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1. Introduction

Nakano’s theorem [6], which states that a boundedly and locally order
complete topological vector lattice (E, C_{ \vee}^{},) is complete, is one of the deepest
results in the theory of topological vector lattices. It is known from [16,

(13.9)] that the converse of Nakano’s theorem holds for the topology
o(E, E’) of uniform convergence on all order-intervals in E’ . Therefore it
is interesting to find some characterizations for the topology \mathscr{T} to be
o(E, E’) where (E, C, \mathscr{T}) is only assumed to be fa locally solid space. The
purpose of this paper is to give such characterizations in terms of some
special continuous linear mappings.

Definitions and some remarkable propertie\dot{s} of ordered sequence vector
spaces, which we shall need in what follows, are explained in section 2.

Cone-absolutely summing mappings were first considered by Schaefer
[12] and Schlotte.rbeck in the Banach lattice case, and were extended by
Walsh [13] to the case of locally solid spaces. Using a characterization of
cone-absolutely summing mappings defined on a locally solid space (E, C,.\mathscr{T}),

we obtain a necessary and sufficient condition for \mathscr{T} to be o(E, E’). A
connection between the nuclearity and the topology \sigma(E, E’) is given by
Theorem 3.7.

In section 4 we define L-prenuclear seminorms in terms of the notion of
cone-absolutely summing mappings, and then it is shown that \mathscr{T}=o(E, E’)

if and only if each continuous seminorm is L-prenuclear. On the other
hand, it is known from Schaefer [12, p. 178] that the notion of prenuclear
seminorm is useful for the investigation of nuclearity. A connection
between prenuclear seminorms and absolutely summing mappings is given
in this section.

L-nuclear mappings are defined by means of L-prenuclear seminorms.
Another characterization of \mathscr{T} to be o(E, E’) is given in terms of L-nuclear
mappings. In particular, the identity map is L-nuclear if and only if
\mathscr{T}=o(E, E’) and E’ has an order unit. It is amusement to compare this
result with the Dvoretzky and Rogers theorem. Similarly prenuclear linear
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mappings are defined in terms of prenuclear seminorms. A characterization
of nuclearity is given by means of prenuclear linear mappings. An in-
teresting property of prenuclear linear mappings is that the identity map
on X (a locally convex space) is prenuclear if and only if X is normable
and finite dimensional. As a consequence of this result, we obtain the
theorem of Dvoretzky and Rogers.

Section 6 is devoted to a studying of lattice properties of L-nuclear
mappings and of cone-absolutely summing mappings, of course the domain
and range spaces are assumed to be locally convex Riesz sapces.

In the final section, we are studying the factorization of continuous
linear mappings.

Throughout this paper, (E, C, \mathscr{T}) and (F, K, \mathscr{P}) are always assumed to
be ordered convex spaces, while X and Y are locally convex spaces. E^{*}

denotes the algebraic dual, E’ denoes the topological dual of (E, \mathscr{T}), C^{*} is
the set of all positive linear functionals on E, while C’ is the dual cone
of C, that is C’=C^{*}\cap E’ . Also L(X, Y) denotes the vector space of all
linear mappings of X into Y, the subspace consisting of continuous linear
mappings is \mathscr{L}(X, Y) .

Terminology and notation concerning ordered vector spaces will follow
[16], while [11] will serve as our reference for material on topological vector
spaces, the background material concerning absolutely summing mappings
can be found in [9].

I wish to express my warmest gratitude to Professor S. Kakutani for
many valuable discussions during my visit in Yale University.

2. Prelimsnary results of ordered vector spaces

Let (E, C) be an ordered vector space with a positive cone C, and let
p be a seminorm on E. p is said to be strongly monotone if

y \leq x\leq z\Rightarrow p(x)\leq\max\{p(y),p(z)\} ;

and p is called a Riesz seminorm if it satisfies the following conditions:
(i) -u\leq x\leq u\Rightarrow p(x)\leq p(u) ;
(ii) for any x\in E and \epsilon>0 there exists a u\in C with -u\leq x\leq u such

that p(u)<p(x)+\epsilon .
It is easy to see that our definition of Riesz seminorms coincides with

the usual definition in the Riesz space (i.e. vector lattice) case.
Let V be a subset of E. Define {1

F(V)=(V+C)\cap(V-C) ;
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S(V)=\cup\{[-u, u] : u\in V\cap C\} ;

D(V)=\{x\in V:x=\lambda x_{1}-(1-\lambda)x_{2} , \lambda\in[0,1] , x_{1} , x_{2}\in V\cap C\} .

