where

T 2
n(x, y, z) =

n∑
k=1

(−1)k (b− z)k−1

(k − 1)!
f (k−1)(a + y − x).

Proof. Apply Corollary 3.5 to µ = δz, b + x− y < z ≤ b. �

Theorem 3.9. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b] for some n ≥ 1. Then∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ({a})f(a + y − x) + Sn(x, y)

∣∣∣∣ ≤ sup
t∈[a,b]

|Pn(t)|V b
a (f (n−1)),

for every x, y ∈ [a, b], x ≤ y.
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Proof. We have

|Rn(x, y)| =

∣∣∣∣∫
[a,b]

Kn (x, y, t) df (n−1)(t)

∣∣∣∣
≤ sup

t∈[a,b]

|Kn (x, y, t)|V b
a (f (n−1))

= sup
t∈[a,b]

|Pn(t)|V b
a (f (n−1)).

Therefore, our assertion follows from Theorem 2.3. �

Corollary 3.10. If f is a continuous function of bounded variation on [a, b], then
for every x, y ∈ [a, b], x ≤ y, and c ∈ R we have∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ([a, b])f(a + y − x)

−[c + µ̌1(b + x− y)] [f(b)− f(a)]|
≤ sup

t∈[a,b]

|c + µ̌1(t)|V b
a (f),

for every x, y ∈ [a, b], x ≤ y.

Proof. Put n = 1 in the theorem above. �

Corollary 3.11. If f is a continuous function of bounded variation on [a, b] and
µ ≥ 0, then for every x, y, z ∈ [a, b], x ≤ y, we have∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ([a, b])f(a + y − x)

−[µ̌1(b + x− y)− µ̌1(z)] [f(b)− f(a)]|

≤ 1

2
[µ̌1(b)− µ̌1(a) + |µ̌1(a) + µ̌1(b)− 2µ̌1(z)|] V b

a (f).

Proof. Put c = −µ̌1(z) in Corollary 3.10. Then

sup
t∈[a,b]

|c + µ̌1(t)| = sup
t∈[a,b]

|µ̌1(t)− µ̌1(z)|

=
1

2
[µ̌1(b)− µ̌1(a) + |µ̌1(a) + µ̌1(b)− 2µ̌1(z)|] .

�

Corollary 3.12. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n ≥ 1. Then for µ ≥ 0 we have∣∣∣∣∫

[a,b]

fx,y(t)dµ(t) + Šn(x, y)

∣∣∣∣ ≤ µ̌n(b)V b
a (f (n−1))

≤ (b− a)n−1

(n− 1)!
V b

a (f (n−1)) ‖µ‖ ,

for every x, y ∈ [a, b], x ≤ y.
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Proof. Apply the theorem above to the µ-harmonic sequence (µ̌n, n ≥ 1). Then

sup
t∈[a,b]

µ̌n(t) = µ̌n(b) ≤ (b− a)n−1

(n− 1)!
‖µ‖ .

�

Corollary 3.13. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n ≥ 1. Then∣∣∣∣∫ b

a

f(t)dt + S̄n(x, y)

∣∣∣∣ ≤ (b− a)n

n!
V b

a (f (n−1)),

for every x, y ∈ [a, b], x ≤ y.

Proof. Apply the corollary above to the Lebesgue measure on [a, b]. �

Corollary 3.14. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n ≥ 1. Then

|f(y − x + z) + Tn(x, y, z)| ≤ (b− z)n−1

(n− 1)!
V b

a (f (n−1)),

for every x, y, z ∈ [a, b], x ≤ y and a ≤ z ≤ b + x − y, where Tn(x, y, z) is from
Corollary 3.7.

Proof. Apply Corollary 3.12 to µ = δz, z ≤ b + x− y. �

Corollary 3.15. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n ≥ 1. Then∣∣f(a− b + y − x + z) + T 2

n(x, y, z)
∣∣ ≤ (b− z)n−1

(n− 1)!
V b

a (f (n−1)),

for every x, y, z ∈ [a, b], x ≤ y and b + x − y < z ≤ b, where T 2
n(x, y, z) is from

Corollary 3.8.

