A characterization of A_7 and M_{11} , II

By Hiroshi KIMURA

1. Introduction

In this paper we shall prove the following theorem.

THEOREM 1. Let G be a doubly transitive group on the set $\Omega = \{1, 2, \dots, n\}$. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomorphic to a simple group PSL(2, q), $q \equiv 3$ or 5 (mod 8), then one of the following holds:

- (1) G has a regular normal subgroup,
- (2) n=7 and G is the alternating group A_7 of degree seven,
- (3) n=12 and G is the Mathieu group M_{11} of degree eleven.

In [17] Yamaki proved Theorem in the case q=5. Therefore we may assume $q \ge 11$.

Let X be a subset of a permutation group. Let F(X) denote the set of all fixed points of X and $\alpha(X)$ be the number of points in F(X). $N_{\mathcal{G}}(X)$ acts on F(X). Let $\chi_1(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let us assume G has no regular normal subgroup. Let $G_{1,2}$ be PSL(2, q), $q \equiv 3$ or 5 (8). Let $K = \langle \tau, \tau' \rangle$ be a Sylow 2-subgroup of $G_{1,2}$. Let I be an involution of G with the cycle structure $(1, 2) \cdots$. Then I normalizes $G_{1,2}$ and hence we may assume I normalizes K and $[I, \tau] = 1$. Let τ fix i points of Ω , say 1, 2, \cdots , i. Every involution of G is conjugate to an involution in $IG_{1,2}$.

LEMMA 1. It may be assumed that the action of I on $G_{1,2}$ is trivial or an outer automorphism.

PROOF. Since $q-1 \neq 0$ (8), $[P\Gamma L(2, q): PGL(2, q)]$ is odd. Let ϕ be the homomorphism of $\langle I, G_{1,2} \rangle$ into Aut $G_{1,2}$. If ker $\phi \neq 1$, we can replace I by an element $(\neq 1)$ of ker ϕ .

LEMMA 2. If I does not centralize $G_{1,2}$, then G has just one class of involutions.

PROOF. Since $\langle I, G_{1,2} \rangle = PGL(2, q)$ has two classes of involutions, every involution in $IG_{1,2}$ is conjugate to I.

Let *d* be the number of elements in $G_{1,2}$ inverted by *I*. Set $\mathcal{I} = [G_{1,2}: C_{g}(\tau) \cap G_{1,2}]$. Let β be the number of involutions with the cycle structures $(1, 2) \cdots$ which are conjugate to τ . Let $g_{1}^{*}(2)$ and $g^{*}(2)$ be number of involutions which fix only the point 1 and which fix no point of Ω , respectively. Then $n = i(\beta i - \beta + \gamma)/\gamma$, $d = \beta + g_{1}^{*}(2)$ if *n* is odd and $d = \beta + g^{*}(2)/(n-1)$ if *n* is even (see [9]).

LEMMA 3. Assume I centralizes $G_{1,2}$. Then every involution is conjugate to I or $I\tau$. If G has two classes of involutions, then $\alpha(I)=i$ and $\beta=1$ or $\alpha(I\tau)=i$ and $\beta=\tau$. If G has just one class of involutions, then $\beta=\tau+1$.

PROOF. Trivial.

LEMMA 4. Assume I does not centralize $G_{1,2}$. If $q\equiv 3$ (8), then $d=\beta = q(q+1)/2$ and $\gamma = q(q-1)/2$. If $q\equiv 5$ (8), then $d=\beta = q(q-1)/2$ and $\gamma = q(q+1)/2$.

PROOF. $\langle I, G_{1,2} \rangle$ is PGL(2, q). Therefore all involutions in $IG_{1,2}$ are conjugate and $d = \beta$. The other part is trivial.

LEMMA 5. $\chi(\tau)$ has a regular normal subgroup.

PROOF. It is trivial that $C_{G_{1,2}}(\tau)/\langle \tau \rangle$ is a dihedral group of order $2 \times (\text{odd number})$. Assume $\chi(\tau)$ has no regular normal subgroup. Then $\chi(\tau)_{1,2}$ is of even order. If $|\chi(\tau)_{1,2}|=2$, then by [8] $\chi(\tau)$ is (1) A_5 , i=6 or (2) $P\Gamma L(2, 8), i=28$. If $|\chi(\tau)_{1,2}|>2$, then by [9] and [10] $\chi(\tau)$ is (3) $S_5, i=5$ or (4) PSL(2, 11), i=11. If $\chi(\tau)$ has just one class of involutions, then G has also just one class of involutions.

