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Abstract. A Banach partial ∗-algebra is a locally convex partial ∗-algebra
whose total space is a Banach space. A Banach partial ∗-algebra is said to be
of type (B) if it possesses a generating family of multiplier spaces that are also
Banach spaces. We describe the basic properties of these objects and display
a number of examples, namely, Lp-like function spaces and spaces of operators
on Hilbert scales or lattices. Finally we analyze the important cases of Banach
quasi ∗-algebras and CQ∗-algebras.

1. Introduction

The notion of locally convex partial ∗-algebra stems from the desire to exploit
the simultaneous presence of the algebraic structure of a partial ∗-algebra and
its topological structure in such a way that the two match perfectly [1, 2]. The
resulting notion covers and unifies a variety of cases that have been discussed in
the literature. We may mention, for instance, topological quasi ∗-algebras and
CQ∗-algebras; partial ∗-algebras of functions, such as the scale of the Lp spaces
on [0,1] or the lattice generated by the family {Lp(R), 1 ≤ p ≤ ∞}; or partial
∗-algebras of operators, such as partial O∗-algebras or sets of operators on a
pip-space [4], in particular, operators on a lattice or a scale of Hilbert spaces.

In this chapter, we will review the important case of Banach partial ∗-algebras,
as it is suitable in a special issue dedicated to Stefan Banach’s birthday. In
particular, we will analyze a distinguished class among them, that we call Banach

Copyright 2019 by the Tusi Mathematical Research Group.
Date: Received: Feb. 13, 2018; Accepted: Mar. 14, 2018.
∗Corresponding author .
2010 Mathematics Subject Classification. Primary 08A55; Secondary 46J10, 47L60.
Key words and phrases. Partial ∗-algebra, Banach partial ∗-algebra, CQ∗-algebra, partial

inner product space, operators on Hilbert scale.
71



72 J.-P. ANTOINE, C. TRAPANI

partial ∗-algebras of type (B). In accordance with the spirit of the theory of
pip-spaces [4], the latter are characterized by the fact that each element of a
generating family of multiplier spaces is a Banach space with respect to a norm
topology that is compatible in a natural way with the underlying multiplication
structure (section 5). The simplest examples of this kind of locally convex partial
∗-algebras are the chain {Lp} and related function spaces and spaces of operators
on a Hilbert scale or lattice.

Preliminary results on Banach partial ∗-algebras were already contained in the
monograph [2]. Here, following mostly [5] and related papers of ours, we will go
deeper and also modify some of the definitions, in the light of the new results.
In particular, the structure called here Banach partial ∗-algebra of type (B) was
called simply Banach partial ∗-algebra in [2]. We prefer to reserve the name to
the larger class of locally convex partial ∗-algebras for which the total space is a
Banach space and give a new name to the more sophisticated structure.

The chapter is organized as follows. After a quick reminder of the basic defini-
tions on partial ∗-algebras (section 2), we introduce in section 3 the new defini-
tion of Banach partial ∗-algebraand discuss some consequences. In section 4, the
analysis of the various topologies that may arise on multiplier spaces leads us, in
section 5, to the new concept of Banach partial ∗-algebra of type (B). section 6
is devoted to examples. First, Banach partial ∗-algebras of functions, which have
been described at length in [1] and [2]. Then, following mostly [5], we discuss
Banach partial ∗-algebras of operators on a scale or a lattice of Hilbert spaces. In
both cases, we show that the corresponding Banach partial ∗-algebras are indeed
of type (B). Then, in section 7, we analyze in some detail the important case of
Banach quasi ∗-algebras [26, 25] and, in particular, the ∗-semisimple ones, which
are free of some pathologies. Finally, section 8 is devoted to a rather brief discus-
sion of the descendants of Banach quasi ∗-algebras, the so-called CQ∗-algebras,
which are in fact a generalization of the familiar C∗-algebras [10, 8]. The Appen-
dix collects the basic facts about pip-spaces, as used in the text [4].

2. Basic definitions on partial ∗-algebras

In order to keep the paper reasonably self-contained, we summarize in this
section the basic facts on partial ∗-algebras and on their topological structure.
Further details and proofs may be found in [1] or in the monograph [2].

A partial ∗-algebra is a complex vector space A, endowed with an involution
x 7→ x∗ (that is, a bijection such that x∗∗ = x) and a partial multiplication defined
by a set Γ ⊂ A× A (a binary relation) such that

(i) (x, y) ∈ Γ implies that (y∗, x∗) ∈ Γ;
(ii) (x, y1), (x, y2) ∈ Γ imply that (x, λy1 + µy2) ∈ Γ for allλ, µ ∈ C;
(iii) for any (x, y) ∈ Γ, there is defined a product x ·y ∈ A, which is distributive

over the addition and satisfies the relation (x · y)∗ = y∗ · x∗.
We shall assume the partial ∗-algebra A contains a unit e; that is, e∗ =

e, (e, x) ∈ Γ, for allx ∈ A, and e · x = x · e = x for all x ∈ A. If A has no
unit, it may always be embedded into a larger partial ∗-algebra with unit, in the
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standard fashion. Notice that the partial multiplication is not required to be
associative (and often it is not).

Given the defining set Γ, spaces of multipliers are defined in the following
obvious way:

(x, y) ∈ Γ ⇐⇒ x ∈ L(y) or x is a left multiplier of y

⇐⇒ y ∈ R(x) or y is a right multiplier of x.

For any subset N ⊂ A, we write

LN =
∩
x∈N

L(x), RN =
∩
x∈N

R(x),

and, of course, the involution exchanges the two

(LN)∗ = RN∗, (RN)∗ = LN∗.

Clearly all these multiplier spaces are vector subspaces of A, containing e.
The partial ∗-algebra is abelian if L(x) = R(x), for allx ∈ A, then x · y =

y · x for allx ∈ L(y). In that case, we write simply for the multiplier spaces
L(x) = R(x) =: M(x) and LN = RN =: MN for N ⊂ A.

The crucial fact is that the couple of maps (L,R) defines a Galois connection
on the complete lattice of all vector subspaces of A (ordered by inclusion), which
means that (i) both L and R reverse order; and (ii) both LR and RL are closures;
that is, for any subset N ⊂ A, one has

N ⊂ LRN and LRL = L

N ⊂ RLN and RLR = R.

Let us denote by FL and FR, the set of all LR-closed and RL-closed subspaces
of A, respectively,

FL = {N ⊂ A; N = LRN},
FR = {N ⊂ A; N = RLN},

both ordered by inclusion. Then standard results from universal algebra [12] yield
the full multiplier structure of A.

Theorem 2.1. Let A be a partial ∗-algebra and let FL and FR be the sets of all
LR-closed and RL-closed subspaces of A, respectively, both ordered by inclusion.
Then

(1) FL is a complete lattice with lattice operations

M ∧N = M ∩N, M ∨N = LR(M+N).

The largest and smallest elements are A and LA, respectively.
(2) FR is a complete lattice with lattice operations

M ∧N = M ∩N, M ∨N = RL(M+N).

The largest and smallest elements are A and RA, respectively.
(3) Both L : FR → FL and R : FL → FR are lattice anti-isomorphisms,

L(M ∧N) = LM ∨ LN, etc.
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(4) The involution N ↔ N∗ is a lattice isomorphism between FL and FR.

In addition to the two lattices FL and FR, it is useful to consider the subset
FΓ ⊂ FL ×FR consisting of matching pairs ; that is,

FΓ = {(N,M) ∈ FL ×FR : N = LM and M = RN}.

Indeed these pairs describe completely the partial multiplication of A, for we can
write

(x, y) ∈ Γ ⇐⇒ ∃ (N,M) ∈ FΓ such that x ∈ N and y ∈ M.

The complete lattices FR and FL are often difficult to describe explicitly, but
much less is needed in practice. Indeed, the following notion is sufficient and
much more manageable.

Definition 2.2. A subset IR of FR is called a generating family if
(i) RA ∈ IR and A ∈ IR.
(ii) x ∈ L(y) if and only if there exists M ∈ IR such that y ∈ M and x ∈ LM.

A generating family for FL or FΓ is defined in a similar way.

Thus a generating family determines completely the partial multiplication.
Clearly, if IR is a generating family for FR, IL = LIR = {LM : M ∈ IR}
is generating for FL, and similarly IR

∗ = {M∗ : M ∈ IR}, but these two have a
priori nothing in common.

The following properties are obvious:

(i) if IR is generating for FR, so is the sublattice J R of FR generated from
IR by finite lattice operations.

(ii) if IR is generating, the complete lattice generated by IR is FR itself.

3. Banach partial ∗-algebras

Particularizing the general definition of locally convex partial ∗-algebra given
in [1, 2], we obtain the following one (note this is different from Definition 6.2.7
there, here we rather follow [5]).

Definition 3.1. A partial ∗-algebra A is said to be a normed partial ∗-algebra if
it carries a norm ∥ · ∥ such that

(i) the involution x 7→ x∗ is isometric; ∥x∗∥ = ∥x∥ for all x ∈ A;
(ii) For every a ∈ LA, there exists a constant γa > 0 such that

∥ax∥ ≤ γa∥x∥ for allx ∈ A.

A[∥ · ∥] is called a Banach partial ∗-algebra if, in addition,

(iii) A[∥ · ∥] is a Banach space.

Using (i), (ii), and the fact that RA = LA∗, we also have

(ii’) For every b ∈ RA, there exists a constant γb > 0 such that

∥xb∥ ≤ γb∥x∥ for allx ∈ A.
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Whereas A carries its defining norm ∥ · ∥, the universal multiplier spaces RA
and LA carry their own characteristic norms, defined as follows. To every a ∈ LA,
one may associate a bounded linear map La : A → A by

La(x) = ax, x ∈ A.