V is said to be order-convex (resp. solid, decomposable) if V=F(V) (resp.
V=S(V), V=D(V)). It is clear that a seminorm p is strongly monotone
(resp. a Riesz seminorm) if and only if its open unit ball is order-convex
(resp. solid). A topology \mathscr{T} on E is said to be locally solid (resp. locally
decomposable) if it admits a neighbourh()od base at 0 consisting of convex
and solid (resp. convex and decomposable) sets ; and (E, C, \mathscr{T}) is called
a locally solid (resp. locally decomposable) space if \mathscr{T} is locally solid (resp.

locally decomposable). It should be noted that for a locally solid space
(E, C, \mathscr{T}), (E, C) need not be a vector lattice; but locally solid spaces share
a number of important properties with locally convex Riesz spaces (i.e. ,

locally convex vector lattices) (see [13] and [16]).

Let (E, C, \mathscr{T}) be a locally o convex space (i.e. , C is a normal cone in
(E, \mathscr{T})), E=C-C and suppose that C’d is a neighbourhood base at 0 con-
sisting of 0-convex and circled sets. Define

S(\mathscr{U})=\{S(V):V\in \mathscr{U}\} ;

D(^{o}\mathscr{M})=\{D(V):V\in 01l\}

The topology determined by S(\%) (resp. D(\%)), denoted by \mathscr{T}_{S} (resp. -\cdot J7_{D}),

is called the locally solid (resp. locally decomposable) topology on E associated
with \mathscr{T}r \mathscr{T}_{S} (resp. \mathscr{T}_{D}) is the smallest locally solid (resp. locally decom-
posable) topology on E which is finer than .\mathscr{T} . Since \mathscr{T} is locally 0-convex,

it follows that \mathscr{T}_{S}=\mathscr{T}_{D} . Let V be in \mathscr{U} and p_{V} the gauge of V. We
define, for each x\in E, that

p_{V,D}(x)= \inf\{p_{V}(x_{1})+p_{V}(x_{2}):x_{1}, x_{2}\in C with x=x_{1}-x_{2}\} ;

p_{V,S}(x)= \inf\{p_{V}(u):u\in C with -u\leq x\leq u\}

Then
p_{V,D}(u)=p_{V,S}(u)=p_{V}(u) for all u\in C ,

and p_{V,D} (resp. p_{V,S}) is the gauge of D(V) (resp. S(V) ); therefore \mathscr{T}_{S} is
determined by \{p_{V,S} : V\in^{o}d\} , or by \{p_{V,D} : V\in 0\swarrow l\} (see Walsh [13]). According
to the above remark, each p_{V,S} is a Riesz seminorm. For further informa-
tion about the locally solid spaces and the topologies \mathscr{T}_{S} and \mathscr{T}_{D}, we refer
the reader to [16] or [13].
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Suppose now that [E, C, \mathscr{P}) is an ordered convex space whose dual is
E’, and that E=C-C and E’=C’-C’, where C’ is the dual cone of C.
Then, by a result of Namioka (see [16]), \sigma(E, E’) is a locally 0-convex topology
and is determined by the family \{p_{f}:f\in C’\} of monotone seminorms, where
each p_{f} is defined by

p_{f}(x)=|f(x)| (x\in E) .

By the above remark, \sigma_{S}(E, E’) is determined by the family \{p_{f,S}:f\in C’\} as
well as by \{p_{f,D} :f\in C’\} of seminorms, where p_{f,S} and p_{f,D} are given by

p_{f,S}(x)=inf\{f(u):u\in C, x\in[-u, u]\}

p_{f,D}(x)=inf \{f(u+w):u , w\in C, x=u-w\} (x\in E) .

On the other hand, for any f\in C’ , let

q_{f}(x)= \sup\{g(x):g\in E’, -f<<g\sim<f\} (x\in E) .
Then the family \{q_{f}:f\in C’\} of seminorms determines the topology o(E, E’)
of uniform convergence on all order-intervals in E’ (see Peressini [7]).

A trivial modification of [14] yields the following more general result,
but for completeness we shall give the entire proof.

LEMMA 2. 1 Let (E, C, \mathscr{T}) be an ordered convex space such that
E=C-C and E’=C’-C’. For each f\in C_{\backslash }’

, let q_{f}, p_{f,S} be as &fifined above,
and let

W_{f}=\{x\in E:p_{f}(x)=|f(x)|\leq 1\} and V_{f}=\{x\in E:q_{f}(x)\leq 1\}

Thm the following assertion holds:
(a) \overline{D(W_{f})}=\overline{S(V_{f})}=V_{f}, hence q_{f}\leq p_{f,S} and o(E, E’)\leq\sigma_{S}(E, E’) ;
(b) if, in Mition, E’ is order-convex in (E^{*}, C^{*}), thm p_{f,S}=p_{s,D}=q_{f}

and thus \sigma_{S}(E E’)=o(E E’) .,,
Proof, (a) We first note that D(W_{f})\subset S(W_{f}) and that p_{f,S} and p_{f,D}

are the gauges of S(W_{f}) and D(W_{f}) respectively. Also it is not hard to
see that q_{f}\leq p_{f,S} ; consequently S(W_{f})\subset V_{f} . As V_{f} is the polar of {g\in E’ :
-f_{\sim}<g_{\sim}<f\}=[-f,f] , V_{f} is \mathscr{T}-closed, and thus \overline{D(W_{f})}\subseteq\overline{S(W_{f}}) \subseteq V_{f} .

