A characterization of A7 and My, 11

By Hiroshi KiMmura

1. Introduction

In this paper we shall prove the following theorem.

THEOREM 1. Let G be a doubly transitive group on the set 2={1, 2,
o n}. If the stabilizer G., of points 1 and 2 is isomorphic to a simple
group PSL(2,q), g=3 or 5 (mod 8), then one of the following holds :

(1) G has a regular normal subgroup,

(2) n=7 and G is the alternating group A, of degree seven,

(3) n=12 and G is the Mathieu group M,, of degree eleven.

In Yamaki proved Theorem in the case g=5. Therefore we may
assume g>11.

Let X be a subset of a permutation group. Let F(X) denote the set
of all fixed points of X and a(X) be the number of points in F(X). Nyz(X)
acts on F(X). Let X (X) and X(X) be the kernel of this representation
and its image, respectively. The other notation is standard.

2. Preliminaries

Let us assume G has no regular normal subgroup. Let G,, be PSL(2,
Q), g=3 or 5 (8). Let K=<z, 7> be a Sylow 2-subgroup of G,,. Let I be

an involution of G with the cycle structure (1, 2)---. Then I normalizes
G,,; and hence we may assume I normalizes K and [I,7]=1. Let r fix ¢
points of £, say 1,2, ---, 7. Every involution of G is conjugate to an in-

volution in IG,,.

LemMA 1. It may be assumed that the action of I on G,, is trivial
or an outer automorphism.

Proor. Since ¢—1#0 (8), [PI'L(2,q): PGL(2,q)] is odd. Let ¢ be
the homomorphism of <I, G,,> into Aut G;,. If ker ¢#1, we can replace
I by an element (#1) of ker ¢.

LemMA 2. If I does not centralize G,,, then G has just one class of
involutions.

ProoFr. Since <I,G,,> =PGL(2,q) has two classes of involutions,
every involution in IG,, is conjugate to I. '
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Let d be the number of elements in G,, inverted by I. Set 7=[G.:
Cs(t)NGi,]. Let B be the number of involutions with the cycle structures
(1,2) --- which are conjugate to z. Let ¢ (2) and ¢*(2) be number of in-
volutions which fix only the point 1 and which fix no point of 2, respec-
tively. Then n=i(Bi—B+7)[1,d=B+9¢(2) if n is odd and d=pg+g¢*(2)/
(n—1) if n is even (see [9].

LEMMA 3. Assume I centralizes G5,,. Then every involution is con-
jugate to I or Ir. If G has two classes of involutions, then a(lI)=i and
B=1 or a(It)=i and B=71. If G has just one class of involutions, then
B=r+1.

Proor. Trivial

LEMMA 4. Assume I does not centralize G,,. If q=3 (8), then d=§
=q(g+1)/2 and T=q(g—1)/2. If q=5 (8), then d=B=q(g—1)/2 and T=
q(g+1)/2.

Proor. <I,G,,> is PGL(2, q). Therefore all involutions in IG,, are
conjugate and d=p. The other part is trivial.

LeEMMA 5. X(z) has a regular normal subgroup.

Proor. It is trivial that Cg (r)/<t> is a dihedral group of order
2 x (odd number). Assume X(r) has no regular normal subgroup. Then
A(c)h, is of even order. If |X(¢).]=2, then by X(z) is (1) A;, i=6 or
(2) PI'L(2, 8),i=28. If |X(z).|>2, then by [9] and X(z) is (3) Ss,i=5
or (4) PSL(2,11),7=11. If X(r) has just one class of involutions, then G
has also just one class of involutions.

Case (1) %(r)=As. All involutions are conjugate. Assume I does not
centralizes G,,. Then n=30(gx1)/(gF1)+6 by Thus (¢gF1)/2
is a factor of 15 and hence ¢=11 and =42 or ¢=29 and n=34. Let P
be a Sylow g-subgroup of Gi,. Then [G,: Ny (P)] is a factor of (n—1)(g
+1) and it is divisible by 2(n—1), which contradicts the Sylow’s theorem.
Next assume I centralizes G;,. Since all involutions are conjugate, ¢ ({—1)/7
=60/q(¢g+1) is an integer, which is contradiction.

Case (2) X(z)=PI'L(2,8). All involutions of G are conjugate. If I
does not centralize G, , then by n=28+27(q+1)/(gF1)+28. Thus
(gF1)/2 is a factor of 27-7 and hence ¢=19, 43, 379, 13 or 53. By and
[7, II. 8. 27] G;=0(G,) G, since n—1 is not divisible by g. By a theorem
of Brauer-Wielandt 10(G))| |Coey (K)| =|Cya,(2)]>. Thus n—1 is a factor
of ({—1°=27. This is a contradiction.