Then we define the norm of a ∈ LA as ∥a∥⋄LA := ∥La∥, the latter being the
usual norm on bounded operators. Similarly, to every b ∈ RA, one associates a
bounded linear map Rb : A → A and the norm ∥b∥RA := ∥Rb∥ = ∥Lb∗∥ = ∥b∗∥⋄LA.

The simplest example of a Banach partial ∗-algebra is given by a closed sub-
space of a Banach ∗-algebra. Let indeed A be a Banach ∗-algebra, with norm
∥ · ∥, and let B be a ∗-invariant subspace of A. Then B is a partial ∗-algebra
with the relation

Γ = {(x, y) ∈ B : xy ∈ B}.
Then, if (x, y) ∈ Γ, ∥xy∥ ≤ ∥x∥ ∥y∥. If B is closed with respect to the norm ∥ · ∥,
then B is a Banach space and thus a Banach partial ∗-algebra.

Conversely, under appropriate conditions, a Banach partial ∗-algebra is in fact
a genuine Banach ∗-algebra.

Proposition 3.2. Let A be a Banach partial ∗-algebra with norm ∥ · ∥. Assume
that

(i) ∥ab∥ ≤ ∥a∥ ∥b∥ whenever a ∈ L(b);
(ii) RA is ∥ · ∥-dense in A.

Then A is a Banach ∗-algebra.

The result is immediate, since A is the norm closure of RA and by (i) the
multiplication is jointly continuous on RA.

4. Topologies on multiplier spaces

From now on, A denotes a normed partial ∗-algebra with unit. We consider
arbitrary multiplier spaces of A and define intrinsic topologies on them, on the
model of LA above. Let M ∈ FR. To every a ∈ LM, one may associate a linear
map La from M into A :

La(x) = ax, x ∈ M and a ∈ LM.

Then the topology ρM on M is defined as the weakest locally convex topology on
M for which all maps La, a ∈ LM, are continuous from M into A[∥ · ∥]. Thus
the (projective) topology ρM is characterized by the set of seminorms

x ∈ M 7→ ∥ax∥, a ∈ LM.

It follows that ρM is finer than the topology induced on M by the norm of A
(take a = e in the seminorms above).

In the same way, the topology λN on N ∈ FL is the weakest locally convex
topology on N such that all maps Rb : x 7→ xb, b ∈ RN, are continuous from N
into A[∥ · ∥]. Thus, the topology λLM on LM is defined by the set of seminorms

a ∈ LM 7→ ∥ax∥, x ∈ M.
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Notice that, by Lemma 6.1.2 of [2], the topologies ρA and λA on A are both
equivalent to the original norm topology.

Consider now an arbitrary M ∈ FR and the corresponding LM ∈ FL. Apart
from ρM and λLM, other topologies can be defined on M and LM, respectively,
starting from the fact that LM may be identified with a space of linear maps
from M into A. Let G be a bounded subset of M[ρM ] and a ∈ LM. We put

∥a∥G = sup
x∈G

∥ax∥.

The family of seminorms defined in this way endows LM with a topology ΛLM

finer than λLM. Clearly, ΛLM coincides with the topology of uniform convergence
on bounded sets of M[ρM ] on the set of continuous linear maps La, a ∈ LM.
One defines in a similar way a topology PM on M. In general these topologies
are neither normable, nor Fréchet.

In order to proceed, we have to study the relationship between the various
topologies on a given matching pair (M, LM). Let M ∈ FR, and let ∥ · ∥M be a
norm on M. We say that ∥ · ∥M is admissible if

ρM ⪯ ∥ · ∥M ⪯ PM . (4.1)

The original norm ∥ · ∥ of A, the norm ∥ · ∥RA of RA, and the norm ∥ · ∥⋄LA of LA
are clearly admissible.

Assume now that the norm ∥ · ∥M on M is such that every multiplication
operator La, a ∈ LM, is continuous from M[∥ · ∥M ] into A[∥ · ∥]; that is, there
exists γa > 0 such that

∥Lax∥ = ∥ax∥ ≤ γa∥x∥M , x ∈ M. (4.2)

This is true, in particular, if the norm ∥ · ∥M is admissible. Then, generalizing
the norm ∥ · ∥⋄LA on LA, we can define a norm ∥ · ∥⋄LM on LM by

∥a∥⋄LM = sup
∥x∥M ≤1

∥ax∥.

Since the unit ball of M[∥ · ∥M ] is bounded in M[ρM ], it follows that ∥ · ∥⋄LM is
admissible, in the sense that

λLM ⪯ ∥ · ∥⋄LM ⪯ ΛLM. (4.3)

Moreover, it follows from the definition that

∥ax∥ ≤ ∥a∥⋄LM ∥x∥M for all a ∈ LM and x ∈ M.

In a similar way, we can define a new norm ∥ · ∥⋄⋄M on M by

∥x∥⋄⋄M = sup
∥a∥⋄LM≤1

∥ax∥.

It is easily seen that ∥x∥⋄⋄M ≤ ∥x∥M, for every x ∈ M, and that ∥x∥⋄⋄M is admissible.
Moreover,

∥ax∥ ≤ ∥a∥⋄LM ∥x∥⋄⋄M for all a ∈ LM and x ∈ M,

which is closely reminiscent of the Hölder inequality.
If ∥·∥⋄⋄M is strictly weaker than ∥·∥M , then we can start the procedure again and

define a new norm ∥ · ∥⋄⋄⋄LM on LM. We expect that, exactly as for semireflexive,
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but nonreflexive, Banach spaces, this procedure will never stop. First, it is easily
seen that ∥ · ∥⋄⋄⋄LM ≤ ∥ · ∥⋄LM. But we cannot go further, the procedure stops there.

Proposition 4.1. If ∥ · ∥M is admissible, then one has ∥ · ∥⋄⋄⋄LM = ∥ · ∥⋄LM.

A proof may be found in [5, Prop.4.2].
Following the pattern familiar for von Neumann algebras,1 we define a distin-

guished class of norms.

Definition 4.2. An admissible norm ∥ · ∥M on M is said to be reproducing if
∥ · ∥⋄⋄M is equivalent to ∥ · ∥M . Then M[∥ · ∥M ] itself is said to be reproducing.

Clearly, if M carries a norm ∥ · ∥M that satisfies condition (4.2), then it also
carries an admissible and a reproducing norm, namely, ∥ · ∥⋄⋄M . Moreover, a norm
∥ · ∥M can be reproducing only if it is admissible.

As we said above, the topology ρM on the multiplier space M is in general
not normable, nor even Fréchet. However, sequential completeness of M[ρM ] has
nice consequences on M[∥ · ∥M ]. Indeed one has the following result given in [5,
Theor.4.7].

Theorem 4.3. Let M[ρM ] be sequentially complete, and let ∥·∥M be an admissible
norm on M. Then the following statements are equivalent:

(i) ∥ · ∥M is reproducing;
(ii) M[∥ · ∥M ] is a Banach space;
(iii) ∥ · ∥M is the unique (up to equivalence) admissible Banach norm on M.

Remark 4.4. Note that the implication (ii) ⇒ (iii) does not rely on the assump-
tion of sequential completeness: if M[∥ · ∥M ] is a Banach space for an admissible
norm, then M[∥ · ∥M ] has, at most, one Banach admissible norm.

We have introduced in (4.1) and (4.3) several, comparable, norms on M and
LM, respectively. The natural question is to ascertain when some of these norms
are equivalent. The following results are easy (a detailed proof may be found in
[5, Prop. 4.9]).

Proposition 4.5. Given M ∈ FR, assume that M[∥ · ∥M ] is a Banach space.
Then Pm is equivalent to ∥ · ∥⋄⋄M and ∥ · ∥M is admissible if and only if it is
reproducing. Similarly, if LM[∥ · ∥⋄LM

] is a Banach space, then ΛLM is equivalent
to ∥ · ∥⋄LM.

Proof.
First one shows that, if M[∥ · ∥M ] is a Banach space, one has ρM ⪯ ∥ · ∥⋄⋄M ∼

PM ⪯ ∥·∥M , which proves that ∥·∥M is admissible if and only if it is reproducing.
The statement concerning LM is proven in the same way. □

1 For any set A of bounded operators containing the identity, the commutants satisfy the
relations A′′′ = A′,A ⊂ A′′; then A is a von Neumann algebra if A′′ = A.
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5. Banach partial ∗-algebras of type (B)

The preceding considerations show clearly that there is a deep analogy between
partial ∗-algebras and pip-spaces [4], the exchange under L or R replacing duality.
For the convenience of the reader, we have collected in the Appendix the basic
facts concerning pip-spaces.

In the case of a pip-space V , we have a complete involutive lattice (V, #),
with involution Vr ↔ Vr = (Vr)

#. In addition, the whole structure can be
reconstructed from a generating involutive sublattice J of F(V,#), indexed by
J , which means that

f#g ⇐⇒ there exists r ∈ J such that f ∈ Vr and g ∈ Vr .

In the present case, we have two complete lattices FR and FL, which are ex-
changed under L and R, respectively. Here too, the whole multiplication struc-
ture may be recovered from a generating family; that is, a subset IR of FR such
that x ∈ L(y) if and only if there is an element M ∈ IR such that y ∈ M and
x ∈ LM,

x ∈ L(y) ⇐⇒ there exists M ∈ IR such that y ∈ M and x ∈ LM .

