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Abstract. Let A be an algebra and let δ, ε : A → A be two linear map-
pings. A (δ, ε)-double derivation is a linear mapping d : A → A satisfying
d(ab) = d(a)b+ad(b)+δ(a)ε(b)+ε(a)δ(b) (a, b ∈ A). We study some algebraic
properties of these mappings and give a formula for calculating dn(ab). We
show that if A is a Banach algebra such that either is semi-simple or every
derivation from A into any Banach A-bimodule is continuous then every (δ, ε)-
double derivation on A is continuous whenever so are δ and ε. We also discuss
the continuity of ε when d and δ are assumed to be continuous.

1. Introduction and preliminaries

Let A be an algebra. A linear mapping δ : A → A is said to be a derivation if
it satisfies the Leibniz rule δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A. Now suppose
that δ, ε are two ordinary derivations. We see that d = δε satisfies

d(ab) = d(a)b+ ad(b) + δ(a)ε(b) + ε(a)δ(b) (a, b ∈ A). (1.1)

This can be assumed as a generalization of the concept of a derivation.
Now let δ, ε : A → A be two linear mappings. A linear mapping d : A → A is

said to be a (δ, ε)-double derivation if it satisfies (1.1). By a δ-double derivation we
mean a (δ, δ)-double derivation. See [7] for an initial study of δ-double derivations.
Clearly, if d is a derivation then d2 is a d-double derivation, and also d is a 0-
double derivation where 0 denotes the zero mapping. Moreover, if I denotes the
identity mapping on A, then each σ-derivation d : A → A is a (σ − I, d)-double
derivation. Here by a σ-derivation we mean a linear mapping d on A satisfying
d(ab) = d(a)σ(b) + σ(a)d(b) (a, b ∈ A), for some linear mapping σ on A, see
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[4, 6] for more about σ-derivations. Also, every homomorphism ϕ : A → A is a
(ϕ
2
− I, ϕ)-double derivation.
In Section 2, we study some algebraic properties of (δ, ε)-double derivations and

give a formula to calculate dn(ab). Section 3 is devoted to the study of automatic
continuity of (δ, ε)-double derivations on Banach algebras and to extension of
some results of [7]. We will observe that under the assumption of continuity
of any pair of the linear mappings d, δ and ε, what happens for the third one.
Assuming that δ and ε are continuous on A, we show that if every derivation from
A into a Banach A-bimodule is continuous then every (δ, ε)-double derivation on
A is continuous. Also, it is proved that every (δ, ε)-double derivation on a semi-
simple Banach algebra is continuous whenever so are δ and ε. Next we assume
that d and δ are continuous and obtain some results concerning the separating
space of ε. We will show that if d is a continuous (δ, ε)-double derivation on
a commutative unital prime Banach algebra, then ε is continuous whenever δ
is nonzero and continuous. We also obtain some results concerning δ-double
derivations.

2. algebraic properties

Let A be an algebra. Suppose that δ, ε are two linear mappings on A, and
d : A → A is a (δ, ε)-double derivation, that is

d(ab) = d(a)b+ ad(b) + δ(a)ε(b) + ε(a)δ(b) (a, b ∈ A).

For simplicity, we consider a bilinear mapping λ : A×A → A defined by

λ(a, b) = δ(a)ε(b) + ε(a)δ(b) (a, b ∈ A).

Proposition 2.1. Let A be an algebra and let δ, ε be two linear mappings on A.
Suppose that d : A → A is a (δ, ε)-double derivation.

(i) For each idempotent e ∈ A, ed(e)e = −eλ(e, e)e.
Moreover, if A is unital, then
(ii) λ(a, 1) = −ad(1), λ(1, a) = −d(1)a for all a ∈ A, and d(1) = −λ(1, 1);
(iii) λ(ab, 1) = aλ(b, 1), λ(1, ab) = λ(1, a)b for all a, b ∈ A;
(iv) d(1) = 0 if and only if λ(a, 1) = 0 = λ(1, a) for all a ∈ A.