In order to verify that V_{f}\subseteq\overline{D(W_{f})}, it is sufficient to show, by the
bipolar theorem, that (D(W_{f}))^{o}\subseteq V_{f}^{o}=[-f,f] , where (D(W_{f}))^{o} is the polar
of D(W_{f}), taken in E’ In fact, if g\in(D(W_{f}))^{o}, then |g(x)|\leq p_{f,D}(x) for all
x\in E ; in particular,
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|g(u)|\leq p_{f,D}(u)=f(u) for all u\in C

which implies that g\in[-f,f]=V_{f}^{o} . Therefore we have that V_{f}=\overline{D(W_{f})}

=\overline{S(W_{f})} .
(b) If E’ is order-convex in (E^{*}, C^{*}), then \sigma_{S}(E, E’) is consistent with

the dual pair \langle E, E’\rangle , and thus \overline{S(W_{f})} is the \sigma_{S}(E, E’)Enclosure of S(W_{f}) .
As S(W_{f}) is a convex, circled \sigma_{S}(E, E’)-neighbourhood of 0,p_{f,S} is the gauge
of \overline{S(W_{f})} . We conclude from V_{f}=\overline{S(W_{f})} that p_{f,S}=q_{f} . Similarly there is
p_{f,D}=q_{f}. Therefore, \sigma_{S}(E, E’)=o(E, E’) .

Let (E, C) be a Riesc space (i.e. , vector lattice) and let \mathscr{T} be a locally
convex topology on E such that the lattice operations are \mathscr{T}-continuous.
Then it is easily seen that \mathscr{T} is a locally decomposable topology. Therefore
the following two results are generalizations of Peressini [7, (2.8), (2.10),
(2.13) and (2.14) of Chap. 3].

Corollary 2. 2 Let (E, C) and (G, K) be ordered vector spaces which
form a dual pair, let K=-C^{o} and suppose that E=C-C and G=K-K.
Then the following assertions hold :

(a) If \mathscr{P} is a locally decomposable topology on E fifiner than \sigma(E, G),
then \sigma_{S}(E, G)\leq \mathscr{P} and hence o(E, G)\leq \mathscr{P} .

(b) If there is an order-interval in G that is not \sigma(G, E)-compact,
then there does not exist a locally decomposable topology on E which is
consistent with \langle E, G\rangle .

(c) If \sigma(E, G) is locally decomposable, then each order-interval in
(G, K) is contained in a fifinite dimensional subspace of G ; if in addition,
G contains an order unit, then G and E are fifinite dimensional.

Proof ( a) Since \sigma_{S}(E,G) is the smallest locally decomposable topology
on E finer than \sigma(E, G), it follows that \sigma_{S}(E, G)\leq \mathscr{P} , and hence from
Lemma 2, 1 (a) that o(E, G)\leq_{c}\Psi ,

(b) If there exists a locally decomposable topology \mathscr{P} on E consistent
with \langle E, G\rangle , then o(E, G)\leq \mathscr{P} and thus each order-interval in G is \sigma(G, E)-

compact.
(c) If \sigma(E, G) is locally decomposable, then \sigma(E, G)=o(E, G)=\sigma_{S}(E, G)

by Lemma 2.1, hence each order-interval in (G, K) is \sigma(E, G)-equicontinuous
and surely must be contained in a finite dimensional subspace of G.

The proof of the following corollary is similar to that given in Peressini
[7, (2. 14) p. 134], and hence will be omitted.

Corollary 2. 3. Let (E, C) and (G, K) be as in the preceding corollary
zmd let \sigma(E, G) be locally decomposable. If there exists a metrizable vector
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topology \mathscr{L} on G such that K is \mathscr{L} -complete, then E is fifinite dimensional.
Let (E, C, \mathscr{T}) be an ordered convex space. For a non-empty set A,

denote by E^{A} the algebraic product of E ordered by the product cone C^{A},
and by E^{(A)} the algebraic direct sum of E ordered by the relative cone
C^{(A)}=E^{(A)}\cap C^{A} . Elements in E^{A} will be written as families (x_{i}, A) . Let
\mathscr{T}^{A} be the product topology and ^{(A)}\hat{U} the locally convex direct sum topology.
It is known that if \mathscr{F} is locally 0-convex (resp. locally solid, locally decom-
posable) then so are \mathscr{S} and .\mathscr{T}^{(A)} . Further, if C is generating then so is
C^{A}, therefore E^{(A)} is a solid subspace of (E^{A}, C^{A}) .