Now, in the case of a pip-space, an interesting (and practically sufficient) situation
is obtained when all the elements of the generating sublattice are reflexive Banach
spaces or Hilbert spaces in duality (LBS or LHS) (see the Appendix). By analogy,
we are led to impose a perfect symmetry between left and right multipliers of
our Banach partial ∗-algebra, and thus to require that the two spaces of a pair
of matching subspaces (M, LM) be both Banach spaces for an admissible norm.
These norms are then automatically reproducing and coincide with ∥·∥M ∼ ∥·∥⋄⋄M
and ∥ · ∥⋄LM

, respectively.
Our aim is to obtain a object in which the algebraic and the topological struc-

tures fit perfectly. To that effect, it is necessary to require that the multiplier
spaces M ∈ IR, where IR is a generating family, be complete in a natural norm
∥ · ∥M , and similarly for the corresponding LM. Indeed, these spaces are com-
pletely determined by the partial multiplication (i.e., the set Γ). If one of them,

say M, would be noncomplete, it could be embedded into its completion M̃ with
respect to ∥ · ∥M , but nothing guarantees that the latter is still contained in A,

and thus there is a priori no way of extending the partial multiplication to M̃.
This is exactly the same philosophy as that governing the construction of lattices
of Hilbert spaces or, more generally, indexed pip-spaces [4]: the elements of a
generating family are always supposed to be complete; that is, Banach or Hilbert
spaces, but no assumption is made on the global space V . Thus, on A itself,
the completion condition may be dispensed of; so that we can start both from a
normed partial ∗-algebra and from a Banach partial ∗-algebra.

The condition that multiplier spaces be Banach has the further advantage to
ensure the proper behavior of natural embeddings. Clearly, if M1 ⊂ M2 and both
spaces carry their ρM topology, then the embedding M1 → M2 is continuous. If
both spaces are Banach and carry their natural norm topology, then the embed-
ding M1[∥ · ∥⋄⋄M1

] → M2[∥ · ∥⋄⋄M2
] is continuous as well. Indeed, since M1 ⊂ M2,



BANACH PARTIAL ∗-ALGEBRAS: AN OVERVIEW 79

one has LM2 ⊂ LM1 and λM2
is finer than the topology induced on LM2 by

λM1
. Thus every λM2

-bounded subset of LM2 is λM1
-bounded, and therefore, PM1

is finer than PM2
, which means that ∥ · ∥M2

≤ ∥ · ∥M1
, as announced.

Therefore, following the pattern of pip-spaces, we impose the Banach condition
on the elements a generating family. Thus we introduce the following class of
Banach partial ∗-algebras.

Definition 5.1. A normed partial ∗-algebra or a Banach partial ∗-algebra A[∥·∥]
is said to be of type (B) if there exists a generating family IR such that, for each
pair of matching subspaces M ∈ IR and LM ∈ IL, both spaces are Banach
spaces for a reproducing norm.

Remarks 5.2. (1) A itself has a reproducing norm, namely, ∥ · ∥⋄⋄, a priori
weaker than the original norm. However, since ρA is equivalent to the original
norm topology, one has always ∥ · ∥⋄⋄ ∼ ∥ · ∥, whether A is complete or not.

(2) We remind the reader that completeness of M does not imply that of LM;
thus we have to impose both explicitly.

As usual, one may consider the lattice obtained from the generating family un-
der finite lattice operations. In the present case, all elements of that lattice, which
is, of course, generating as well, are Banach spaces, with the norms borrowed from
interpolation theory.

. M ∧ N = M ∩ N, which is a Banach space with the projective norm
∥f∥M ∧N = ∥f∥M + ∥f∥N .

. M ∨N = RL(M+N); now M+N is a Banach space with the inductive
norm ∥f∥M ∨N = inf (∥g∥M + ∥h∥N ) , f = g + h, g ∈ M, h ∈ N, and it
remains to show that it belongs to FR; that is, M+N = RL(M+N).

Then one can build the complete lattice FR, by applying arbitrary lattice op-
erations, but the additional spaces so obtained are no longer Banach spaces in
general.

As mentioned in section 3, one may obtain a Banach partial ∗-algebra simply
by considering a closed ∗-invariant subspace B of a Banach ∗-algebra A. We
distinguish two situations.

Case 1 : Assume that B is closed with respect to the norm ∥ · ∥. Then B is a
Banach space. Let M ∈ FR := FR(B) be the multiplier lattice of B. Then, for
every a ∈ LM, the map La : x ∈ M 7→ ax ∈ A is continuous and hence closed.
The restriction ∥ · ∥↾M of the norm ∥ · ∥ to M has clearly the property (4.2). We
prove that M is closed with respect to ∥ · ∥. Let indeed xn ∈ M = RLM be with
xn → x ∈ A. Then, for any b ∈ LM, one has xnb → xb. Since xnb ∈ B and B is
closed, we get xb ∈ B; thus x ∈ RLM = M. Therefore, each multiplier space is
Banach under ∥ · ∥. This implies that, for every M ∈ FR, ∥ · ∥⋄⋄M ∼ ∥ · ∥↾M , since
both are Banach norms and ∥ · ∥⋄⋄M ⪯ ∥ · ∥↾M . So B is a Banach partial ∗-algebra
of type (B).

Case 2 : B is not closed with respect to the norm ∥ · ∥, but it carries another
norm ∥ · ∥B that makes it into a Banach space. If each M ∈ FR is Banach for
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a norm ∥ · ∥M satisfying the condition (4.1), then this norm is necessarily repro-
ducing, by Theorem 4.3, taking into account that right and left multiplications
are continuous maps. Thus, in this case too, B is a Banach partial ∗-algebra of
type (B).

6. Examples of Banach partial ∗-algebras of type (B)

In [5] and in the monograph [2], one may find a whole family of examples of
Banach partial ∗-algebras of functions and Banach partial ∗-algebras of operators
acting on a lattice of Hilbert spaces. We will review some of these examples
here, without too much detail. In some cases, we will show how these examples
illustrate the propositions above about the equivalence of the various topologies
on multiplier spaces.

6.1. Partial ∗-algebras of functions.

6.1.1. Lp spaces on a finite interval. The simplest example of an abelian partial
∗-algebra is the space L1([0, 1], dx), equipped with the partial multiplication,

f ∈ M(g) ⇔ ∃ q ∈ [1,∞] such that f ∈ Lq, g ∈ Lq, 1/q + 1/q = 1.

Thus we consider as generating family the chain of Banach spaces I0 = {Lp([0, 1], dx),
1 ≤ p ≤ ∞}, with Lp ⊂ Lq, p > q. The lattice completion of I0, denoted F , is
obtained by adding the so-called “nonstandard” spaces

Lp− =
∩

1≤ q<p

Lq, Lp+ =
∪

p<q≤∞

Lq.

Then, for 1 < p ≤ ∞, Lp−, with the projective topology, is a non-normable
reflexive Fréchet space. For 1 ≤ p < ∞, Lp+, with the inductive topology, is a
nonmetrizable complete DF-space [17, 21].

We note the strict inclusions,

Lp+ ⊂ Lp ⊂ Lp− ⊂ Lq+ (1 < q < p < ∞)

in which all embeddings are continuous and have dense range.
As a consequence of the Hölder inequality, the multiplier spaces are

MLp = Lp, MLp− = Lp+, MLp+ = Lp−

As for topologies, take first the spaces Lp, 1 ≤ p < ∞. The following result is
standard [4] or [28, Chap.15]:

∥f∥⋄p = sup
∥g∥p≤1

∫ 1

0

|fg| dx = sup
∥g∥p≤1

∣∣∣∣∫ 1

0

fg dx

∣∣∣∣ = ∥f∥p , 1 ≤ p < ∞.

By the same argument, ∥f∥⋄⋄p = ∥f∥p. Combining this result with Proposition
4.5, we obtain

ρLp ⪯ ∥ · ∥⋄⋄p = ∥ · ∥p ∼ PLp , 1 ≤ p < ∞.

One can show [5] that every Lp, 1 < p ≤ ∞, is sequentially complete for ρLp . For
p = 1, one can prove directly that ρL1 coincides with the usual norm topology
(as it should!), using the fact that the function f0(x) ≡ 1 belongs to L1 with
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∥f0∥1 = 1. However, contrary to what is said in [1] and in [2], the topology ρLp

does not coincide with the ∥ · ∥p-norm topology for p > 1.
The “nonstandard” multiplier spaces Lp± do not belong to the generating fam-

ily; so we don’t have to take them into consideration.
In conclusion, A = L1[(0, 1), dx] is an abelian Banach partial ∗-algebra of type

(B), and it is tight, which means that RA = L∞[(0, 1), dx] is dense in every
multiplier space Lp.

6.1.2. The spaces Lp(R, dx). We turn now to the spaces Lp(R, dx) on the whole
line, discussed in full generality in [4] and also in [5]. Hence we will be brief here.
The difference with the previous case is that these no longer form a chain, no two
of them being comparable. We have only

Lp ∩ Lq ⊂ Ls for all s such that p < s < q.

Hence we take the lattice generated by I = {Lp(R, dx), 1 ≤ p ≤ ∞}, that we
call J .

At this stage, it is convenient to introduce a unified notation:

L(p,q) =

{
Lp ∧ Lq, if p ≥ q,
Lp ∨ Lq, if p ≤ q.

Thus, for 1 < p, q < ∞, each space L(p,q) is a reflexive Banach space, with
conjugate dual L(p,q). The modifications when p, q equal 1 or ∞ are obvious.

Following [4, Sec.4.1.2], we represent the space L(p,q) by the point (1/p, 1/q) of
the unit square J = [0, 1] × [0, 1]. In this representation, the spaces Lp are on
the main diagonal, intersections Lp ∩ Lq above it and sums Lp + Lq below, the
duality is [L(s]× = L(s), where s = (p, q) and s = (p, q); that is, symmetry with
respect to L2 = (1

2
, 1
2
). Hence, L(p,q ⊂ L(p′,q′) if (1/p, 1/q) is on the left and/or

above (1/p′, 1/q′); that is,

L(p,q) ⊂ L(p′,q′) ⇐⇒ (p, q) ≤ (p′, q′) ⇐⇒ p ≥ p′ and q ≤ q′. (6.1)

A figure representing the lattice J may be found, for instance, in [4, Fig.4.1] (and
also on the cover page!).