Case (1) $\chi(\tau)=A_5$. All involutions are conjugate. Assume *I* does not centralizes $G_{1,2}$. Then $n=30(q\pm 1)/(q\mp 1)+6$ by Lemma 4. Thus $(q\mp 1)/2$ is a factor of 15 and hence q=11 and n=42 or q=29 and n=34. Let *P* be a Sylow *q*-subgroup of $G_{1,2}$. Then $[G_1: N_{G_1}(P)]$ is a factor of (n-1)(q+1) and it is divisible by 2(n-1), which contradicts the Sylow's theorem. Next assume *I* centralizes $G_{1,2}$. Since all involutions are conjugate, $i(i-1)/7 = 60/q(q\pm 1)$ is an integer, which is contradiction.

Case (2) $\chi(\tau) = P\Gamma L(2, 8)$. All involutions of G are conjugate. If I does not centralize $G_{1,2}$ then by Lemma $4 \ n = 28 \cdot 27 \ (q \pm 1)/(q \mp 1) + 28$. Thus $(q \mp 1)/2$ is a factor of $27 \cdot 7$ and hence q = 19, 43, 379, 13 or 53. By [4] and [7, II. 8. 27] $G_1 = 0(G_1) G_{1,2}$ since n-1 is not divisible by q. By a theorem of Brauer-Wielandt [15] $|0(G_1)| |C_{0(G_1)}(K)| = |C_{0(G_1)}(\tau)|^3$. Thus n-1 is a factor of $(i-1)^3 = 27^3$. This is a contradiction.

Next assume I centralizes $G_{1,2}$. If q=3 (8), then 2i(i-1)/q(q-1) must be integral since $\beta=\gamma+1$. Thus q(q-1)/2 is a factor of $7\cdot 27$. This is

a contradiction. If $q \equiv 5$ (8), then $28 \cdot 27/q(q+1)$ must be integral. This is a contradiction.

Case (3) $\chi(\tau)=S_5$. If *I* does not centralize $G_{1,2}$, then $n=5\cdot 4(q\pm 1)/(q\mp 1)+5$. Thus q=11 and n=29. Let *P* be a Sylow 11-subgroup of *G*. $\alpha(P)=18$ or 7. By a theorem of Witt $|N_G(P)|=18\cdot 17\cdot 11\cdot 5$ or $7\cdot 6\cdot 11\cdot 5$. Since |G| is not divisible by 17, $\alpha(P)=7$ and $|N_G(P)|=7\cdot 6\cdot 11\cdot 5$. Let *Q* be a Sylow 7-subgroup of $N_G(P)$. Then [Q, P]=1. Thus $\alpha(Q)>2$. This is a contradiction. Next assume *I* centralizes $G_{1,2}$. If $\gamma=1$ or $\gamma+1$, then $5\cdot 4/q(q\mp 1)$ must be integral. This is a contradiction.

Case (4) $\chi(\tau) = PSL(2, 11)$. All involutions of G are conjugate. If I does not centralize $G_{1,2}$, then $n=11\cdot 10(q\pm 1)/(q\mp 1)+11$. Thus q=11 and n=143 or q=109 and n=119. If I centralizes $G_{1,2}$, then $11\cdot 10/q(q\pm 1)$ must be integral since $\beta=\gamma+1$. Thus q=11 and n=123. Let P be a Sylow (n-1)/2-subgroup of G_1 . $C_{g_1}(P)=P$. By the theorem of Sylow P is normal in G_1 . Thus K normalizes P and there exists an involution which centralizes P. This contradicts $\alpha(\tau)=11$.

This completes the proof of Lemma 5.

LEMMA 6. If every involution is conjugate to τ , then I does not centralize $G_{1,2}$.