\mathscr{F}(A) denotes the directed set consisting of all finite subsets of A
ordered by the set theoretic inclusion\supseteq . Following Pietsch [9], an element
(x_{i}, A) in E^{A} is said to be summable if the net \{\sum_{i\in\alpha}x_{i} : \alpha\in \mathscr{F}(A)\} is Cauchy;

and (x_{i}, A) is said to be absolutely summable if for any continuous seminorm
p on E, (p(x_{i}), A) is a summable family in IR. The set consisting of all
summable families (resp. absolutely summable families) in E, denoted by
l^{1}(A, E) (resp. l^{1}[A, E]), is a vector subspace of E^{A} . It should be noted
that our terminology for a summable (resp. absolutely summable) family
(x_{i}, A) differs slightly from that of Schaefer [11] in that we require
\{\sum_{i\in\alpha}x_{i} : \alpha\in \mathscr{F}(A)\} to be convergent (resp. \{\sum_{i\in\alpha}x_{i} : n\in \mathscr{F}(A)\} to be convergent

and (p(x_{i}), A) to be summable for any continuous seminorm p). Let p be
a continuous seminorm on, E we define

\epsilon_{p}(x_{i}, A)=\sup\{\sum_{A}|\langle x_{i}, f\rangle|:f\in V_{p}^{o}\} )’((x_{i}, A)\in l^{1}(A, E))

\pi_{p}(x_{i}, A)=\sum_{A}p(x_{i}) ((x_{i}, A)\in l^{1}[A, E])

where V_{p}=\{x\in E:p(x)\leq 1\} . Then \epsilon_{p} and \pi_{p} are seminorms on l^{1}(A, E) and
l^{1}[A, E] resp., and

\epsilon_{p}(x_{i}, A)\leq\pi_{p}(x_{i}, A) for all (x_{i}, A)\in l^{1}[A, E]

Let \mathscr{L}_{e} (resp. \mathscr{L}_{\pi}) denote the topology on l^{1}(A, E) (resp. on l^{1}[A, E])
generated by \{\epsilon_{p} : p\in P\} (resp. by \{\pi_{p} : p\in P\} ), where P is a family consisting
of continuous seminorms which generates ,\mathscr{T} . Also we define

C_{\epsilon}(A, E)=C^{A}\cap l^{1}(A, E) and C_{\pi}(A, E)=C^{A}\cap l^{1}[A, E] .

Then (l^{1}(A, E), C_{\epsilon}(A, E), \mathscr{L}.) and (l^{1}[A, E], C_{\pi}(A, E), \mathscr{L}_{\pi}) are ordered convex
spaces. If \mathscr{T} is a locally 0-convex topology then so is \mathscr{L}_{\pi} . Further, we
have: ” 1
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Lemma 2. 4. Let (E, C, \mathscr{T}) be an ordered convex space, V an O-convex,

circled \mathscr{T}-neighbourhood of 0 and suppose that p is the gauge of V. Then,
for any (u_{i}, A)\in C.(A, E) , we have

\epsilon_{p}(u_{i}, A)=\sup\{\sum_{A}\langle u_{i}, x’\rangle : x’\in V^{o}\cap C’\}

= \sup\{p(\sum_{i\epsilon\alpha}u_{i}):\alpha\in \mathscr{F}(A)\} ,

where V^{o} is the polar of V taken in E’. Consequently, if \mathscr{T} is locally
o-convex then so is \mathscr{L}’ ..

Proof It is trivial that

sup \{\sum_{A}\langle u_{i}, x’\rangle:x’\in V^{o}\cap C’\}\leq\epsilon_{p}(u_{i}, A) .

Since V is 0-convex, it follows from [16, Theorem (2.11)] that V^{o} is
decomposable, and hence they must be equal.

It is also clear that
\epsilon_{p}(u_{i}, A)\leq\sup\{p(\sum_{i\in\alpha}u_{i}):\alpha\in \mathscr{F}(A)\} . (2. 1)

On the other hand, for any \alpha\in \mathscr{T}_{r}(A), the \sigma(E’, E)-compactness of V^{o}\cap C’

insures that there exists g_{\alpha}\in V^{o}\cap C’ such that

p( \sum_{i\epsilon\alpha}u_{i})=\langle\sum_{i\epsilon\alpha}u_{t} , g_{\alpha}\rangle .

Since u_{i}\in C and g_{\alpha}\in V^{o}\cap C’ , it follows that

\langle\sum_{i\epsilon\alpha}u_{i} , g_{\alpha} \rangle\leq\sum_{A}\langle u_{i}, g_{a}\rangle\leq\epsilon_{p}(u_{i}, A) .

As \alpha was arbitrary, we conclude that

sup \{p(\sum_{i\epsilon\alpha}u_{i}):\alpha\in \mathscr{F}(A)\}\leq\epsilon_{p}(u_{i}, A) .