The extreme spaces of the (complete) lattice are

VJ = LG := L1 + L∞ and V #
J = L#

G = L∞ ∩ L1

with their inductive and projective norms, respectively, which make them into
nonreflexive Banach spaces (none of them is the dual of the other). Notice that
the space LG, known as the space of Gould [14], contains strictly all the Lp, 1 ≤
p ≤ ∞. Here too, the lattice structure allows to give to VJ a structure of abelian
Banach partial ∗-algebra of type (B). Notice that this partial ∗-algebra does have
a unit, as we have assumed in general, namely, the function f0(x) ≡ 1, which
belongs to L∞, but, of course, not to any space Lp(R, dx), p < ∞.

The lattice operations on J are those familiar in interpolation theory

Lp ∧ Lq = Lp ∩ Lq and Lp ∨ Lq = Lp + Lq,

which are Banach spaces under the projective and inductive norms, respectively,
as indicated in section 5. Notice that the lattice J is already obtained at the first
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generation. one has, for example, L(r,s)∧L(a,b) = L(r∨a,s∧b), where L(r,s) = Lr∧Ls,
if r > s and L(r,s) = Lr ∨ Ls, if r < s. As for the lattice completion FJ, one can
build an “enriched” or “nonstandard” square, exactly as in the previous section.

Now we endow VJ with the natural partial multiplication

f ∈ M(g) ⇐⇒ fg ∈ VJ, i.e., fg ∈ Ls, for some s, 1 ≤ s ≤ ∞.

Then the multipliers of the basic spaces are simple, namely, for p > q,

M(Lp ∧ Lq) = Lp + L∞ = L(p,∞), M(Lp ∨ Lq) = Lq + L∞ = L(q,∞),

and thus

MM(Lp ∧ Lq) = Lp + L∞ = L(p,∞), MM(Lp ∨ Lq) = Lq + L∞ = L(q,∞).

Thus matching pairs are of the form (L(p,∞), L(p,∞)). Since L(q,∞) ⊂ L(p,∞) for
q < p, these multiplier spaces form a chain of Banach spaces, isomorphic, as LBS,
to the chain I0 := {Lp([0, 1], dx), 1 ≤ p ≤ ∞}.

Thus we may state the following proposition.

Proposition 6.1. The space LG := L1(R, dx) + L∞(R, dx) is a nonreflexive
LBS, generated by the family I = {Lp(R, dx), 1 ≤ p ≤ ∞} and the corresponding
compatibility (Lp)# = Lp. In addition, LG is an abelian Banach partial ∗-algebra
of type (B), whose generating family I1 := {L(p,∞), 1 ≤ p ≤ ∞} is isomorphic, as
LBS, to the chain I0 = {Lp([0, 1], dx), 1 ≤ p ≤ ∞}.

6.1.3. Amalgam spaces. The lesson of the previous example is that an involutive
lattice of (preferably reflexive) Banach spaces turns quite naturally into a (tight)
Banach partial ∗-algebra of type (B) if it possesses a partial multiplication that
verifies a (generalized) Hölder inequality. A whole class of examples is given
by the so-called amalgam spaces [13]. The simplest ones are the spaces (Lp, ℓq)
(sometimes denoted by W (Lp, ℓq)) consisting of functions on R which are locally
in Lp and have ℓq behavior at infinity, in the sense that the Lp norms over the
intervals (n, n+ 1) form an ℓq sequence. For 1 ≤ p, q < ∞, the norm

∥f∥p,q =

{
∞∑

n=−∞

[∫ n+1

n

|f(x)|p dx
]q/p}1/q

makes (Lp, ℓq) into a Banach space. The same is true for the obvious extensions
to p and/or q equal to ∞. Notice that (Lp, ℓp) = Lp.

These spaces obey the following (immediate) inclusion relations, with all em-
beddings continuous.

• If q1 ≤ q2, then (Lp, ℓq1) ⊂ (Lp, ℓq2).
• If p1 ≤ p2, then (Lp2 , ℓq) ⊂ (Lp1 , ℓq).

From this it follows that the smallest space is (L∞, ℓ1) and the largest one is
(L1, ℓ∞), and therefore

• If p ≥ q, then (Lp, ℓq) ⊂ Lp ∩ Lq ⊂ Ls for all q < s < p.
• If p ≤ q, then (Lp, ℓq) ⊃ Lp ∪ Lq.
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Once again, Hölder’s inequality is satisfied. Whenever f ∈ (Lp, ℓq) and g ∈
(Lp, ℓq), then fg ∈ L1 and one has

∥fg∥1 ≤ ∥f∥p,q ∥g∥p,q.
Therefore, one has the expected duality relation,

(Lp, ℓq)∗ = (Lp, ℓq) for 1 ≤ q, p < ∞.

The interesting fact is that, for 1 ≤ p, q ≤ ∞, the set JW of all amalgam spaces
{(Lp, ℓq)} may be represented by the points (p, q) of the same unit square J as
in the previous example, with the same order structure. In particular, JW is a
lattice with respect to the order (6.1):

(Lp, ℓq) ∧ (Lp′ , ℓq
′
) = (Lp∨p′ , ℓq∧q

′
)

(Lp, ℓq) ∨ (Lp′ , ℓq
′
) = (Lp∧p′ , ℓq∨q

′
),

where again ∧ means intersection with projective norm and ∨ means vector sum
with inductive norm.

We turn now to the partial ∗-algebra structure of JW. At first sight, the
situation becomes different, because, whereas L1 is a partial ∗-algebraand ℓ∞ is
an algebra under componentwise multiplication, (an) · (bn) = (anbn). The Lp

component characterizes the local behavior. Hence,

M(Lp, ℓq) ⊃ (Lp, ℓ∞), for all q,

and since the latter are totally ordered, we obtain, exactly as in the case of the
Lp spaces,

M(Lp, ℓq) = (Lp, ℓ∞).

Thus the natural partial multiplication on J reads.

f ∈ M(g) ⇐⇒ ∃ p ∈ [1,∞] such that f ∈ (Lp, ℓ∞) and g ∈ (Lp, ℓ∞). (6.2)

The rest is as before, including the identification of the complete lattice FJ with
the “enriched” interval [1,∞]. Thus we may state the following proposition.

Proposition 6.2. The amalgam space (L1, ℓ∞), with the partial multiplication
defined by (6.2), is a tight commutative Banach partial ∗-algebra of type (B),
generated by the family of amalgam spaces JW = {(Lp, ℓq), 1 ≤ q, p ≤ ∞}.
This Banach partial ∗-algebra is isomorphic to the one generated by the spaces
{Lp(R, dx), 1 ≤ p ≤ ∞}, described in Proposition 6.1. In particular, its gener-
ating family I2 = {(Lp, ℓ∞), 1 ≤ p ≤ ∞} is isomorphic, as LBS, to the chain
I0 = {Lp([0, 1], dx), 1 ≤ p ≤ ∞}.

6.2. Partial ∗-algebras of operators.

6.2.1. Operators on a Hilbert scale. Let H be a Hilbert space with inner product
⟨·|·⟩, and let S ≥ 1 be a positive unbounded self-adjoint operator with dense
domain D(S). Thus, the subspace D(S) becomes a Hilbert space, denoted by
H1, with the (graph) inner product

⟨f |g⟩1 = ⟨Sf |Sg⟩.
Let H1 denote the conjugate dual of H1. Then H1 is itself a Hilbert space.
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With this construction, we get in a canonical way a scale of Hilbert spaces

H1 ↪→ H ↪→ H1 ,

where both inclusions are continuous and have dense range.
For every α > 0, Sα is still a self-adjoint positive operator and Sα ≥ 1. So we

can construct for Sα also a scale of Hilbert spaces

Hα ↪→ H ↪→ Hα. (6.3)

If α, β ∈ (0, 1), with β > α, then it turns out that

H1 ↪→ Hβ ↪→ Hα ↪→ H ↪→ Hα ↪→ Hβ ↪→ H1 . (6.4)

As for the norms, we notice that, if f ∈ H1, then

∥f∥ ≤ ∥f∥α ≤ ∥f∥β ≤ ∥f∥1 for all α ∈ (0, 1). (6.5)

Let B(H1,H1) be the Banach space of bounded operators from H1 into H1

with its natural norm ∥ · ∥1,1. In B(H1,H1) define an involution A 7→ A∗ by

< A∗f, g >= < Ag, f >, for all f, g ∈ H1 ,

where < ·, · > is the form that puts H1 and H1 in conjugate duality. If α, β ∈
(−1, 1) we can also consider the Banach space B(Hα,Hβ) of bounded operators
from Hα into Hβ with its natural norm ∥ · ∥α,β.

Because of (6.4), the restriction to H1 of an operator of B(Hα,Hβ) belongs to
B(H1,H1). Therefore,

B(Hα,Hβ) ⊂ B(H1,H1) for all α, β ∈ [−1, 1].

Moreover, B(Hα,Hβ)
∗ = B(Hβ,Hα) for every α, β ∈ [−1, 1].

We define now the partial multiplication in B(H1,H1). Let X, Y ∈ B(H1,H1).
We say that X ∈ L(Y ) if there exist α, β, γ ∈ [−1, 1] such that Y ∈ B(Hα,Hβ)
and X ∈ B(Hβ,Hγ). In this case XY , the usual composition of the maps X and
Y , is well-defined and belongs to B(Hα,Hγ) ⊂ B(H1,H1). It easily seen that,
if XY is well-defined, then Y ∗X∗ is also well defined and belongs to B(Hγ,Hα).
Moreover (XY )∗ = Y ∗X∗. As a result, B(H1,H1) with this multiplication is a
partial ∗-algebra.

Next we have to identify the spaces of multipliers. By the definition of mul-
tiplication given above, it follows that the family of spaces {B(Hα,Hβ)} is a
generating sublattice for the lattice of left (or even right) multipliers. An easy
calculation gives the following result.