PROOF. Assume I centralizes $G_{1,2}$. If G has an element of order 4, then so does $\langle I, G_{1,2} \rangle$, which is a contradiction. Thus a Sylow 2-subgroup of G is elementary abelian. By [14] G has a normal subgroup G' of odd index isomorphic to $PSL(2, 2^m)$, the Janko group of order 175, 560 or a group of Ree type since G has one class of involutions. By [7, II. 8. 27] $G' \neq PSL(2, 2^m)$. If $C_{G'}(\tau) = \chi_1(\tau)$, then $\chi(\tau)$ is cyclic of odd order, which is a contradiction. Thus $C_{G'}(\tau)/\chi_1(\tau)$ has a regular normal subgroup since $\chi(\tau)$ contains a regular normal subgroup by Lemma 5. Since $C_{G'}(\tau)/\langle \tau \rangle$ is simple, it is regular and it must be a regular normal subgroup of $\chi(\tau)$, which is a contradiction.

LEMMA 7. If I does not centralize $G_{1,2}$, then there is no K-orbit of length 2, i.e., $F(K) = F(\tau)$.

PROOF. By Lemma 4 every involution is conjugate to τ . Let $\{a, b\}$ be a K-orbit contained in $F(\tau)$. Let $\Omega^{(2)}$ be the set of unordered pairs of points in Ω . Then G is transitive on $\Omega^{(2)}$ and $G_{(1,2)} = \langle I, G_{1,2} \rangle$. If $\alpha(\langle I, \tau \rangle) \leq 1$, then K satisfies the condition of Witt and $N_G(K)$ is transitive on the set of fixed points of K on $\Omega^{(2)}$. Therefore there must exist an element g of $N_G(K)$ with $\{1, 2\}^g = \{a, b\}$, which is a contradiction. If $\alpha(\langle I, \tau \rangle) = \alpha(K)$, then every four-subgroup is conjugate to K. Since $\langle I, K \rangle$ is dihe-

dral, $\chi(\tau)$ has two classes of involutions and $K\chi_1(\tau)/\chi_1(\tau)$ is not a central involution by [11]. Thus K is not normal in any Sylow 2-subgroup of $C_q(\tau)$ and hence a Sylow 2-subgroup of G contains no normal four-group. By [3, Th. 5. 4. 10] it is dihedral or semi-dihedral. If *i* is even, i=4 and $\chi(\tau)=S_4$ since $\chi(\tau)$ contains a regular normal subgroup by Lemma 5. Since $n=i(\beta(i-1)+\gamma)/\gamma$ with $\beta=q(q\pm 1)/2$ are $\gamma=q(q\mp 1)/2$, $4\cdot 3(q\pm 1)/(q\mp 1)$ must be integral and hence q=7 or 5, which is a contradiction. If *i* is odd, $\chi(\tau)=0(\chi(\tau)) C_{\chi(\tau)}(IK\chi_1(\tau))$ by [1] and [11]. By [4] $\chi(\tau)/0(\chi(\tau))$ is 2-group and $C_q(\tau)$ is 2'-closed. By [2] and [12] this is a contradiction.

3. The case n is odd

Since $\chi(\tau)$ contains a regular normal subgroup by Lemma 5, $\alpha(C_{G_{1,2}}(\tau))$ is odd.

LEMMA 8. If $g_1^*(2) \neq 0$, then $\alpha(G_{1,2})$ is odd.

PROOF. Let *a* be the point in $F(\langle I, C_{\sigma_{1,2}}(\tau) \rangle)$. If *a* is contained in $F(G_{1,2})$, then the lemma is trivial. Let \mathcal{A} be the $G_{1,2}$ -orbit containing *a*. Since *I* centralizes $G_{1,2}$ by Lemma 4, \mathcal{A} is contained in F(I). Since $C_{\sigma_{1,2}}(\tau)$ is maximal in $G_{1,2}, G_{1,2,a} = C_{\sigma_{1,2}}(\tau)$. Let *x* be an element of $N_{\sigma_{1,2}}(K)$ of order 3. Then $a^{*}(\neq a)$ is contained in F(K). Thus $|F(K) \cap \mathcal{A}| > 2$ and $\alpha(\langle K, I \rangle) > 2$. This is a contradiction.