Next assume I centralizes G,,. If ¢=3 (8), then 2:{(i—1)/g(¢g—1) must
be integral since f=7+1. Thus ¢(¢g—1)/2 is a factor of 7-27. This is
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a contradiction. If g=5 (8), then 28-27/¢(¢+1) must be integral. This is
a contradiction.

Case (3) %2(z)=S;. If I does not centralize G,,, then n=5-4(¢g+1)/
(gF1)+5. Thus ¢g=11 and n=29. Let P be a Sylow 11-subgroup of G.
a(P)=18 or 7. By a theorem of Witt |Ng(P)|=18-17-11:5 or 7-6-11-5.
Since |G| is not divisible by 17, a(P)=7 and |Ng(P)|=7-6-11-5. Let Q
be a Sylow 7-subgroup of Ng(P). Then [Q, Pl=1. Thus a(Q)>2. This
is a contradiction. Next assume I centralizes G,,. If =1 or 7+1, then
5-4/g(gF1) must be integral. This is a contradiction.

Case (4) Xx(r)=PSL(2,11). All involutions of G are conjugate. If I
does not centralize G,,, then n=11-10(¢+=1)/(¢gF1)+11. Thus ¢=11 and
n=143 or ¢=109 and n=119. If I centralizes G,,, then 11-10/g(g+1)
must be integral since =7+1. Thus ¢g=11 and #=123. Let P be a Sylow
(n—1)/2-subgroup of G,. Cg (P)=P. By the theorem of Sylow P is normal
in G,. Thus K normalizes P and there exists an involution which cen-
tralizes P. This contradicts a(r)=11.

This completes the proof of

LeEMMA 6. If every involution is conjugate to t, then I does not cen-
tralize G, ,.

Proor. Assume I centralizes G,,. If G has an element of order 4,
then so does <1, G,,>, which is a contradiction. Thus a Sylow 2-subgroup
of G is elementary abelian. By G has a normal subgroup G’ of odd
index isomorphic to PSL(2,2™), the Janko group of order 175, 560 or
a group of Ree type since G has one class of involutions. By [7, II. 8. 27]
G'#PSL(2,2™). If Cg(r)=X(r), then X(z) is cyclic of odd order, which is
a contradiction. Thus Cg.(r)/%;(z) has a regular normal subgroup since %(z)
contains a regular normal subgroup by Lemma 5. Since Cg (7)/<z> is
simple, it is regular and it must be a regular normal subgroup of X(z),
which is a contradiction.

LEmMA 7. If I does not centralize G,,, then there is no K-orbit of
length 2, i.e., F(K)=F(r).

Proor. By every involution is conjugate to 7. Let {a, b}
be a K-orbit contained in F(z). Let 2® be the set of unordered pairs of
points in 2. Then G is transitive on 2 and Gy u=</1,G,.>. If a(<],
7>)<1, then K satisfies the condition of Witt and Ng(K) is transitive on
the set of fixed points of K on 2. Therefore there must exist an element
g of Ng(K) with {1, 2}?={a, b}, which is a contradiction. If a(<ZI,z>)=
a(K), then every four-subgroup is conjugate to K. Since <I, K> is dihe-



42 H. Kimura

dral, X(r) has two classes of involutions and KX,(z)/%,(zr) is not a central
involution by [11]. Thus K is not normal in any Sylow 2-subgroup of
Cs(r) and hence a Sylow 2-subgroup of G contains no normal four-group.
By [3, Th. 5.4.10] it is dihedral or semi-dihedral. If 7 is even, i=4 and
X(r)=S, since X(r) contains a regular normal subgroup by Lemma 5. Since
n=i(BE—1)+7)[1 with B=q(g£1)/2 are T=q(qgF1)/2, 4-3(g+1)/(gF1) must
be integral and hence q 7 or 5, which is a contradiction If ¢ is odd,
X(r)=0(X(z)) Cyoy (IKX;(7) by [1] and [11]. By [4] %(z)/0(X(z)) is 2-group and
Cy4(z) is 2'-closed. By [2] and [12] this is a contradlctlon

3. The case n is odd

- Since X(r) contains a regular normal subgroup by a(Cg, (7))
is odd.

LEmMA 8. If gf (2)#0, then a(G,,) is odd.

ProOOF. Let a be the point in F(<I, Cg (r)>). If a is contained in
F(G,,), then the lemma is trivial. Let 4 be the G, -orbit containing
a. Since I centralizes G,, by 4 is contained in F(I). Since
Cq, () is maximal in Gy, Gi2,.=Ce, ,(r). Let x be an element of Ny,  (K)
of order 3. Then a*(#a) is contained in F(K). Thus |F(K)N4|>2 and
a(<K,I>)>2. This is a contradiction.