Proposition 6.3. For every α, β ∈ [−1, 1], one has LB(Hα,Hβ) = B(Hβ,H1)
and RB(Hα,Hβ) = B(H1,Hα).

Thus we get the same structure for the multiplier spaces as in the case of the Lp

spaces on the line discussed in section 6.1.2.

Lemma 6.4. The family IR = {B(H1,Hβ); β ∈ [−1, 1]} generates the lattice FR

of right multipliers. Consequently, the family LIR = {B(Hβ,H1); β ∈ [−1, 1]}
generates the lattice FL of left multipliers.
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Proof. The product XY is well-defined if and only if there exist α, β, γ ∈ [−1, 1]
such that X ∈ B(Hβ,Hγ) and Y ∈ B(Hα,Hβ) and, in this case XY ∈ B(Hα,Hγ).
Of course X may be regarded as an element of B(Hβ,H1). On the other hand, the
restriction Y(1) of Y to H1 is an element of B(H1,Hβ). Clearly XY = XY(1). □

Now we turn to the topological structure. The topology ρB(Hα,Hβ) on B(Hα,Hβ)
is defined by the family of seminorms,

A ∈ B(Hα,Hβ) 7→ ∥(XA)↾H1∥1,1, X ∈ B(Hβ,H1).

Since

∥(XA)↾H1∥1,1 ≤ ∥XA∥α,1 ≤ ∥X∥β,1∥A∥α,β,
it follows that ρB(Hα,Hβ) is coarser than the topology defined by ∥ · ∥α,β. Then we
can start the procedure outlined in section 4 to construct admissible or reproduc-
ing norms. We start with considering a space B(H1,Hβ) with β ∈ [−1, 1]; that
is, an element of IR and the corresponding set of left multipliers LB(H1,Hβ) =
B(Hβ,H1). Clearly, for X ∈ B(Hβ,H1) and Y ∈ B(H1,Hβ), we have

∥XY ∥1,1 ≤ ∥X∥β,1∥Y ∥1,β,
which entails, in particular, that the norm ∥ · ∥1,β satisfies condition (4.2).

This implies that ∥X∥⋄LB(H1,Hβ)
≤ ∥X∥β,1. On the other hand, taking Y =

S1−β ∈ B(H1,Hβ), we have ∥S1−β∥1,β = 1 and ∥XS1−β∥1,1 = ∥X∥β,1. Therefore
∥X∥⋄LB(H1,Hβ)

= sup
∥Y ∥1,β≤1

∥XY ∥1,1 ⩾ ∥X∥β,1.

Thus ∥ · ∥⋄LB(H1,Hβ)
= ∥ · ∥β,1. One can prove in a similar way that ∥ · ∥⋄⋄B(H1,Hβ)

=

∥ · ∥1,β. Note, however, that the natural norm of a space B(Hα,Hβ), with α < 1,
is not reproducing, in general, as can be shown by an easy computation.

Thus the Banach partial ∗-algebra B(H1,H1) has a generating family of Banach
spaces, each of them endowed with a reproducing norm.

Proposition 6.5. The space B(H1,H1), with the structure described above, is a
Banach partial ∗-algebra of type (B).

Remarks 6.6. (1) As in the case of the Lp chain discussed in section 6.1.1,
one may enrich the scale (6.4) by introducing “nonstandard” spaces Hβ− and
Hβ+ (which, of course, are no longer Banach spaces) and operators from/into
them. A detailed analysis may be found in [5]. This is in fact an application of
interpolation theory, and it was explicitly developed in the context of pip-spaces
by Karwowski and one of us in [3].

(2) In fact the situation described here is perfectly general. Indeed, if H∗ ⊂
H ⊂ H∗ is any scale of Hilbert spaces, then, by the second representation theorem
for sesquilinear forms [16, VI.2.6], there exists a self-adjoint operator S ≥ 1 such
that D(S) = H∗ and ⟨f |g⟩∗ = ⟨Sf |Sg⟩ for all f, g ∈ H∗.The same construction
can be extended to an unbounded scale of Hilbert spaces. Then, however, the
full ambient space is no longer a Banach space, but an inductive limit of Banach
spaces. This suggests the extension of the partial algebraic structure to such
situations as well.
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In conclusion, we emphasize that the structure just analyzed, operators on a
Hilbert scale, occurs frequently both in mathematics and in physics. Standard
examples include.

. The scale of Sobolev spaces W 2
s (R), s ∈ R, where f ∈ W 2

s (R) whenever

its Fourier transform f̂ satisfies the condition (1 + |.|2)s/2 f̂ ∈ L2(R). The
corresponding norm reads as ∥f∥s = ∥(1 + |.|2)s/2 f̂∥, s ∈ R. Here the

defining operator is (Amf)(x) = (1− d2

dx2 )
1/2f(x).

. The Fourier transform of the preceding scale, corresponding to the oper-
ator (Apf)(x) = (1 + x2)1/2f(x).

. The scale of the quantum harmonic oscillator, corresponding to the oper-
ator (Aoscf)(x) = (1 + x2 − d2

dx2 )f(x).

(The notation is suggested by the operators of momentum, position, and harmonic
oscillator energy in quantum mechanics, respectively).

6.2.2. Operators on a Lattice of Hilbert spaces. Actually a similar structure is
obtained if one considers operators on a Lattice of Hilbert spaces (see the Ap-
pendix). Indeed, take an arbitrary LHS with a distinguished family of Hilbert
subspaces VI = {Hr, r ∈ I} for some index set I. Once again the topological and
lattice structures coincide. q < p implies that Hq ⊂ Hp and the embedding is
continuous with dense range. Similarly, Hp∧q and Hp∨q are dual to each other.
Moreover, V # is dense in every Hr, r ∈ I. Thus the operators on VI are generated
by the sets of bounded operators {B(Hp,Hq), p, q ∈ I}, exactly as before. Thus
here too we get a Banach partial ∗-algebra of type (B). Examples of such a LHS
abound, for instance,

. Köthe sequence spaces, including (weighted) ℓ2 spaces,

. the space L1
loc(X, dµ) of locally integrable functions on a measure space

(X,µ). The generating sublattice consists of weighted L2 spaces,
. locally integrable functions or sequences of prescribed growth, with a sim-
ilar generating sublattice,

. Köthe function spaces [28, Chap.15], generalizing the preceding two spaces,

. a lattice of Hilbert spaces of analytic functions around the Fock-Bargmann
space.

All those LHS are described in great detail in [2, Chap.6] and [4, Chap.4]. Then, as
before, the set of operators on them become normed or Banach partial ∗-algebras
of type (B).

7. Banach quasi ∗-algebras

7.1. quasi ∗-algebras. A completely different type of partial ∗-algebras is that
of quasi ∗-algebras, introduced initially by Lassner [19, 18]. The idea was to
provide a reasonable mathematical environment for properly dealing with the
thermodynamical limit of local observables of certain quantum statistical models
that did not fit into the set-up of the algebraic formulation of quantum theories
developed by Haag and Kastler [15].

A quasi ∗-algebra is a couple (X,A0), where X is a vector space with invo-
lution, A0 is a ∗-algebra and a vector subspace of X, and X is an A0-bimodule
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whose module operations and involution extend those of A0. The simplest way
to construct such an object consists in taking the completion of a locally convex
∗-algebra (A0, τ) where the multiplication is separately but not jointly continu-
ous. Of particular interest is, of course, the case where τ is a norm topology.
Particularizing Definition 3.1, we define a Banach partial ∗-algebra as follows
[26, 25].

Definition 7.1. A quasi ∗-algebra (A,Ao) is called a Banach quasi ∗-algebra if
A is a Banach space under a norm ∥ · ∥ satisfying the following properties:

(i) ∥a∗∥ = ∥a∥ for all a ∈ A;
(ii) Ao is dense in A[∥ · ∥];
(iii) for every x ∈ Ao, the map Rx : a ∈ A[∥ · ∥] 7→ ax ∈ A[∥ · ∥] is continuous.

The continuity of the involution implies that

(iv) for every x ∈ Ao, the map Lx : a ∈ A[∥ · ∥] 7→ xa ∈ A[∥ · ∥] is continuous
too.

We will suppose that (A,Ao) has a unit e; that is, an element e ∈ Ao such that
ae = ea = a for every a ∈ A.

If (A,Ao) is a Banach quasi ∗-algebra, a norm topology can be defined on Ao

in the following way. For x ∈ Ao, the following functions

∥x∥L = sup
∥a∥≤1

∥ax∥ and ∥x∥R = sup
∥a∥≤1

∥xa∥, x ∈ Ao, a ∈ A, (7.1)

are well defined norms on Ao. It is easy to see that ∥x∥L = ∥x∗∥R (and, of course,
∥x∥R = ∥x∗∥L) for every x ∈ Ao. Moreover, by (7.1) it follows that

∥ax∥ ≤ ∥a∥∥x∥L and ∥xa∥ ≤ ∥a∥∥x∥R for all a ∈ A, x ∈ Ao. (7.2)

Again by (7.1) and together with (7.2), we deduce that

∥xy∥L ≤ ∥x∥L∥y∥L and ∥xy∥R ≤ ∥x∥R∥y∥R for all x, y ∈ Ao.

Finally we put

∥x∥0 := max{∥x∥L, ∥x∥R}. (7.3)

Corollary 7.2. If the Banach quasi ∗-algebra (A,Ao) has a unit, then the ∗-algebra
Ao[∥ · ∥0] is a normed ∗-algebra; therefore we may suppose, without loss of gener-
ality, that ∥e∥0 = 1. Moreover,

∥xy∥ ≤ ∥x∥∥y∥0, ∥yx∥ ≤ ∥x∥∥y∥0, for all x, y ∈ Ao,

and, for x = e, ∥y∥ ≤ ∥e∥∥y∥0 for all y ∈ Ao.