By Lemma 6, 8 and [11] we may assume $g_1^*(2)=0$, *i.e.*, every involution is conjugate to τ and I does not centralize $G_{1,2}$. Since by Lemma 7 $F(K) = F(\tau)$, $(C_G(\tau) \cap N_G(K)) \chi_1(\tau)/\chi_1(\tau)$ is 2-transitive on $F(\tau)$. Since $\chi(\tau)$ contains a regular normal subgroup, a Sylow 2-subgroup of $\chi(\tau)$ is cyclic or (generalized) quaternion. Thus a Sylow 2-subgroup of G is dihedral of order 8. This is a contradiction by [4] and [12].

4. The case n is even

By [5] we may assume i > 2.

LEMMA 9. I centralizes $G_{1,2}$ and $\alpha(K) < \alpha(\tau)$.

PROOF. If I does not centralizes $G_{1,2}$, $F(K) = F(\tau)$ by Lemma 7. If $F(K) = F(\tau)$, then G contains a regular normal subgroup by [13].

By this lemma $\alpha(\tau) > \alpha(K)$. By Lemma 6 $g^*(2) \neq 0$. Let N be a normal subgroup of $C_{\sigma}(\tau)$ containing $\chi_1(\tau)$ such that $N/\chi_1(\tau)$ is a regular normal subgroup of $\chi(\tau)$. Let S be a Sylow 2-subgroup of N. Since i>2 and $\chi_1(\tau)$ is cyclic, $N=S \times O(\chi_1(\tau))$ and S is elementary abelian of order 2i.

Since $C_{\mathfrak{g}}(\tau)$ is solvable, by [6] $\chi(\tau)_{1,2}$ is cyclic. Since $C_{\mathfrak{g}_{1,2}}(\tau)$ is dihedral, $|\chi(\tau)_{1,2}| = 2$. Moreover $i = \alpha(K)^2$.

LEMMA 10. S is a unique abelian 2-subgroup of $C_{g}(\tau)$ of order 2i.

PROOF. Let T be a maximal abelian 2-subgroup of $C_q(\tau)$ containing τ' . Since $i = \alpha(K)^2$, $|T| = 4\sqrt{i}$. If $|T| \ge |S|$, then i = 4 and $n = 4 \cdot 3 \cdot \beta/7 + 4$. Since $\gamma = q(q \pm 1)/2$ and $\beta = \gamma$ or 1, $\gamma = \beta$ and n = 16. Thus q = 11, 13 or 27. If q = 11 or 13, let P be a Sylow q-subgroup of $G_{1,2}$. If q = 27, let P be a Sylow 13-subgroup of $G_{1,2}$. There exists just one non-trivial P-orbit in Ω . Since [I, P] = 1, $\alpha(I) \ge 5$. This contradicts $\alpha(I) \le 4$.

LEMMA 11. Every involution of S which is conjugate to τ is already conjugate to τ in $N_{G}(S)$.

PROOF. Let $\eta = \tau^{g}$ be an involution of S. Since S is abelian, $S^{g^{-1}}$ is contained in $C_{g}(\tau)$. By Lemma 10 g is contained in $N_{g}(S)$.

COROLLARY 11. $|N_{G}(S)| = i^{2}(i-1)|C_{G_{1,2}}(\tau)|.$

PROOF. Trivial.

COROLLARY 12. $\beta = \gamma$, $g^*(2) = n-1$ and $n=i^2$.

PROOF. By Lemma 3 $\beta = \gamma$ or $\beta = 1$. By Corollary 11 *n* in divisible by i_{\perp}^2 . If $\beta = 1$, $n = i(i-1+\gamma)/\gamma$, which is a contradiction.

By [4] and [7, II. 8. 27] let G'_1 be a normal subgroup of G_1 such that $G'_1/0(G_1)$ is $PSL(2, q^s)$ and $G_1/0(G_1)$ is a subgroup of $P\Gamma L(2, q^s)$.

LEMMA 13. Every involution of G_1 acts trivially on $O(G_1)$.

