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1. Introduction

In this paper we shall prove the following theorem.
THEOREM 1. Let G be a doubly transitive group on the set \Omega=\{1,2,

\ldots,\ulcorner n\} . If the stabilizer G_{1,2} of points 1 and 2 is isomorphic to a simple
group PSL(2, q), q\equiv 3 or 5 (mod 8), then one of the following holds:

(1) G has a regular normal subgroup,
(2) n=7 and G is the alternating group A7 of degree seven,
(3) n=12 and G is the Mathieu group M_{11} of degree elevm.
In [17] Yamaki proved Theorem in the case q=5. Therefore we may

assume q\geq 11 .
Let X be a subset of a permutation group. Let F(X) denote the set

of all fixed points of X and \alpha(X) be the number of points in F(X). N_{G}(X)

acts on F(X). Let \chi_{1}(X) and \chi(X) be the kernel of this representation
and its image, respectively. The other notation is standard.

2. Preliminaries

Let us assume G has no regular normal subgroup. Let G_{1,2} be PSL(2,
q), q\equiv 3 or 5 (8). Let K=<\tau, \tau’>be a Sylow 2-subgroup of G_{1,2} . Let I be
an involution of G with the cycle structure (1, 2) \cdots . Then I normalizes
G_{1,2} and hence we may assume I normalizes K and [/, \tau]=1 . Let \tau fix i
points of \Omega, say 1, 2, \cdots , i. Every involution of G is conjugate to an in-
volution in IG_{1,2} .

LEMMA 1. It may be assumed that the action of I on G_{1,2} is trivial
or an outer automorphism.

PROOF. Since q-1\not\equiv 0(8) , [P\Gamma L(2, q): PSL (2,q)] is odd. Let \emptyset be
the homomorphism of <I, G_{1,2}>into Aut G_{1,2} . If ker \phi\neq 1 , we can replace
I by an element (\neq 1) of ker \phi .

Lemma 2. If I does not centralize G_{1,2} , then G has just one class of
involutions.

PROOF. Since <I, G_{1,2}>=PGL(2, q) has two classes of involutions,
every involution in IG_{1,2} is conjugate to I.
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Let d be the number of elements in G_{1,2} inverted by I. Set \gamma=[G_{1,2} :
C_{G}(\tau)\cap G_{1,2}] . Let \beta be the number of involutions with the cycle structures
(1, 2) \cdots which are conjugate to \tau . Let g_{1}^{*}(2) and g^{*}(2) be number of in-
volutions which fix only the point 1 and which fix no point of 12, respec-
tively. Then n=i(\beta i-\beta+\gamma)/\gamma, d=\beta+g_{1}^{*}(2) if n is odd and d=\beta+g^{*}(2)/

(n –1) if n is even (see [9]).

LEMMA 3. Assume I centralizes C\tau_{1,2} . Then every involution is con-
jugate to I or It. If G has two classes of involutions, then \alpha(I)=i and
\beta=1 or \alpha(I\tau)=i and \beta=\gamma . If G has just one class of involutions, then
\beta=\gamma+1 .

PROOF. Trivial.
Lemma 4. Assume I does not centralize G_{1,2} . If q\equiv 3(8) , then d=\beta

=q(q+1)/2 and \gamma=q(q-1)/2 . If q\equiv 5(8) , thm d=\beta=q(q-1)/2 and \mathcal{T}=

q(q+1)/2.
PROOF. <I, G_{1,2}>isPGL(2, q) . Therefore all involutions in IG_{1,2} ar

conjugate and d=\beta . The other part is trivial.
e

Lemma 5. \chi(\tau) has a regular normal subgroup.
PROOF. It is trivial that C_{G_{1,2}}(\tau)/<\tau> is a dihedral group of order

2\cross (odd number). Assume \chi(\tau) has m regular normal subgroup. Then
\chi(\tau)_{1,2} is of even order. If |\chi(\tau)_{1,2}|=2 , then by [8] \chi(\tau) is (1) A_{5} , i=6 or
(2) P\Gamma L(2,8), i=28. If |\chi(\tau)_{1,2}|>2 , then by [9] and [10] \chi(\tau) is (3) S_{5} , i=5
or (4) PSL(2, 11), i=11 . If \chi(\tau) has just one class of involutions, then G
has also just one class of involutions.