Definition 7.3. A Banach quasi ∗-algebra (A,Ao) is called a BQ∗-algebra if
Ao[∥ · ∥0] is a Banach ∗-algebra and a proper CQ∗-algebra if Ao[∥ · ∥0] is a C∗-
algebra (see Definition 8.1).

Example 7.4. Let I = [0, 1]. Then (Lp(I), C(I)), where C(I) denotes the CQ∗-
algebra of all continuous functions on I and p ≥ 1, is a Banach quasi ∗-algebra
(more precisely, a proper CQ∗-algebra [9], if C(I) is endowed with the usual
supremum norm ∥ · ∥∞; actually in this case, one has ∥ · ∥0 = ∥ · ∥∞).
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Example 7.5. Let M be a von Neumann algebra, and let τ be a normal finite
faithful trace [23] on M. Then the completion of M with respect to the norm

∥X∥p = τ(|X|p)1/p, X ∈ M,

is usually denoted by Lp(τ) [20, 22] and is a Banach space consisting of operators
affiliated with M. Then (Lp(τ),M) is a Banach quasi ∗-algebra with unit, more
precisely, a CQ∗-algebra.

An important role is played by bounded elements, which are defined via the
following two linear maps from Ao into A:

x ∈ Ao 7→ Lax = ax ∈ A
(7.4)

x ∈ Ao 7→ Rax = xa ∈ A.

An element a ∈ A is called bounded if both La and Ra are bounded operators
on Ao; that is, if there exists γ > 0 such that

max{∥ax∥, ∥xa∥} ≤ γ∥x∥ for all x ∈ Ao.

The set of bounded elements is denoted by Ab, and it carries the following natural
norm

∥a∥b := max{∥La∥, ∥Ra∥}, a ∈ Ab,

where the norms on the right hand side are those of bounded operators on A. It is
clear that both La and Ra extend to A (we denote by La and R, respectively, these
extensions); so that one can think of extending the multiplication by exploiting
these extensions. For instance, if a, b ∈ Ab, both Lab and Rba are well defined, but
they need not be equal in general. Thus extending the multiplication is possible
only under additional assumptions. This unpleasant feature does not appear, for
instance, in the case of ∗-semisimple Banach quasi ∗-algebras. This notion is
defined through the following family of sesquilinear forms. We denote by SAo(A)
the family of all sesquilinear forms φ ∈ A× A such that

(i) φ(a, a) ≥ 0 for all a ∈ A;
(ii) φ(ax, y) = φ(x, a∗y) for all a ∈ A and x, y ∈ Ao;
(iii) |φ(a, b)| ≤ ∥a∥ ∥b∥ for all a, b ∈ A.

Definition 7.6. A Banach quasi ∗-algebra (A,Ao) is said to be ∗-semisimple if
a ∈ A and φ(a, a) = 0, for each φ ∈ SAo(A), imply that a = 0.

For instance, the Banach quasi ∗-algebras considered in Examples 7.4 and 7.5
can be shown to be ∗-semisimple if and only if p ≥ 2 [9]. As mentioned before,
for any pair a, b of bounded elements of a ∗-semisimple Banach quasi ∗-algebra
(A,Ao) one has Lab = Rba. Indeed, for every φ ∈ SAo(A), we have

φ((Lab)z, z) = lim
m→∞

φ((aym)z, z)

= lim
m→∞

φ(a(ymz), z) = lim
m→∞

φ(ymz, a
∗z)

= φ(bz, a∗z),
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where {ym} is a sequence of elements of Ao converging to b in A. Analogously, if
{xn} is a sequence of elements of Ao converging to a in A, we have

φ((Rba)z, z) = lim
n→∞

φ((xnb)z, z)

= lim
n→∞

φ(xn(bz), z) = lim
n→∞

φ(bz, x∗
nz)

= φ(bz, a∗z).

Therefore,

φ((Lab−Rba)z, z) = 0 for all φ ∈ SAo(A) and z ∈ Ao.

By [24, Lemma 3.13] it follows that (LaRb)−RbLa)z = 0 for every z ∈ Ao. Thus,
LaRb = RbLa.

Hence the multiplication of a, b ∈ Ab can be defined by

a • b := Lab = Rba.

Then we have the following result.

Proposition 7.7. If (A,Ao) is a ∗-semisimple Banach quasi ∗-algebra, then Ab[∥·
∥b] is a Banach ∗-algebra with respect to the multiplication •.

The notion of bounded element plays an important role also for introducing
the notion of spectrum of an element of a Banach quasi ∗-algebra.

To that effect, we need a closer analysis of the linear maps La and Ra defined
in (7.4). Elements of A\Ao are, in general, unbounded maps in the Banach space
A. It is natural to deal with the problem of inverting an element a ∈ A first by
inverting La and Ra. As it is customary in the theory of unbounded operators,
we will look for bounded inverses.

Definition 7.8. Let (A,Ao) be a Banach quasi ∗-algebra with unit e. An element
a ∈ A is called closable if the linear maps

La : a ∈ Ao 7→ ax ∈ A, Ra : a ∈ Ao 7→ xa ∈ A

are closable in A.

If a ∈ A we denote by La the closure of La; that is, the linear operator defined
on the domain

D(La) = {b ∈ A : ∃{xn} ⊂ Ao, ∥b− xn∥ → 0, and {axn} is Cauchy}

by

Lab = lim
n→∞

axn.

Similarly, Ra andD(Ra) will denote the closure of Ra and its domain, respectively.
The definitions are obvious modifications of the previous ones.

Definition 7.9. Let (A,Ao) be a Banach quasi ∗-algebra with unit e, and let
a ∈ A be a closable element. We say that a has a bounded inverse if there exists
b ∈ Ab ∩D(La) ∩D(Ra) such that Rba = Lba = e.
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If (A,Ao) is ∗-semisimple, then this element b, if any, is unique. In this case
we denote the bounded inverse of a by a−1.

For a Banach (∗-)algebra, the existence of the inverse of an element a can
be characterized through the invertibility of the corresponding maps La and Ra.
A similar result does not hold for a Banach quasi ∗-algebra, but again the ∗-
semisimple case is completely under control.

Proposition 7.10. Let (A,Ao) be a ∗-semisimple Banach quasi ∗-algebra with
unit e. Then every element a ∈ A is closable and the following statements are
equivalent:

(i) The element a has a bounded inverse a−1.
(ii) Both La and Ra possess everywhere defined (hence, bounded) inverses.

Let (A,Ao) be a ∗-semisimple Banach quasi ∗-algebra with unit e.

Definition 7.11. The resolvent ρ(a) of a ∈ A is the set

ρ(a) := {λ ∈ C : a− λe has a bounded inverse}.
The set σ(a) := C \ ρ(a) is called the spectrum of a.

Proposition 7.12. Let a ∈ A. The following statements hold:
(i) The resolvent ρ(a) is an open subset of the complex plane.
(ii) The resolvent function Rλ(a) := (a−λe)−1 ∈ Ab, λ ∈ ρ(a), is ∥·∥b-analytic

on each connected component of ρ(a).
(iii) For any two points λ, µ ∈ ρ(a), Rλ(a) and Rµ(a) commute and

Rλ(a)−Rµ(a) = (µ− λ)Rµ(a) •Rλ(a).

Example 7.13. Let us consider again the Banach quasi ∗-algebra (Lp(I), C(I)),
and let f ∈ Lp(I). Then it is easily seen that the spectrum σ(f) of f coincides
with its essential range; that is, the set of all λ ∈ C such that the set

{x ∈ I : |f(x)− λ| < ϵ}
has positive Lebesgue measure for every ϵ > 0.

Definition 7.14. Let a ∈ A. The non-negative number

r(a) := sup{|λ|, λ ∈ σ(a)}
is called the spectral radius of a.

Remark 7.15. Of course, if a ∈ Ab, then σ(a) is the same set as that obtained
regarding it as an element of the Banach ∗-algebra Ab. For an arbitrary element
a ∈ A, σ(a), which is a nonempty closed set, could be an unbounded subset
of C. The next proposition shows that, if a ∈ A \ Ab, then σ(a) is necessarily
unbounded.

Proposition 7.16. Let a ∈ A. Then, r(a) < ∞ if and only if a ∈ Ab.

The aim of this section was to give the reader the flavor of the behavior of
Banach quasi ∗-algebras. A series of other interesting results can be obtained by
considering ∗-representations by means of (in general, unbounded) operators. We
do not enter here into this topic, referring the reader to the original papers, for
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instance, [24] or to the forthcoming monograph [27]. As for Banach ∗-algebras,
representations give a deep insight into this structure, at least in the case when
they are sufficiently many (∗-semisimple case). In this case also, bounded ele-
ments play a crucial role: they are in fact characterized by being represented
by bounded operators under any ∗-representation of the given Banach quasi ∗-
algebra.

8. CQ∗-algebras

A significant example of a Banach quasi ∗-algebra is a CQ∗-algebra, discussed
in [2, Sec.6.2.3]. This is a generalization of C∗-algebras, in the sense that a CQ∗-
algebra can be viewed as the completion of a C∗-algebra with respect to a weaker
norm [10, 8].

Definition 8.1. Let (A,Ao) be a Banach quasi ∗-algebra with norm ∥ · ∥ and
involution ∗. We say that (A,Ao) is a proper CQ∗-algebra if

(i) Ao is a C∗-algebra with norm ∥ · ∥0 and involution ∗ inherited by that of
A;

(ii) Ao is dense in A with respect to the norm ∥ · ∥;
(iii) ∥x∥0 = sup

a∈A,∥a∥≤1

∥ax∥, x ∈ Ao.

We have defined the norm ∥ · ∥0 for a Banach quasi ∗-algebra (A,Ao) by (7.1)
and (7.3). Condition (iii) is exactly equivalent to the one given in section 7,
because Ao is supposed to be a C∗-algebra. Hence the two definitions 8.1 and 7.3
of a proper CQ∗-algebra coincide.