By 8 and we may assume g;f (2)=0, i.e., every involu-
tion is conjugate to = and I does not centralize G,,. Since by
F(K)=F(r), (Ce(r)N Ng(K)) %(z)/%(r) is 2-transitive on F(r). Since X(r)
contains a regular normal subgroup, a Sylow 2-subgroup of Z(z) is cyclic

or (generalized) quaternion. Thus a Sylow 2-subgroup of G is dihedral of
order 8. This is a contradiction by [4] and [12].

4., The case n is even

By we may assume >2.
LEMMA 9. [ centralizes G,, and a(K)<a(7).

Proor. If I does not centralizes G,,, F(K)=F(z) by If
F(K)=F(r), then G contains a regular normal subgroup by [13].

By this lemma a(z)>a(K). By 9*%(2)#0. Let N be a normal
subgroup of Cg(r) containing X,(c) such that NJX(zr) is a regular normal
subgroup of X(z). Let S be a Sylow 2-subgroup of N. Since 7>2 and
Xi(z) is cyclic, N=Sx0(X,(z)) and S is elementary abelian of order 2:.

Since Cg(z) is solvable, by [6] X(z),,. is cyclic. Since Cy, ,(r) is dihedral,
|X(7)s] =2. Moreover i=a(K). '
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LeMMA 10. S is a unique abelian 2-subgroup of Cg(r) of order 2i.

Proor. Let T be a maximal abelian 2-subgroup of Cg(r) containing
v’. Since i=a(K), |T|=4v7. If |T|>|S|, then i=4 and n=4-3-8/r+4.
Since ’=gq(q*=1)/2 and 8=7 or 1, =8 and n=16. Thus ¢=11, 13 or 27.
If g=11 or 13, let P be a Sylow g-subgroup of G.,. If ¢g=27, let P be
a Sylow 13-subgroup of G,,. There exists just one non-trivial P-orbit in
2. Since [, P]=1, a(I)>5. This contradicts a(I)<4.

LEMMA 11.  Every involution of S which is conjugate to t is already
conjugate to t in Ng(S).

Proor. Let 7=z’ be an involution of S. Since S is abelian, S*~" is
contained in Cg(r). By g is contained in Ng(S).

COROLLARY 11. |Ng(S)|=¢*(i—1)|Cq, (7).

Proor. Trivial.

COROLLARY 12. B=7, ¢*(2)=n—1 and n=1"

Proor. By B=7 or f=1. By [Corollary 11| » in divisible by
2. If =1, n=i(i—1+7)/r, which is a contradiction.

By and [7, II. 8. 27] let G; be a normal subgroup of G, such that

1/0(Gy) is PSL(2,¢") and G,/0(G,) is a subgroup of PI'L(2, q")./
LeMMA 13.  Every involution of G, acts trivially on 0(G)).

Proor. Assume 0(G,)#1. By a theorem of Brauer-Wielandt
|0(GY)||Coay (K)*=|Cog (7)]>.  Since 0(G)NGi,=1, |0(G)| is a factor of
i—1. Assume 0(G)) is not contained in Cy (c). If g=5 (8), [0(G)): Coa, ()]
is a factor of g(q+1) since [G;: Cy(c)] is a factor of (+1)g(g+1). Let p
be a prime factor of [0(G)): Cye,(r)]. On the other hand [G,/0(G),): Cg,(7)
0(G,)/0(G))] is divisible by g(g+ 1)/2. Thus [G;:Cg ()] =(@+1)g(g+1)/2
must be divisible by pg(g+1)/2, which is a contradiction. Similarly we
have a contradiction when ¢g=3 (8). Thus 0(G,) is contained in Cg (7).
0(G,) is contained in Cg (7).

If s=1, then G{=0(G,)xG,, by this lemma, which is a contraction.
Thus s>3.

LemMa 14. If g=5 (8), i+1=¢%(¢*+1)/q(g+1) and i—1=1|0(G))|(g*—
DIGl/g=DIG|. If q=3 (8), i+1=¢"(¢°~1)/q(g—1) and i—1=|0(G))|(g"+
DIGl/(g+DIGI.  a(K)—1=47i —1=[0(G)|G\/G].

Proor. This sollows from

If g=5 (8), Vi +1=({—1)/Wi —1)=(¢"—1)/(g—1) and hence vi =0(q).
Thus i+1=1(g). If ¢=3 (8), again V7 =0(q) and i+1=1 (¢q.) This con-
tradicts s>3. ‘
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This completes a proof of [Theorem 1.
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