Case (1) \chi(\tau)=A_{5} . All involutions are conjugate. Assume I does not
centralizes G_{1,2} . Then n=30(q\pm 1)/(q\mp 1)+6 by Lemma 4. Thus (q\mp 1)/2

is a factor of 15 and hence q=11 and n=42 or q=29 and n=34. Let P
be a Sylow q-subgroup of G_{1,2} . Then 1G_{1} : N_{G_{i}}(P)] is a factor of (n-1) (q

+1) and it is divisible by 2 (n –1), which contradicts the Sylow’s theorem.
Next assume I centralizes G_{1,2} . Since all involutions are conjugate, i(i-1)/\gamma

=60/q(q\pm 1) is an integer, which is contradiction.
Case (2) \chi(\tau)=P\Gamma L(2,8) . All involutions of G are conjugate. If I

does not centralize C \bigvee_{1,2} then by Lemma 4 n=28\cdot 27(q\pm 1)/(q\mp 1)+28 . Thus
(q\mp 1)/2 is a factor of 27 \cdot 7 and hence q=19,43,379, 13 or 53. By [4] and
[7, II. 8. 27] G_{1}=0(G_{1})G_{1,2} since n –1 is not divisible by q. By a theorem
of Brauer-Wielandt [15] |0(G_{1})||C_{0(G_{1})}(K)|=|C_{0(G_{1})}(\tau)|^{3} . Thus n–1 is a factor
of (i-1)^{3}=27^{3} . This is a contradiction.

Next assume I centralizes G_{1,2} . If q\equiv 3(8), then 2i(i-1)/q(q-1) must
be integral since \beta=\gamma+1 . Thus q(q-1)/2 is a factor of 7\cdot 27 . This is
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a contradiction. If q\equiv 5(8) , then 28 \cdot 27/q(q+1) must be integral. This is
a contradiction.

Case (3) \chi(\tau)=S_{5} . If I does not centralize G_{1,2} , then n=5\cdot 4(q\pm 1)f

(q\mp 1)+5 . Thus q=11 and n=29. Let P be a Sylow 11-subgroup of G_{-}

\alpha(P)=18 or 7. By a theorem of Witt |N_{G}(P)|=18\cdot 17\cdot 11\cdot 5 or 7 \cdot 6\cdot 11\cdot 5 .
Since |G| is not divisible by 17, \alpha(P)=7 and |N_{G}(P)|=7\cdot 6\cdot 11\cdot 5 . Let Q
be a Sylow 7-subgroup of N_{G}(P) . Then [Q, P]=1 . Thus \alpha(Q)>2 . This
is a contradiction. Next assume I centralizes G_{1,2} . If \mathcal{T}=1 or \gamma+1 , then
5 \cdot 4/q(q\mp 1) must be integral. This is a contradiction.

Case (4) \chi(\tau)=PSL(2, 11) . All involutions of G are conjugate. If I
does not centralize G_{1,2} , then n=11\cdot 10(q\underline{-1^{I}-}1)/(q\mp 1)+11 . Thus q=11 and
n=143 or q=109 and n=119. If I centralizes G_{1,2} , then 11\cdot 10/q(q\pm 1)

must be integral since \beta=\mathcal{T}+1 . Thus q=11 and n=123. Let P be a Sylow
(n-1)/2-subgroup of G_{1} . C_{G_{1}}(P)=P. By the theorem of Sylow P is normal
in G_{1} . Thus K normalizes P and there exists an involution which cen-
tralizes P. This contradicts \alpha(\tau)=11 .

This completes the proof of Lemma 5.
Lemma 6. If every involution is conjugate to \tau, then I does not cen-

tralize G_{1,2} .
PROOF. Assume I centralizes G_{1,2} . If G has an element of order 4,

then so does <I, G_{1,2}> , which is a contradiction. Thus a Sylow 2-subgr0up
of G is elementary abelian. By [14] G has a normal subgroup G’ of odd
index isomorphic to PSL(2,2^{m}) , the Janko group of order 175, 560 or
a group of Ree type since G has one class of involutions. By [7, II. 8. 27]
G’\neq PSL(2,2^{m}) . If C_{G’}(\tau)=\chi_{1}(\tau) , then \chi(\tau) is cyclic of odd order, which is
a contradiction. Thus C_{G’}(\tau)/\chi_{1}(\tau) has a regular normal subgroup since \chi(\tau\rangle

contains a regular normal subgroup by Lemma 5. Since C_{G’}(\tau)/<\tau> is
simple, it is regular and it must be a regular normal subgroup of \chi(\tau),
hih i diiwcsacontracton.

Lemma 7. If I does not centralize G_{1,2} , thm there is no K-Orbit of
length 2, i.e. , F(K)=F(\tau) .