A proper CQ∗-algebra can be obtained by completing of a C∗-algebra Ao[∥ · ∥]0
with respect to a weaker norm. Indeed, we have the following proposition.

Proposition 8.2. Let Ao be a C∗-algebra with norm ∥ · ∥0 and involution ∗. Let
∥ · ∥ be another norm on Ao weaker than ∥ · ∥0, in the sense that

∥x∥ ≤ ∥x∥0, for all x ∈ Ao,

and satisfying the following conditions:

(i) ∥xy∥ ≤ ∥x∥ ∥y∥0 for all x, y ∈ Ao;
(ii) ∥x∗∥ = ∥x∥ for all x ∈ Ao.

Let A denote the ∥ · ∥-completion of Ao. Then, (A,Ao) is a proper CQ∗-algebra.

For C∗-algebras, the situation is completely clear, a commutative C∗-algebra
with unit is isometrically ∗-isomorphic to the C∗-algebra C(X) of all C-valued
continuous functions on the compact space X of characters of C(X). This corre-
spondence is the so-called Gelfand transform.

CQ∗-algebras do not behave so nicely: the first reason is that Proposition 8.2
allows the existence of non isomorphic CQ∗-algebras over C(X); the second reason
is that, as it is known already for Banach ∗-algebras, the Gelfand transform is
not, in general, an isometric ∗-isomorphism.

However, as we shall see, any ∗-semisimple commutative CQ∗-algebra can be
thought of as a CQ∗-algebra of functions. We remind the reader that, in the case
of the Lp-spaces, ∗-semisimplicity occurs if and only if p ≥ 2.
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Let X be a compact Hausdorff space, and let M = {µα, α ∈ I} be a family of
Borel measures on X, for which there exists a constant c > 0 such that µα(X) ≤ c
for all α ∈ I. Let ∥ · ∥p,α be the norm on Lp(X,µα). The completion Lp

I(X,M) of
C(X) with respect to ∥ · ∥p,I is a Banach space, where the norm ∥ · ∥p,I is defined
as

∥ϕ∥p,I := sup
α∈I

∥ϕ∥p,α.

The norm ∥ · ∥p,I also satisfies the conditions of Proposition 8.2. Therefore,
(Lp

I(X,M), C(X)) is a commutative CQ∗-algebra. It is clear that Lp
I(X,M) can

be identified with a subspace of Lp(X,µα) for all α ∈ I. The next proposition
describes how the Gelfand transform extends to the case of ∗-semisimple commu-
tative CQ∗-algebras [8].

Proposition 8.3. Let (A,Ao) be a ∗-semisimple commutative CQ∗-algebra with
identity e. Then, there exist a family M of Borel measures on the Hausdorff
compact space X of the characters of Ao and a map Φ : a ∈ A 7→ Φ(a) := â ∈
L2
I (X,M) with the following properties:

(i) Φ extends the Gelfand transform of elements of Ao and Φ(A) ⊃ C(X);
(ii) Φ is linear and injective;
(iii) Φ(ax) = Φ(a)Φ(x) for all a ∈ A, x ∈ Ao;
(iv) Φ(a∗) = Φ(a)∗ for all a ∈ A.

Thus A can be identified with a subspace of L2
I (X,M).

If A is regular; that is, if

∥a∥2 = sup
φ∈SAo (A)

φ(a, a), a ∈ A ,

then Φ is an isometric ∗-isomorphism of A onto L2
I (X,M).

So far we have considered proper CQ∗-algebras. They can be understood as a
particular case of a richer structure where three different involutions are involved.

Definition 8.4. Let A# be a C∗-algebra with norm ∥ · ∥# and involution #. Let
A[∥ ·∥] be a left Banach module over the C∗-algebra A# with isometric involution
∗ and such that A# ⊂ A. Set A♭ = (A#)

∗. We say that {A, ∗,A#,#} is a
CQ∗-algebra if

(i) A# is dense in A with respect to its norm ∥ · ∥;
(ii) Ao := A# ∩ A♭ is dense in A# with respect to its norm ∥ · ∥#;
(iii) (xy)∗ = y∗x∗ for all x, y ∈ Ao;
(iv) ∥x∥# = sup

a∈A,∥a∥≤1

∥xa∥, x ∈ A#.

Since ∗ is isometric, it is easy to see that the space A♭ itself is a C∗-algebra
with respect the norm ∥x∥♭ := ∥x∗∥# and the involution x♭ := (x∗)♯∗.

Remark 8.5. It is quite clear that we can restate the previous definition starting
from a C∗-algebra A♭ and a right module A over A♭, with A♭ ⊂ A, satisfying the
following properties:

(i’) A♭ is dense in A with respect to its norm ∥ · ∥;
(ii’) Ao := A♭ ∩ A# is dense in A♭ with respect to its norm ∥ · ∥♭;
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(iii’) (xy)∗ = y∗x∗ for all x, y ∈ Ao;
(iv’) ∥x∥♭ = sup

a∈A,∥a∥≤1

∥ax∥, x ∈ A♭.

It is then also natural to adopt the notation {A, ∗,A♭, ♭} for indicating a CQ∗-
algebra as it has been done in many papers on this subject (see for instance [10]
or [8]).

According to Definition 8.1, a proper CQ∗-algebra is then a CQ∗-algebra such
that A# = A♭ = Ao and the involutions ∗ and # coincide on Ao.

Remark 8.6. If {A, ∗,A#,#} is a CQ∗-algebra, then (A,Ao) is a Banach quasi
∗-algebra.

The main interest for the structure of CQ∗-algebra comes from the Tomita–
Takesaki theory. We briefly discuss this matter. Further information may be
found in [2, Chap.5] or the original papers quoted there.

We remind the reader that a ∗-algebra Ao with involution # is called a left
Hilbert algebra [23, Section 10.1] if it is a dense subspace in a Hilbert space H
with inner product ⟨·|·⟩ satisfying the following conditions:

(i) For any x ∈ Ao the map y ∈ Ao 7→ xy ∈ Ao is continuous;
(ii) ⟨xy|z⟩ = ⟨y|x#z⟩ for all x, y, z ∈ Ao;
(iii) A2

o := {xy : x, y ∈ A} is total in H;
(iv) The involution x 7→ x# is closable in H.

By (i), for any x ∈ Ao, we denote by Lx the unique continuous linear extension
to H of the map y ∈ Ao 7→ xy ∈ Ao; then, using (ii), it is easy to see that the
map

L : x ∈ Ao 7→ Lx ∈ B(H)

is a bounded ∗-representation of Ao on H. We define

L(Ao) = {Lx : x ∈ Ao}′′.
We denote by S the closure of the operator S0 defined on the dense domain A2

o

by
S0 : y ∈ A2

o 7→ y# ∈ H. (8.1)

Let S = J∆1/2 be the polar decomposition of S. Then, J is an isometric involution
on H and ∆ is a nonsingular positive self-adjoint operator in H such that S =
J∆1/2 = ∆−1/2J and S∗ = J∆−1/2 = ∆1/2J ; J is called the modular conjugation
operator of Ao and ∆ is called the modular operator of Ao.

We define the commutant A′
o of Ao as follows: For any y ∈ D(S∗), we put

Ryx = Lxy, x ∈ Ao, and A′
o = {y ∈ D(S∗) : Ry is bounded }. Then, A′

o is a
right Hilbert algebra in H with involution y 7→ y♭ := S∗y and multiplication
y1y2 := Ry2y1, y1, y2 ∈ A′

o (we do not give explicitly the definition of a right
Hilbert algebra; we refer again to [23, Section 10.1]).

The commutant A′′
o of A′

o is defined by

A′′
o = {x ∈ D(S) : y ∈ A′

o 7→ xy is continuous }.
For any x ∈ A′′

o , we denote by Lx the unique continuous linear operator on H,
such that Lxy = Ryx, y ∈ A′

o. Then, A′′
o is a left Hilbert algebra in H with
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involution S and multiplication x1x2 := Lx1x2, containing Ao. A left Hilbert
algebra Ao is said to be full if Ao = A′′

o .
The Tomita fundamental theorem states that, for every t ∈ R, JL(Ao)

′′J =
L(Ao)

′ and ∆itL(Ao)
′′∆−it = L(Ao)

′′. Let Ao be a full left Hilbert algebra in H,
and let

A00 := {x ∈ ∩α∈CD(∆α) : ∆αx ∈ Ao, for all α ∈ C}.
Then, A00 is a left Hilbert subalgebra in H such that A′′

00 = Ao and JA00 = A00;
{∆α : α ∈ C} is a complex one-parameter group of automorphisms of A00 such
that

(∆αx)# = ∆−αx# and (∆αx)∗ = ∆−αx∗ for all α ∈ C and x ∈ A00.

The left Hilbert subalgebra A00 is called the maximal Tomita algebra of Ao.
Let now Ao be a full left Hilbert algebra with identity e and involution # in H.

Then, as seen above, the commutant A′
o of Ao is a full right Hilbert algebra in H

with (the same) identity and involution ♭. The involution in H is defined by the
modular conjugation operator J . For shortness we put H♭ = A′

o and H# = Ao.
We consider now the system (H, J,H#,#) and define a topological structure in
it. For y ∈ H#,

∥y∥# := ∥Ly∥ = sup
∥x∥≤1

∥yx∥,

where L denotes the regular ∗-representation of Ao in B(H). We also define
∥x∥♭ := ∥Jx∥# for every x ∈ H♭.

The conditions (i) and (iv) of Definition 8.4 are obviously fulfilled, whereas
condition (iii) follows from the known equality (Jx)♭ = Jx# for every x ∈ H#.
The C∗-property for the norm ∥ · ∥# follows easily from the fact that the linear
map y 7→ Ly is a ∗-representation of H# into B(H). The algebras H#[∥ · ∥#] and
H♭[∥y∥♭] are complete.