Combining this with (2.1), we get the required equality.
Let (E, C, \mathscr{T}) be a locally 0-convex space and let \mathscr{T} be determined by

a family P of strongly monotone seminorms. Define
l^{1}\langle A, E\rangle=C_{\epsilon}(A, E)-C_{*}(A, E)

and denote by \mathscr{L}.,D the locally decomposable topology on l^{1}\langle A, E\rangle associated
with the relative topology on l^{1}\langle A, E\rangle induced by \mathscr{L} .. Then (l^{1}\langle A, E\rangle ,
C.(A, E), \mathscr{L}.,D) is a locally solid space, and \mathscr{L}_{\epsilon,D} is generated by the family
\{\epsilon_{p,D} : p\in P\} of seminorms. For simplicity of notation, we write p_{1}=\epsilon_{p,D},
that is
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p_{1}(x_{i}, A)= \inf\{\epsilon_{p}(u_{i}, A)+\epsilon_{p}(w_{i}, A):(u_{i}, A) , (w_{i}, A)\in C.(A, E)

with (u_{i}, A)-(w_{i}, A)=(x_{i}, A)\}

According to Lemma 2. 4, the locally solid space (l^{1}\langle A, E\rangle, C.(A, E),
\mathscr{L}.,D) coincides with a_{o}(A, E), defined by Walsh [13, (2. 3. 3) and (2. 3. 9)].
(Here C_{\epsilon}(A, E) is not necessarily closed.)

It is clear that if (E, C, \mathscr{T}) is a locally convex Riesz space then l^{1}[N, E]

is a solid subspace of (E^{N}, C^{N}) and (l^{1}[N, E], C_{\pi}(N, E), \mathscr{L}_{\pi}) is a locally
convex Riesz space, where N is the set of oil natural numbers. For locally
solid spaces, we have the following result, but the proof is straighforward
and hence will be omitted.

LEMMA 2. 5. If (E, C, \mathscr{T}) is a metrizable locally solid space then so is
(l^{1}[N, E], C_{\pi}(N, E), \mathscr{L}_{\pi}), where N stands for the set of all natural numbers.
Consequmtly l^{1}[N, E] is a solid subspace of E^{A}.

Define

m_{\infty}^{+}(A, E)=\{(x_{i}, A)\in C^{A} : \exists u\in C with x_{i}\leq u for all i\in A\}

m_{\infty}(A, E)=m_{\infty}^{+}(A, E)-m_{\infty}^{+}(A, E) .
Then we have :

THEOREM 2. 6. (Walsh [13, (2. 4. 9)]. Let (E, C, ,\mathscr{T}) be a locally solid
space with the topological dual E’. A linear functional f on l^{1}\langle A, E\rangle is
\mathscr{L}.,D-continuous if and only if there exists a unique (x_{i}’, A)\in m_{\infty}(A, E’) such
that

\langle(x_{i}, A), f \rangle=\sum_{A}\langle x_{i}, x_{i}’\rangle

for all (x_{i}, A)\in(l^{1}\langle A, E\rangle .
Recall that a subset M of E’ is prenuclear [11] if there exists a \sigma(E’, E)-

closed equicontinuous subset B of E’ and a positive Radon measure \mu on
B such that

| \langle x,f\rangle|\leq\int_{B}|\langle x, x’\rangle|d\mu(x’) for all x\in E and f\in M ;

and a family \{x_{i}’ : i\in A\} is prenuclear if its range is a prenuclear subset of E’.
Lemma 2. 7. Let X be a locally convex space with the topological dual

X’. The following statemmts hold:
(a) A linear functional f on l^{1}[A, X] is \mathscr{L}_{\pi}-continuous if and only

if there exists a unique equicontinuous family (x_{i}’, A) in X’ such that
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\langle(x_{i}, A), f \rangle=\sum_{A}\langle x_{i}, x_{i}’\rangle for all (x_{i}, A)\in l^{1}[A, X]

(b) A linear functional f on l^{1}(A, X) is \mathscr{L} .-continuous if and only if
there exists a unique prenuclear family (x_{i}’, A) in X’ such that

\langle’(x_{i}, A), f\rangle=\sum_{A}\langle x_{i}, x_{i}’\rangle for all (x_{i}, A)\in l^{1}(A, X) .

Proof It should be noted that the definitions of \mathscr{L}_{n} and \mathscr{L} . are the
same as those defined by ([11, p. 180]). On the other hand, since X^{(A)} is
\mathscr{L}_{\pi}-dense in l^{1}[A, X] as well as \mathscr{L}_{\epsilon}-dense in l^{1}(A, X), and since each element
(x_{i}, A) in X^{(A)} is absolutely summable in the sense of Schaefer [11], the
result now follows from Schaefer [11, (10. 3) and (10. 4), p. 180-181].