Proof. Apply Corollary 3.12 to µ = δz, b + x− y < z ≤ b. �

Theorem 3.16. Let f : [a, b] → R be such that f (n) is integrable for some n ≥ 1.
Then∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ({a})f(a + y − x) + Sn(x, y)

∣∣∣∣ ≤ sup
t∈[a,b]

|Pn(t)| · ‖f (n)‖1,

for every x, y ∈ [a, b], x ≤ y.

Proof. Note that in this case

V b
a (f (n−1)) =

∫ b

a

∣∣f (n)(t)
∣∣ dt = ‖f (n)‖1,

and apply Theorem 3.9. �
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Theorem 3.17. Let f : [a, b] → R be such that f (n) ∈ L∞[a, b] for some n ≥ 1.
Then∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ({a})f(a + y − x) + Sn(x, y)

∣∣∣∣ ≤ ∫ b

a

|Pn(t)| dt · ‖f (n)‖∞,

for every x, y ∈ [a, b], x ≤ y.

Proof. In this case f (n−1) is L-Lipschitzian with L = ‖f (n)‖∞. �

Theorem 3.18. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n ≥ 1
and 1 < p < ∞. Then∣∣∣∣∫

[a,b]

fx,y(t)dµ(t)− µ({a})f(a + y − x) + Sn(x, y)

∣∣∣∣ ≤ ‖Pn‖q‖f (n)‖p,

for every x, y ∈ [a, b], x ≤ y, where 1/p + 1/q = 1.

Proof. By applying the Hölder inequality we have

|Rn(x, y)| ≤
∫ b

a

|Kn(x, y, t)|
∣∣f (n)(t)

∣∣ dt

≤
(∫ b

a

|Kn(x, y, t)|q dt

)1/q

‖f (n)‖p

=

(∫ b

a

|Pn(t)|q dt

)1/q

‖f (n)‖p,

which proves our assertion. �

Corollary 3.19. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n ≥ 1
and 1 < p < ∞. Then∣∣∣∣∫

[a,b]

fx,y(t)dµ(t) + Šn(x, y)

∣∣∣∣ ≤ ‖µ‖ ‖f (n)‖p

(n− 1)!

(b− a)n−1+1/q

[(n− 1)q + 1]1/q
,

for every x, y ∈ [a, b], x ≤ y, where 1/p + 1/q = 1.

Proof. Apply the theorem above to the µ-harmonic sequence (µ̌n, n ≥ 1) and
note that ∫ b

a

|µ̌n(t)|q dt ≤
[

‖µ‖
(n− 1)!

]q ∫ b

a

(t− a)(n−1)q dt

=

[
‖µ‖

(n− 1)!

]q
(b− a)(n−1)q+1

(n− 1)q + 1
.

�

Corollary 3.20. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n ≥ 1
and 1 < p < ∞. Then∣∣∣∣∫ b

a

f(t)dt + S̄n(x, y)

∣∣∣∣ ≤ ‖f (n)‖p

n!

(b− a)n+1/q

[nq + 1]1/q
,

for every x, y ∈ [a, b], x ≤ y, where 1/p + 1/q = 1.



184 A. ČIVLJAK, LJ. DEDIĆ

Proof. Apply the theorem above to the Lebesgue measure on [a, b]. �

Corollary 3.21. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n ≥ 1
and 1 < p < ∞. Then

|f(y − x + z) + Tn(x, y, z)| ≤ ‖f (n)‖p

(n− 1)!

(b− z)n−1+1/q

[(n− 1)q + 1]1/q
,

for every x, y, z ∈ [a, b], x ≤ y and a ≤ z ≤ b + x − y, where Tn(x, y, z) is from
Corollary 3.7.

Proof. Apply Corollary 3.19 to µ = δz, a ≤ z ≤ b + x− y. �

Corollary 3.22. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n ≥ 1
and 1 < p < ∞. Then∣∣f(a− b + y − x + z) + T 2

n(x, y, z)
∣∣ ≤ ‖f (n)‖p

(n− 1)!

(b− z)n−1+1/q

[(n− 1)q + 1]1/q
,

for every x, y, z ∈ [a, b], x ≤ y and b + x − y < z ≤ b, where T 2
n(x, y, z) is from

Corollary 3.8.

Proof. Apply Corollary 3.19 to µ = δz, b + x− y < z ≤ b. �
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