To conclude that {H, J,H#,#} is a CQ∗-algebra, we need to prove thatH♭∩H#

is dense in H# with respect to ∥ · ∥#. In this full generality, the question is still
open. However, in order to give a partial answer to this problem, the notion of
HCQ∗-algebra has been introduced in [7].

The starting point is a Hilbertian quasi ∗-algebra (A,Ao), by which we simply
mean a Banach quasi ∗-algebra whose norm is Hilbertian (that is, it satisfies the
parallelogram law).

Definition 8.7. A Hilbertian quasi ∗-algebra (A[∥ ·∥],Ao) is said to be a HCQ∗-
algebra if there is another involution # of A such that L∗

x = Lx# and ∥x∥ ≤ ∥Lx∥
for each x ∈ Ao. Here we denote it by (A[∥ · ∥],#).

Suppose that (A[∥ · ∥],#) is a HCQ∗-algebra with involution operator JA; that
is, JAa = a∗, a ∈ A. Then Ao is a left Hilbert algebra in the Hilbert space
H := A[∥ · ∥], whose full left Hilbert algebra A′′

o has a unit u.

The identity map i : Ao[∥ · ∥#] → Ao[∥ · ∥] has a continuous extension î from
the completion A# of Ao[∥ · ∥#] (A# is, of course, a C∗-algebra) into A[∥ · ∥]. We
will suppose that the two norms ∥ · ∥ and ∥ · ∥# are compatible; that is, that the

map î−1 : Ao[∥ · ∥] → A#[∥ · ∥#] is closable. In this case A# is identified with a
dense subspace of A and the following conditions on Ao are fulfilled:
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(a.1) ∥x#x∥# = ∥x∥2# for all x ∈ Ao;
(a.2) ∥x∥ ≤ ∥x∥# for all x ∈ Ao;
(a.3) ∥xy∥ ≤ ∥x∥#∥y∥ for all x, y ∈ Ao.

If (A[∥ · ∥],#) is a HCQ∗-algebra, then (A, JA,A#,#) is a CQ∗-algebra.
A HCQ∗-algebra is called standard if one of the following equivalent conditions

is satisfied (here J denotes the modular conjugation defined after (8.1)):

(i) JA = J .
(ii) ⟨x#|x∗⟩ ≥ 0, for each x ∈ Ao.

From the previous discussion it follows that a HCQ∗-algebra is a CQ∗-algebra
constructed from a left Hilbert algebra. However, so far, we do not know if
standard HCQ∗-algebras do really exist. The following theorem characterizes
Hilbert spaces that can be regarded as standard HCQ∗-algebras.

Theorem 8.8. Let H be a Hilbert space. The following statements are equivalent:

(i) H is a standard HCQ∗-algebra.
(ii) H contains a left Hilbert algebra with unit as dense subspace.
(iii) There exists a von Neumann algebra on H with a cyclic and separating

vector.

We have omitted the details of the whole construction which are quite heavy;
dealing with them here goes beyond the scope of this review. We refer instead
the interested reader to [7] or [27]. The conclusion that we have reached with
Theorem 8.8 is that the family of HCQ∗-algebras is quite rich; it has as many
members of the class of von Neumann algebras for which the construction of the
Tomita–Takesaki theory can be performed.

9. Outcome

In the preceding sections, we have analyzed in detail individual Banach partial
∗-algebras, including those of type (B). The next step is to consider maps from
one Banach partial ∗-algebrainto another one, in particular homomorphisms or
isomorphisms. These include in particular the notion of representation; that
is, a ∗-homomorphism from a given (Banach) partial ∗-algebra into the partial
∗-algebra L†(D,H), the set of all (closable) linear operators X such that D(X) =
D, D(X*) ⊇ D. Here a ∗-homomorphism is a linear map ρ : A → B such
that (i) ρ(x*) = ρ(x)* for every x ∈ A and (ii) whenever x ∈ L(y) in A, then
ρ(x) ∈ L(ρ(y)) in B and ρ(x) ρ(y) = ρ(x y). Now, a privileged role is played by
the well-known GNS representation, and the latter is closely related to the notion
of biweights. In the case of Banach partial ∗-algebras, these objects have been
analyzed in [6] and the outcome is that being of type (B) does not bring much
improvement. Therefore we will not pursue the subject in the present review and
refer the reader to the original paper [6].

Appendix A. Partial inner product spaces

For the convenience of the reader, we have collected here the main features of
partial inner product spaces, keeping only what is needed for reading the paper.
Further information may be found in our monograph [4].
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The general framework is that of a pip-space V , corresponding to the linear
compatibility #; that is, a symmetric binary relation f#g which preserves linear-
ity. We call assaying subspace of V a subspace S such that S## = S, and we
denote by F(V,#) the family of all assaying subspaces of V , ordered by inclusion.
The assaying subspaces are denoted by Vr, Vq, . . ., and the index set is F . By
definition, q ≤ r if and only if Vq ⊆ Vr. Thus we may write

f#g ⇐⇒ ∃ r ∈ F such that f ∈ Vr, g ∈ Vr .

General considerations [12] imply that the family F(V,#) := {Vr, r ∈ F},
ordered by inclusion, is a complete involutive lattice; that is, it is stable under
the following operations, arbitrarily iterated:

. involution: Vr ↔ Vr := (Vr)
#,

. infimum: Vp∧q := Vp ∧ Vq = Vp ∩ Vq, (p, q, r ∈ F )

. supremum: Vp∨q := Vp ∨ Vq = (Vp + Vq)
##.

The smallest element of F(V,#) is V # =
∩

r Vr, and the greatest element is
V =

∪
r Vr.

By definition, the index set F is also a complete involutive lattice; for instance,

(Vp∧q)
# = Vp∧q = Vp∨q = Vp ∨ Vq.

Given a vector space V equipped with a linear compatibility #, a partial inner
product on (V, #) is a Hermitian form ⟨·|·⟩ defined exactly on compatible pairs of
vectors. A partial inner product space (pip-space) is a vector space V equipped
with a linear compatibility and a partial inner product.

From now on, we will assume that our pip-space (V,#, ⟨·|·⟩) is nondegenerate;
that is, ⟨f |g⟩ = 0 for all f ∈ V # implies g = 0. As a consequence, (V #, V ) and
every couple (Vr, Vr), r ∈ F, are a dual pair in the sense of topological vector
spaces [17]. Next we assume that every Vr carries its Mackey topology τ(Vr, Vr);
so that its conjugate dual is (Vr)

× = Vr, for all r ∈ F . Then, r < s implies
Vr ⊂ Vs, and the embedding operator Esr : Vr → Vs is continuous and has dense
range. In particular, V # is dense in every Vr. In what follows, we also assume
the partial inner product to be positive definite, ⟨f |f⟩ > 0 whenever f ̸= 0.

In fact, the whole structure can be reconstructed from a fairly small subset of
F , namely, a generating involutive sublattice J of F(V,#), indexed by J , which
means that

f#g ⇐⇒ ∃ r ∈ J such that f ∈ Vr, g ∈ Vr .

The resulting structure is called an indexed pip-space and denoted simply by
VJ := (V,J , ⟨·|·⟩).

For practical applications, it is essentially sufficient to restrict oneself to the
case of an indexed pip-space satisfying the following conditions:

(i) every Vr, r ∈ J , is a Hilbert space or a reflexive Banach space; so that the
Mackey topology τ(Vr, Vr) coincides with the norm topology;

(ii) there is a unique self-dual, Hilbert, assaying subspace Vo = Vo.
(iii) for every Vr ∈ J , the norm ∥ · ∥r on Vr = V ×

r is the conjugate of the norm
∥ · ∥r on Vr. In particular, the partial inner product ⟨·|·⟩ coincides with
the inner product of Vo on the latter.
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In that case, the indexed pip-space VJ := (V,J , ⟨·|·⟩) is called, respectively, a
lattice of Hilbert spaces (LHS) or a lattice of Banach spaces (LBS). This implies,
in addition, that, for a LHS:

(i) for every pair Vp, Vq ∈ J , the norm on Vp∧q := Vp ∩Vq is equivalent to the
projective norm, given by

∥f∥2p∧q = ∥f∥2p + ∥f∥2q,

(ii) for every pair Vp, Vq ∈ J , the norm on Vp∨q := Vp + Vq, the vector sum, is
equivalent to the inductive norm

∥f∥2p∨q = inf
f=g+h

(
∥g∥2p + ∥h∥2q

)
, g ∈ Vp, f ∈ Vq .

Similar formulas are used in the LBS case, simply omitting the squares. These
norms come from interpolation theory [11].

Note that V # and V themselves usually do not belong to the family {Vr, r ∈
J}, but they can be recovered as

V # =
∩
r∈J

Vr, V =
∑
r∈J

Vr.

A standard, albeit trivial, example is that of a Rigged Hilbert space (RHS) Φ ⊂
H ⊂ Φ# (it is trivial because the lattice F contains only three elements).

Familiar concrete examples are sequence spaces with V = ω, the space of
all complex sequences x = (xn), and spaces of locally integrable functions with
V = L1

loc(R, dx), the space of Lebesgue measurable functions, integrable over
compact subsets.
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23. S. Strǎtilǎ and L. Zsidó, Lectures on von Neumann algebras, Editura Academiei, Bucharest

and Abacus Press, Tunbridge Wells, Kent, 1979.
24. C. Trapani, Bounded elements and spectrum in Banach quasi ∗-algebras, Studia Math. 172

(2006), 249–273.
25. C. Trapani, Quasi ∗-algebras of operators and their applications, Reviews Math. Phys. 7

(1995), 1303–1332.
26. C. Trapani, States and derivations on quasi ∗-algebras, J. Math. Phys. 29 (1988), 1885–

1890.
27. C. Trapani and M. Fragoulopoulou, Locally convex quasi ∗-algebras and their representa-

tions, 2018 (in preparation).
28. A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967.
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