Let Y be a locally convex space and let T be a linear mapping from
E into Y. For a non-empty index set A, we define a linear map T_{A} , say,
from E^{A} into Y^{A} by setting

T_{A}(x_{i}, A)=(Tx_{i}, A) ((x_{i}, A)\in E^{A}) .

3. Cone-absolutely summing mappings

Les (E, C, \mathscr{T}) be an ordered convex space. A linear map T from E
into Y is said to be cone-absolutely summing if for any continuous seminorm
q on Y there is a continuous seminorm p on E such that the inequality

\sum_{i=1}^{n}q(Tu_{i})\leq p(\sum_{i=1}^{n}u_{i})

holds for any finite subset \{u_{1^{ }},\cdots, u_{n}\} of C.
Clearly cone-absolutely summing maps are continuous mappings from

C into Y. Therefore, if E is locally decomposable, cone-absolutely summing
mappings are continuous. The set consisting of all cone-absolutely summing
mappings, denoted by \mathscr{L}^{l}(E, Y), is a vector subspace of L(E, Y).

Schaefer [12] and Schlotterbeck seem to be the first to investigate
cone-absolutely summing mappings defined on Banach lattices. In [15], we
use the notion of cone-absolutely summing mappings, defined on locally
convex Riesz spaces, to study the Dieudonn\’e topology \sigma_{S}(E, E’) . Recently
Walsh [13] also studies cone-absolutely summing mappings, defined on
locally 0-convex spaces with closed and generating cones. We shall see
from Theorem 3.2 that our definition of cone-absolutely summing mappings
is the same as that defined by Walsh [13, (3.2.1)].

Lemma 3. 1. Let (E, C, \mathscr{T}) and (F, K, \mathscr{P}) be ordered convex spaces.
The following assertions hold :
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(a) If T\in \mathscr{L}^{l}(E, X) and S\in \mathscr{L}(X, Y) then S\circ T\in \mathscr{L}^{l}(E, Y) .
(b) If S\in \mathscr{L}(E, F) is positive and if T\in \mathscr{L}^{l}(F, Y) then T\circ S\in \mathscr{L}^{l}(E,Y) .
The proof is straightforward and hence will be omitted.

THEOREM 3. 2. Let (E, C, \mathscr{T}) be a locally solid space and suppose that
T is a linear map from E into Y. Thm the following statemmts are
equivalent.

(a) T\in \mathscr{L}^{l}(E, Y) .
(b) For any index set A, T_{A}\in \mathscr{L}(l^{1}\langle A, E\rangle, l^{1}[A, Y]) .
(c) The adjoint map T’ of T sends equicontinuous subsets of Y’ into

order-bounded subsets of E’.
(d) For any continuous seminorm q on Y there is f\in C’ such that

q(Tx) \leq\sup\{g(x):g\in[-f,f]\} (x\in E) .
(e) T\in \mathscr{L}(E(\sigma_{S}), Y), where E(\sigma_{S})=(E, C, \sigma_{S}(E, E’)) .
If E and Y are Frenchet spaces then (a) is equivalent to the following

(f) T\in \mathscr{L}(E, Y) and T_{N}\in L(l^{1}\langle N, E\rangle, l^{1}[N, Y]) .

Proof The equivalence of (a) and (b) is a restatement of the definition
of cone-absolutely summing mappings, the equivalence of (d) and (e) is
obvious, and the implication (b)\Rightarrow(c) follows from Theorem 2.6. On the
other hand, the proof of the equivalence of (b) and (f) was given by Walsh
[13, (3.2.5)], Therefore to complete the proof we have only to show the
implications (c)\Rightarrow(d)\Rightarrow(a) .

(c)\Rightarrow(d) : Let q be a continuous seminorm on Y and suppose that
U=\{y\in Y:q(y)\leq 1\} , Then there exists f\in C’ such that -f_{\sim}<T’y<f\sim for all
y’\in U^{o} . Thus for any x\in E, we have

q(Tx)= \sup\{\langle Tx, y’\rangle : y’ \in U^{o}\}\leq\sup\{g(x):g\in[-f,f]\}

(d)\Rightarrow(a) : Let U be a convex, circled 0-neighbourhood in Y and let q
be the gauge of U. By the assumption, there exists f\in C’ such that

q(Tx) \leq\sup\{g(x):g\in[-f,f]1’.

and hence by Lemma 2.1, we have

q(Tx) \leq\inf\{f(u):u\in C, x\in[-u, u]\} (x\in E) ;

in particular, for any w\in C,

q(Tw) \leq\inf\{f(u):u\in C, w\in[-u, u]\}=f(w) .
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Let p be defined by

p(x)=inf\{f(u):u\in C, x\in[-u, u]\} (x\in E) .