Proof. (i) Let e be an idempotent in A. Then

d(e) = d(e2) = ed(e) + d(e)e+ λ(e, e). (2.1)

Multiplying (2.1) by e gives the result.
(ii) For each a ∈ A,

d(a) = ad(1) + d(a)1 + λ(a, 1). (2.2)

Hence λ(a, 1) = −ad(1). Similarly λ(1, a) = −d(1)a. The last assertion is now
obvious.
(iii) By (ii), for a, b ∈ A we have λ(ab, 1) = −abd(1) = aλ(b, 1), λ(1, ab) =
−d(1)ab = λ(1, a)b.
(iv) It follows from (2.2). �
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If δ, ε are derivations on an algebra A, it is easy to see that δε is a (δ, ε)-double
derivation. Now let δ, ε be derivations and let d be a (δ, ε)-double derivation.
What can we say about d?

Proposition 2.2. Let δ, ε be derivations and let d be a (δ, ε)-double derivation
on an algebra A. Then there exists a derivation D on A such that d = δε+D.

Proof. Straightforward. �

It is well known that every derivation on a commutative Banach algebra maps
it into its radical, see [8]. As a consequence of Proposition 2.2, every (δ, ε)-double
derivation d on a commutative Banach algebra A, for which δ, ε are derivations,
maps into the radical. If moreover, A is semi-simple, then d = 0.

Now we are going to find a formula for dn(ab), where d is a (δ, ε)-double deriva-
tion. This is not as simple as the one for an ordinary derivation. In fact what we
give here is something such as an algorithm to calculate dn(ab).

Let δ, ε be arbitrary linear mappings on an algebra A. We construct a family
of linear mappings {φδ,εn,k}, (n ∈ N, 0 ≤ k ≤ 2n − 1), which is called the binary
family for the ordered pair of linear mappings (δ, ε), as follows.

Write the non-negative integer k in base 2 with exactly n digits, and put δ
in place of 1’s and ε in place of 0’s. For example, if n = 4 then 6 = (0110)2,

10 = (1010)2, φδ,ε4,6 = εδδε = εδ2ε and φδ,ε4,10 = δεδε. When there is no risk of

ambiguity, we simply write φn,k instead of φδ,εn,k. The following lemma is stated in
[6]. We give its proof for the sake of convenience.

Lemma 2.3. Let n ∈ N and let k be a non-negative integer such that 0 ≤ k ≤
2n − 1. Then

(i) δφn,k = φn+1,k+2n;
(ii) εφn,k = φn+1,k;
(iii) φn,kδ = φn+1,2k+1;
(iv) φn,kε = φn+1,2k.

Proof. Write k in the base 2 as (cn . . . c2c1)2, where cj ∈ {0, 1} for j = 1, ..., n.
Then
(i) δφn,k = φn+1,(1cn...c2c1)2 = φn+1,k+2n ;
(ii) εφn,k = φn+1,(0cn...c2c1)2 = φn+1,k;
(iii) φn,kδ = φn+1,(cn...c2c11)2 = φn+1,2k+1;
(iv) φn,kε = φn+1,(cn...c2c10)2 = φn+1,2k. �

Now consider the algebraic tensor product A⊗A. Let δ, ε and d be arbitrary
linear mappings on A. Consider two bilinear mappings (a, b) 7→ d(a)⊗b+a⊗d(b)
and (a, b) 7→ δ(a)⊗ ε(b) + ε(a)⊗ δ(b) from A×A to A⊗A. Then we have two
linear mappings α, β : A⊗A → A⊗A satisfying

α(a⊗ b) = d(a)⊗ b+ a⊗ d(b), (2.3)

β(a⊗ b) = δ(a)⊗ ε(b) + ε(a)⊗ δ(b) (2.4)

for a, b ∈ A.
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Lemma 2.4. If δ, ε and d are linear mappings on an algebra A and α, β are
defined as above, then for each positive integer n

(i) αn(a⊗ b) =
n∑
k=0

(
n

k

)
dk(a)⊗ dn−k(b);

(ii) βn(a⊗ b) =
2n−1∑
k=0

φn,k(a)⊗ φn,2n−1−k(b).