PROOF. By Lemma 4 every involution is conjugate to \tau . Let \{a, b\}

be a K-0rbit contained in F(\tau) . Let \Omega^{(2)} be the set of unordered pairs of
points in \Omega . Then G is transitive on \Omega^{(2)} and G_{\{1,2\}}=<I, G_{1,2}> . If \alpha(<I,
\tau>)\leq 1 , then K satisfies the condition of Witt and N_{G}(K) is transitive on
the set of fixed points of K on \Omega^{(2)} . Therefore there must exist an element
g of N_{G}(K) with \{1, 2\}^{g}=\{a, b\} , which is a contradiction. If \alpha(<L\tau>)=

\alpha(K), then every four-subgroup is conjugate to K. Since <I, K>is dihe-
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dral, \chi(\tau) has two classes of involutions and K\chi_{1}(\tau)/\chi_{1}(\tau) is not a central
involution by [11]. Thus K is not normal in any Sylow 2-subgroup of
C_{G}(\tau) and hence a Sylow 2-subgroup of G contains no normal four-group.
By [3, Th. 5. 4. 10] it is dihedral or semi-dihedral. If i is even, i=4 and
\chi(\tau)=S_{4} since \chi(\tau) contains a regular normal subgroup by Lemma 5. Since
n=i(\beta(i-1)+\gamma)/\gamma with \beta=q(q\pm 1)/2 are \mathcal{T}=q(q\mp 1)/2,4\cdot 3(q\pm 1)/(q\mp 1) must
be integral and hence q=7 or 5, which is a contradiction. If i is odd,
\chi(\tau)=0(\chi(\tau))C_{\chi(\tau)}(IK\chi_{1}(\tau)) by [1] and [11]. By [4] \chi(\tau)/0(\chi(\tau)) is 2-group and
C_{G}(\tau) is 2’-closed. By [2] and [12] this is a contradiction.

3. The case \bm{n} is odd

Since \chi(\tau) contains a regular normal subgroup by Lemma 5, \alpha(C_{G_{1,2}}(\tau))

is odd.
Lemma 8. If g_{1}^{*}(2)\neq 0, thm \alpha(G_{1,2}) is odd.
PROOF. Let a be the point in F(<I, C_{G_{1,2}}(\tau)>) . If a is contained in

F(G_{1,2}) , then the lemma is trivial. Let \Delta be the G_{1,2}-0rbit containing
a. Since I centralizes G_{1,2} by Lemma 4, \Delta is contained in F(I). Since
C_{G_{1,2}}(\tau) is maximal in G_{1,2} , G_{1,2,a}=C_{G_{1,2}}(\tau) . Let x be an element of N_{G_{1,2}}(K)

of order 3. Then a^{x}(\neq a) is contained in F(K). Thus |F(K)\cap\Delta|>2 and
\alpha(<K, I>)>2 . This is a contradiction.

By Lemma 6, 8 and [11] we may assume g_{1}^{*}(2)=0, i.e. , every involu-
tion is conjugate to \tau and I does not centralize G_{1,2} . Since by Lemma 7
F(K)=F(\tau) , (C_{G}(\tau)\cap N_{G}(K))\chi_{1}(\tau)/\chi_{1}(\tau) is 2-transitive on F(\tau) . Since \chi(\tau)

contains a regular normal subgroup, a Sylow 2-subgroup of \chi(\tau) is cyclic
or (generalized) quaternion. Thus a Sylow 2-subgroup of G is dihedral of
order 8. This is a contradiction by [4] and [12].

4. The case n is even

By [5] we may assume i>2 .
LEMMA 9. I centralizes G_{1,2} and \alpha(K)<\alpha(\tau) .
PROOF. If I does not centralizes G_{1,2} , F(K)=F(\tau) by Lemma 7. If

F(K)=F(\tau) , then G contains a regular normal subgroup by [13].
By this lemma \alpha(\tau)>\alpha(K) . By Lemma 6 g^{*}(2)\neq 0 . Let N be a normal

subgroup of C_{G}(\tau) containing \chi_{1}(\tau) such thAt N/\chi_{1}(\tau) is a regular normal
subgroup of \chi(\tau) . Let S be a Sylow 2-subgroup of N. Since i>2 and
\chi_{1}(\tau) is cyclic, N=S\cross 0(\chi_{1}(\tau)) and S is elementary abelian of order 2z.