Then p is a continuous seminorm on E such that

\sum_{i=1}^{n}q(Tu_{i})\leq\sum_{i=1}^{n}f(u_{i})=p(\sum_{i=1}^{n}u_{i})

holds for any finite subset \{u_{1^{ }},\cdots, u_{n}\} of C. Therefore T\in \mathscr{L}^{l}(E, Y) .
The equivalence of (b), (c) and (f) in the preceding theorem are due

to Walsh [13, (3. 2. 5)].

Corollary 3. 3. For a locally solid space (E, C, \mathscr{T}), the following state-
ments are equivalent.

(a) The identity map from E onto E is cone-absolutely summing.
(b) Equicontinuous subset of E’ are order-bounded.
(c) \mathscr{T}=\sigma_{S}(E, E’) .
(d) \mathscr{L}(E, Y)=\mathscr{L}^{l}(E, Y) for any locally convex space Y.

If E is either metrizable or locally convex Riesz space, then (a) is
equivalent to the following

(e) The embedding map from l^{1}[N, E] into l^{1}\langle N, E\rangle is a topological
isomorphism of the firsts space onto the second space.

If E is an F-space then (a) is equivalent to the following

(f) Each positive summable sequence in E is absolutely summable.

Proof. The equivalence of (a) and (e) follows from Theorem 3.2,
Lemma 2.5 and Walsh [13, (3.2.2)], while other equivalence follows from
Theorem 3. 2 and Lemma 3. 1.

Let us say that a locally solid space (E, C, \mathscr{T}) satisfying one of the
equivalent properties in Corollary 3.3 is an L-nuclear space (or a Dieudonnd
space). According to the definition \epsilon_{q,D} , we have that if q is a continuous
monotone seminorm on an L-nuclear space E, then

\pi_{q}(u_{n}, N)=\epsilon_{q}(u_{n}, N) whenever (u_{n}, N)\in C_{\pi}(N, E) .
A linear map T:Xarrow Y is said to be absolutely summing if for any

continuous seminorm q on Y there exists a convex, circled, o neighbourhood
V in X such that the inequality

\sum_{i=1}^{n}q(Tx_{i})\leq\sup\{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|:x’\in V^{o}\}

holds for any finite subset \{x_{1^{ }},\cdots, x_{n}\} of X.
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Clearly absolutely summing mappings are continuous. Therefore the
set consisting of all absolutely summing mappings from X into Y, denoted
by \mathscr{L}^{s}(X, Y), is a vector subspace of \mathscr{L}(X, Y), where \mathscr{L}(X, Y) (resp.
L(X, Y)) denotes the space consisting of all continuous linear (resp. linear)
maps from X into Y. By Lemma 2.4, we have \mathscr{L}^{s}(E, Y)\subset \mathscr{L}^{l}(E, Y) pr0-
vided that E is a locally solid space.

Lemma 3. 4. Let Z be a locally convex space and suppose that
T\in \mathscr{L}(X, Y), S\in \mathscr{L}^{-}(Y, Z) . If one of then is absolutely summing then
S\circ T\in \mathscr{L}^{s}(X, Z) .

The proof is straightforward and henee will be omitted.

THEOREM 3. 5. For a linear map T from X into Y, the following
statements are equivalmt.

(a) T\in \mathscr{L}^{s}(X, Y) .
(b) For any index set A, T_{A}\in \mathscr{L}(l^{1}(A, X), l^{1}[A, Y]) .
(c) The adjoint map T’ of T smds equicontinuous subsets of Y’ into

prenuclear subsets of X’.
(d) For any continuous seminorm q on Y there exists a \sigma(X’, X)-closed

equicontinuous subset B of X’ and a positive Radon measure \mu on B such
that

q(Tx) \leq\int_{B}|\langle x, x’\rangle|d\mu(x’) (x\in X)(

If X is metrizable then (a) is equivalent to the following

(e) T\in \mathscr{L}(X, Y) and T_{A}\in L(l^{1}(A, X), l^{1}[A, Y]) for any index set A.

Proof The equivalence of (a) and (b) is just a restatement of the
definition of absolutely summing mappings; while the implication (b)\Rightarrow(c)

follows from Lemma 2. 7.
(c)\Rightarrow(d) : Let q be a continuous seminorm on Y and suppose that

U=\{y\in Y:q(y)\leq 1\} . Then T’(U^{o}) is a prenuclear set in X’, hence there
is a \sigma(X’, X)-closed equicontinuous subset B of X’ and a positive Radon
measure \mu on B such that

|\langle x, T’(y’) \rangle|\leq\int_{B}|\langle x, x’\rangle|d\mu(x’) (x\in X, y’\in U^{o}) .