Proof. (i) We proceed by induction. Clearly the equality in (i) holds for n = 1.
Assume that the result is true for the positive integer n. Then form (2.3) we have

αn+1(a⊗ b) = α(
n∑
k=0

(
n

k

)
dk(a)⊗ dn−k(b))

=
n∑
k=0

(
n

k

)
dk+1(a)⊗ dn−k(b) +

n∑
k=0

(
n

k

)
dk(a)⊗ dn+1−k(b)

=
n−1∑
k=0

(
n

k

)
dk+1(a)⊗ dn+1−(k+1)(b) +

(
n

n

)
dn+1(a)⊗ b

+
n−1∑
k=0

(
n

k + 1

)
dk+1(a)⊗ dn+1−(k+1)(b) +

(
n

0

)
a⊗ dn+1(b)

=
n−1∑
k=0

(

(
n

k + 1

)
+

(
n

k

)
)dk+1(a)⊗ dn+1−(k+1)(b)

+

(
n

0

)
a⊗ dn+1(b) +

(
n

n

)
dn+1(a)⊗ b

=
n∑
k=1

(
n+ 1

k

)
dk(a)⊗ dn+1−k(b) +

(
n+ 1

0

)
a⊗ dn+1(b) +

(
n+ 1

n+ 1

)
dn+1(a)⊗ b

=
n+1∑
k=0

(
n+ 1

k

)
dk(a)⊗ dn+1−k(b).

(ii) Obviously, the result is true for n = 1. Let (ii) hold for n. Then from (2.4)
and Lemma 2.3, we have

βn+1(a⊗ b) = β

(
2n−1∑
k=0

φn,i(a)⊗ φn,2n−1−j(b)

)

=
2n−1∑
k=0

δφn,k(a)⊗ εφn,2n−1−k(b) +
2n−1∑
k=0

εφn,k(a)⊗ δφn,2n−1−k(b)

=
2n−1∑
k=0

φn+1,k+2n(a)⊗ φn+1,2n−1−k(b) +
2n−1∑
k=0

φn+1,k(a)⊗ φn+1,2n+1−1−k(b)
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=
2n+1−1∑
k=2n

φn+1,k(a)⊗ φn+1,2n+1−1−k(b) +
2n−1∑
k=0

φn+1,k(a)⊗ φn+1,2n+1−1−k(b)

=
2n+1−1∑
k=0

φn+1,k(a)⊗ φn+1,2n+1−1−k(b)

�

Suppose that δ, ε, d, α and β are as above. Let {ψn,j} (n ∈ N, 0 ≤ j ≤ 2n−1),
be the binary family for (α, β). We calculate {ψn,j} for n = 3.

Example 2.5. Take n = 3. By the definition of {ψn,j} and Lemma 2.4 we have

0 = (000)2,ψ3,0(a⊗ b) = β3(a⊗ b) =
23−1∑
i=0

φ3,i(a)⊗ φ3,23−1−i(b)

1 = (001)2,ψ3,1(a⊗ b) = β2α(a⊗ b) =
22−1∑
i=0

1∑
k=0

(
1

k

)
φ2,i(d

k(a))⊗ φ2,22−1−i(d
1−k(b))

2 = (010)2,ψ3,2(a⊗ b) = αβα(a⊗ b)

=
21−1∑
r=0

1∑
k=0

21−1∑
i=0

(
1

k

)
φ1,r(d

k(φ1,i(a)))⊗ φ1,21−1−r(d
1−k(φ1,21−1−i(b)))

3 = (011)2,ψ3,3(a⊗ b) = βα2(a⊗ b) =
21−1∑
i=0

2∑
k=0

(
2

k

)
φ1,i(d

k(a))⊗ φ1,21−1−i(d
1−k(b))

4 = (100)2,ψ3,4(a⊗ b) = αβ2(a⊗ b) =
1∑

k=0

22−1∑
i=0

(
1

k

)
dk(φ2,i(a))⊗ d1−k(φ2,22−1−i(b))

5 = (101)2,ψ3,5(a⊗ b) = αβα(a⊗ b)

=
1∑

k=0

21−1∑
i=0

1∑
s=0

(
1

k

)(
1

s

)
dk(φ1,i(d

s(a))⊗ d1−kφ1,21−1−i(d
1−s(b))

6 = (110)2,ψ3,6(a⊗ b) = α2β(a⊗ b) =
2∑

k=0

21−1∑
i=0

(
2

k

)
dk(φ1,i(a))⊗ d2−k(φ1,21−1−i(b))

7 = (111)2,ψ3,7(a⊗ b) = α3(a⊗ b) =
3∑

k=0

(
3

k

)
dk(a)⊗ d3−k(b).