PROOF. Assume $0(G_1) \neq 1$. By a theorem of Brauer-Wielandt [15] $|0(G_1)||C_{0(G_1)}(K)|^2 = |C_{0(G_1)}(\tau)|^3$. Since $0(G_1) \cap G_{1,2} = 1$, $|0(G_1)|$ is a factor of i-1. Assume $0(G_1)$ is not contained in $C_{G_1}(\tau)$. If $q \equiv 5$ (8), $[0(G_1): C_{0(G_1)}(\tau)]$ is a factor of q(q+1) since $[G_1: C_G(\tau)]$ is a factor of (i+1)q(q+1). Let p be a prime factor of $[0(G_1): C_{0(G_1)}(\tau)]$. On the other hand $[G_1/0(G_1): C_{G_1}(\tau) \cap O(G_1)/O(G_1)]$ is divisible by q(q+1)/2. Thus $[G_1: C_{G_1}(\tau)] = (i+1)q(q+1)/2$ must be divisible by pq(q+1)/2, which is a contradiction. Similarly we have a contradiction when $q \equiv 3$ (8). Thus $0(G_1)$ is contained in $C_{G_1}(\tau)$.

If s=1, then $G'_1=0(G_1)\times G_{1,2}$ by this lemma, which is a contraction. Thus $s\geq 3$.

LEMMA 14. If $q \equiv 5$ (8), $i+1=q^{s}(q^{s}+1)/q(q+1)$ and $i-1=|0(G_{1})|(q^{s}-1)|G_{1}|/(q-1)|G_{1}'|$. If $q \equiv 3$ (8), $i+1=q^{s}(q^{s}-1)/q(q-1)$ and $i-1=|0(G_{1})|(q^{s}+1)|G_{1}|/(q+1)|G_{1}'|$. $\alpha(K)-1=\sqrt{i}-1=|0(G_{1})||G_{1}/G_{1}'|$.

PROOF. This sollows from Lemma 13.

If $q \equiv 5$ (8), $\sqrt{i} + 1 = (i-1)/(\sqrt{i} - 1) = (q^s - 1)/(q-1)$ and hence $\sqrt{i} \equiv 0(q)$. Thus $i+1\equiv 1$ (q). If $q\equiv 3$ (8), again $\sqrt{i} \equiv 0$ (q) and $i+1\equiv 1$ (q.) This contradicts $s \geq 3$. This completes a proof of Theorem 1.

Department of Mathematics Hokkaido University

References

- [1] G. GLAUBERMAN: Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- [2] D. GORENSTEIN: Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math. 21 (1969), 335-357.
- [3] D. GORENSTEIN: Finite Groups, Harper and Row, New York, 1967.
- [4] D. GORENSTEIN and J. H. WALTER: The characterization of finite groups with dihedral Sylow 2-subgroups I, II, III, J. Algebra 2 (1965), 85-151. 218-270, 334-393.
- [5] C. HERING: Zwifach transitive Permutations gruppen in deren 2 die maximale Anzahl von Fixpunkten von Involutionen ist, Math. Z. 104 (1968), 150-174.
- [6] B. HUPPERT: Zweifach transitive auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
- [7] B. HUPPERT: Endliche Gruppen I, Springer, Berlin, 1967.
- [8] N. ITO: On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J. 27 (1966), 409-417.
- [9] H. KIMURA: A characterization of PSL(2, 11) and S₅, J. Math. Soc. Japan 24 (1972), 397-404.
- [10] H. KIMURA: On some doubly transitive groups of degree even such that a Sylow 2-subgroup of the stabilizer of any two points is cyclic J. Math. Kyoto Univ. 13 (1973), 21-30.
- [11] H. KIMURA: A remark on 2-transitive groups of odd degree, Hokkaido Math. J. 3 (1974), 305.
- [12] H. LÜNEBURG: Charakterisierungen der endlichen desargusschen projektiven Ebenen, Math. Z. 85 (1964), 419–450.
- [13] E. SHULT: On doubly transitive groups of even degree (to appear).
- [14] J. H. WALTER: The characterization of finite groups with abelian Sylow 2subgroups, Ann. Math. 89 (1969), 405-514.
- [15] H. WIELANDT: Beziehungen zwische den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146-158.
- [16] H. WIELANDT: Finite permutation groups, Academic Press, New York, 1964.
- [17] H. YAMAKI: A characterization of the simple groups of A₇ and M₁₁, J. Math. Soc. Japan 23 (1971), 130-136.

(Received February 6, 1974)