Since C_{G}(\tau) is solvable, by [6] \chi(\tau)_{1,2} is cyclic. Since C_{G_{1,2}}(\tau) is dihedral,
|\chi(\tau)_{1,2}|=2 . Moreover i=\alpha(K)^{2} .
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LEMMA 10. S is a unique abelian 2-subgroup of C_{G}(\tau) of order 2i.
PROOF. Let T be a maximal abelian 2-subgroup of C_{G}(\tau) containing

\tau’ . Since i=\alpha(K)^{2}, |T|=4\sqrt{i} If |T|\geq|S| , then i=4 and n=4\cdot 3\cdot\beta/\gamma+4 .
Since \gamma_{=q}(q\pm 1)/2 and \beta=\gamma or 1, \mathcal{T}=\beta and n=16. Thus q=11,13 or 27.
If q=11 or 13, let P be a Sylow q-subgroup of G_{1,2} . If q=27, let P be
a Sylow 13-subgroup of G_{1,2} . There exists just one non-trivial P-0rbit in
\Omega . Since [I, P]=1, \alpha(I)\geq 5 . This contradicts \alpha(I)\leq 4 .

Lemma 11. Every involution of S which is conjugate to \tau is already
conjugate to \tau in N_{G}(S) .

PROOF. Let \eta=\tau^{g} be an involution of S. Since S is abelian, p^{-1} is
contained in C_{G}(\tau) . By Lemma 10 g is contained in N_{G}(S) .

COROLLARY 11. |N_{G}(S)|=i^{2}(i-1)|C_{G_{1,2}}(\tau)| .
PROOF. Trivial.
COROLLARY 12. \beta=\mathcal{T}, g^{*}(2)=n-1 and n=i^{2} .
PROOF. By Lemma 3 \beta=\gamma or \beta=1 . By Corollary 11 n in divisible by

i_{-}^{2} . If \beta=1 , n=i(i-1+\gamma)/\gamma, which is a contradiction.
By [4] and [7, II. 8. 27] let G_{1}’ be a normal subgroup of G_{1} such that

G_{1}’/0(G_{1}) is PSL(2, q^{s}) and G_{1}/0(G_{1}) is a subgroup of P\Gamma L(2, q)s .
Lemma 13. Every involution of G_{1} acts trivially on 0(G_{1}) .
PROOF. Assume 0(G_{1})\neq 1 . By a theorem of Brauer-Wielandt [15]

|0(G_{1})||C_{0(G_{1})}(K)|^{2}=|C_{0(G_{1})}(\tau)|^{3} . Since 0 (G_{1})\cap G_{A,2}=1 , |0(G_{1})| is a factor of
i-1. Assume 0 (G_{1}) is not contained in C_{G_{1}}(\tau) . If q\equiv 5(8) , [0(G_{1}):C_{0(G_{1})}(\tau)]

is a factor of q(q+1) since [G_{1} : C_{G}(\tau)] is a factor of (i+1)q(q+1). Let p
be a prime factor of [0(G_{1}):C_{0(G_{1})}(\tau)] . On the other hand [G_{1}/0(G_{1}):C_{G_{1}}(\tau)

0(G_{1})/0(G_{1})] is divisible by q(q+1)/2. Thus [G_{1} : C_{G_{1}}(\tau)]=(i+1)q(q+1)/2

must be divisible by pq(q+1)/2, which is a contradiction. Similarly we
have a contradiction when q\equiv 3(8) . Thus 0 (G_{1}) is contained in C_{G_{1}}(\tau).
0 (G_{1}) is contained in C_{G_{1}}(\tau) .

If s=1, then G_{1}’=0(G_{1})\cross G_{1,2} by this lemma, which is a contraction.
Thus s\geq 3 .

LEMMA 14. If q\equiv 5(8) , i+1=q^{s}(q^{s}+1)/q(q+1) and i-1=|0(G_{1})|(q^{\delta}-

1)|G_{1}|/(q-1)|G_{1}’| . If q\equiv 3(8) , i+1=q^{s}(q^{s}-1)/q(q-1) and i-1=|0(G_{1})|(q^{s}+

1)|G_{1}|/(q+1)|G_{1}’| . \alpha(K)-1=\sqrt{i}-1=|0(G_{1})||G_{1}/G_{1}’| .
PROOF. This sollows from Lemma 13.
If q\equiv 5(8), \sqrt{i}+1=(i-1)/(\sqrt{i}-1)=(q^{s}-1)/(q-1) and hence \sqrt{i}\equiv 0(q).

Thus i+1\equiv 1(q) . If q\equiv 3(8), again \sqrt{i}\equiv 0(q) and i+1\equiv 1(q.) This con-
tradicts s\geq 3 .
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This completes a proof of Theorem 1.
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Hokkaido University
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