Lemma 2.6. (α + β)n =
2n−1∑
j=0

ψn,j.
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Proof. The equality holds for n = 1. Suppose that we have the equality for n.
Then

(α + β)n+1(a⊗ b) = (α + β)((α + β)n(a⊗ b)) = (α + β)(
2n−1∑
j=0

ψn,j)(a⊗ b)

= α(
2n−1∑
j=0

ψn,j(a⊗ b)) + β(
2n−1∑
j=0

ψn,j(a⊗ b))

=
2n−1∑
j=0

ψn+1,j+2n(a⊗ b).

�

Let A ba an algebra and d a (δ, ε)-double derivation on A. Suppose that
σ : A ⊗ A → A, is the linear mapping defined by σ(a ⊗ b) = ab (a, b ∈ A). If
α, β are defined as above, then it is easy to see that d(ab) = σ((α + β)(a ⊗ b)).
In other words, d(σ(a⊗ b) = σ((α + β)(a⊗ b)), that is dσ = σ(α + β).

Theorem 2.7. Let d be a (δ, ε)-double derivation on an algebra A. Then

dn(ab) = σ((α + β)n(a⊗ b)) = σ(
2n−1∑
j=0

ψn,j(a⊗ b)). (2.5)

Proof. We apply an induction argument. The result is clear for n = 1. Let (2.5)
hold for n. Then

dn+1(ab) = d(dn(ab)) = d(σ(α + β)n(a⊗ b)) = σ(α + β)(α + β)n(a⊗ b))
= σ((α + β)n+1(a⊗ b)).

The last equality follows from Lemma 2.6. �

3. Automatic continuity

Let A be a Banach algebra and d a (δ, ε)-double derivation on A. We recall
that for a linear mapping T : A → A, the separating space of T is the set

S(T ) = {a ∈ A : ∃{an} ⊆ A s.t. an → 0, T (an)→ a}.

By the closed graph theorem T is continuous if and only if S(T ) = {0}.
We are going to find out under which conditions the continuity of any pair of

the linear mappings d, δ and ε, implies the continuity of the third one. First
we assume that δ and ε are continuous and observe what happens for d. In the
second step we assume continuity of d and one of δ or ε, say δ, and observe
what happens for the third one. We also prove some results concerning δ-double
derivations. For the first step we need some preliminaries.

Let A be a Banach algebra and X a Banach A-bimodule. A linear mapping
S : A −→ X is said to be left-intertwining if the mapping

b 7−→ aS(b)− S(ab), A −→ X ,
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is continuous for each a ∈ A, and right-intertwining if the mapping

a 7−→ S(a)b− S(ab), A −→ X ,
is continuous for all b ∈ A. A linear mapping S : A −→ X is intertwining if it
is both left- and right-intertwining. For more about these objects see [1, Section
2.7].

Theorem 3.1. [2, Theorem 2.1] Let A be a Banach algebra. Suppose that each
derivation from A to a Banach A-bimodule is continuous. Then each left inter-
twining map from A to each Banach A-bimodule is continuous.

Theorem 3.2. Let A be a Banach algebra. Suppose that each derivation from
A into a Banach A-bimodule is continuous. Then each (δ, ε)-double derivation d
on A with continuous δ and ε is continuous.

Proof. Since δ and ε are continuous, it is easy to see that d is an intertwining
map when we consider A as a Banach A-bimodule in a natural way. Thus, by
Theorem 3.1, d is continuous. �

It is a well known result due to B. E. Johnson and A. M. Sinclair [5] that every
derivation on a semi-simple Banach algebra is continuous. Here we give a similar
result for double derivations.

Theorem 3.3. Let A be a semi-simple Banach algebra and let δ, ε be continuous
linear mappings on A. Then every (δ, ε)-double derivation on A is continuous.

Proof. Consider A as a Banach A-bimodule with it’s own product. Let d be a
(δ, ε)-double derivation on A. Thus d is an intertwining map and the separating
space S(d) of d is a separating ideal of A, see [1, Theorem 5.2.24 ]. Therefore
by [1, Lemma 5.2.25 ], S(d) is finite dimensional and hence it contains a nonzero
idempotent e, whenever S(d) 6= {0}, [1, Corollary 5.2.26 ]. Let an → 0 and
d(an)→ e. Then

d(ean) = ed(an) + d(e)an + λ(e, an)

which tends to e as n → ∞. But ean ∈ S(d) and d is continuous on the finite
dimensional Banach algebra S(d). Hence e = 0, a contradiction. �

In [7, Theorem 3.7] it is proved that every ∗-(δ, ε)-double derivation on a C∗-
algebra, with continuous δ and ε, is continuous. Also in [7, Theorem 3.8] it is
proved that a (δ, ε)-double derivation on a C∗-algebra is continuous whenever δ
and ε are continuous linear ∗-mappings. The next Corollary is a more general
result.

Corollary 3.4. Let δ, ε be continuous linear mappings on a C∗-algebra A. Then
every (δ, ε)-double derivation on A is continuous.

Now we begin the second step.
Let B and C be subsets of A. By BC we mean the set {bc : b ∈ B, c ∈ C}.
We recall that, the left (resp. right) ideal of A generated by B is the linear span
of AB (resp. BA). The closed left (resp. right) ideal of A generated by B is
defined to be the closure of the linear span of AB (resp. BA). Clearly, if A is
commutative then the two sided ideal generated by B is the linear span of AB.



110 S. HEJAZIAN, H. MAHDAVIAN RAD, M. MIRZAVAZIRI

Theorem 3.5. Let d be a (δ, ε)-double derivation on a Banach algebra A. If d
and δ are continuous then S(ε)δ(A) = δ(A)S(ε) = {0}.

Proof. Let a ∈ A, b ∈ S(ε). There is a sequence {bn} in A converging to 0 with
lim
n→∞

ε(bn) = b. We have

d(abn) = ad(bn) + d(a)bn + δ(a)ε(bn) + ε(a)δ(bn).

Continuity of d and δ implies that δ(a)b = 0. Similarly bδ(a) = 0. �

Corollary 3.6. Let d be a (δ, ε)-double derivation on a commutative unital prime
Banach algebra A. If d and δ are continuous and δ is nonzero, then ε is also
continuous.

Proof. We have δ(A)S(ε) = {0}. Let I1 and I2 be the ideals generated by δ(A)
and S(ε), respectively. Then I1I2 = {0}. Since I1 6= {0}, I2 and hence S(ε) is
zero. �

Finally, we give some results concerning continuity of δ-double derivations.

Theorem 3.7. If d is a continuous δ-double derivation on a Banach algebra A
then S(δ)δ(A) = δ(A)S(δ) = {0}. Moreover, for each a ∈ S(δ), a2 = 0.

Proof. The same argument as in Theorem 3.5 gives that S(δ)δ(A) = δ(A)S(δ) =
{0}. Now let an → 0 and δ(an)→ a. Then

0 = lim
n→∞

d(an
2) = lim

n→∞
and(an) + d(an)an + 2δ(an)2,

which implies that a2 = 0. �

Corollary 3.8. If d is a continuous δ-double derivation on a commutative unital
semi-prime Banach algebra A, then δ is continuous.

Proof. Consider I to be the closed ideal generated by S(δ) in A. Note that I
contains S(δ) since A is unital. Commutativity of A and Theorem 3.7 imply
that I is a closed nil and hence nilpotent ideal, see [3]. Since A is semi-prime,
I = {0}. It follows that S(δ) = {0}. �

Corollary 3.9. If D is a derivation on a Banach algebra A such that D2 is
continuous, then S(D) is nilpotent.

Proof. When D is a derivation D2 is a D-double derivation and S(D) is a closed
nil and hence nilpotent ideal. �
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