It then follows that

q(Tx) \leq\int_{B}|\langle x, x’\rangle|d\mu(x’) (x\in X)

as required in (d).
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(d)\Rightarrow(a) : Let V=B^{o} . Then V is a convex, 0-neighbourhood in X
such that V^{o} is the \sigma(X’, X)-closed convex hull of B\cup\{0\} . For any finite
subset \{x_{1^{ }},\cdots, x_{n}\} of X, we have

\sum_{i=1}^{n}q(Tx_{i})\leq\int_{B}\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|d\mu(x’)

\leq\mu(B) sup \{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|:x’\in V^{o}\} .

which shows that T is absolutely summing.
The implication (a)\Rightarrow(e) is obvious. Conversely, if X is assumed to

be metrizable and if the statement (e) holds, then T sends each summable
family in X into an absolutely summable family in Y. In view of Pietsch
[9, (2. 1. 3)], T_{A}\in \mathscr{L}(l^{1}(A, X), l^{1}[A, Y]) ; therefore (e) implies (b).

The preceding theorem shows that our definition of absolutely summing
mappings coincides with the usual definition [9, p. 34] in the normed space
case.

Recall that a locally convex space (X, \mathscr{P}) is nuclear if and only if each
\mathscr{P}-equicontinuous subset of X’ is prenuclear (see Schaefer [11, p. 178]).

Corollary 3. 6. For a locally convex space X, the following statements
are equivalent.

(a) The identity map of X onto X is absolutely summing.
(b) X is nuclear.
(c) The embedding map of l^{1}[N, X] into l^{1}(N, X) is a topological

isomorphism of the fifirst space onto the second space.
(d) \mathscr{L}(X, Y)=\mathscr{L}^{s}(X, Y) for any locally convex space Y.

If X is metrizable thm (a) is equivalent to the following
(e) Each summable sequmce in X is absolutely summable.

The equivalence of (b) and (c) in the preceding result is due to Pietsch
(see Schaefer [11, p. 184]).

The following result gives a connection between nuclear spaces and the
topology of uniform convergence on order-intervals for locally solid spaces.

THEOREM 3. 7. A locally solid space (E, C, \mathscr{T}) is nuclear if and only

if it satisfifies the following two conditions:
(i) \mathscr{T}=o(E, E’) (i.e. , E is L nuclear ;
(ii) order-bounded subsets of E’ are prenuclear.

Proof. The necessity follows from Corollaries 3.3 and 3.6, and from
the fact that absolutely summing mappings are cone-absolutely summing.
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Conversely, if E satisfies (i) and (ii), then \{[-f,f] :f\in C’\} is a fundamental
system of equicontinuous sets in E’, and thus equicontinuous subsets of E’
are prenuclear.

A part of the preceding theorem, namely nuclearity implies L-nuclearity,
due to [14], is a generalization of K\={o}mura-Koshi’s result [4].

For the metrizable case, the condition (ii) can be replaced by the
following condition

(ii)^{*} the cone C.(N, E) in l^{1}(N, E) is generating.
(see [14]) Therefore this natually suggests the following:

PROBLEM. Is a (non-metrizable) locally convex Riesz space that satisfifies
conditions (i) and (ii)^{*} nuclear ?

Since base normed spaces are L-nuclear spaces and since a normed
space is nuclear if and only if it is finite dimensional, it follows that the
class of nuclear locally solid spaces is a proper subset of the class consisting
of all L-nuclear locally solid spaces. On the other hand, normed, L-nuclear
spaces may not be finite dimensional.

It is well-known thate every bounded set in a nuclear space is pre-
compact; but this property is no longer true for L-nuclear spaces; for
instance, bounded subsets of l_{1} are not precompact, where l_{1} is the Banach
space consisting of all summable sequences of real numbers. Further, by
Corollaries 3. 3 and 3. 6, we have \mathscr{L}^{s}(l_{1}, l_{1})\neq \mathscr{L}^{l}(l_{1}, l_{1}) .

4. L-prenuclear seminorms

For an ordered convex spoce (E, C, \mathscr{T}), if V is a convex, circled and
absorbing subset of E, we denote by Q_{V} the quotient map from E onto
E/p_{V}^{-1}(0), and define

||Q_{V}(x)||_{V}=p_{V}(x) (x\in E) ,

where p_{V} is the gauge of V. Then (E/p_{V}^{-1}(0), ||. ||_{V}) is a normed space. (It
should be noted that Q_{\nabla} is continuous if and only if V is a ,\mathscr{T}-neighbourhood
of 0). Further, if V is order-convex, then p_{V}^{-1}(0) is an order-convex subspace
of E, hence (E/p_{V}^{-1}(0), Q_{V}(C), || . ||_{V}) is an ordered normed space. We denote
by E_{V} the normed space or the ordered normed space just introduced. If p
is a seminorm on E and if V=\{x\in E:p(x)\leq 1\} , we let E_{p}=E_{V} , Q_{p}=Q_{V}

and || . ||_{p}=||.||_{V} . If U and V are convex, circled and absorbing subsets
of E and if V\subseteq U, then the canonical map from E_{V} onto E_{\sigma} is denoted hy
Q_{U,V} . Thus we have the relation Q_{U}=Q_{l7,V^{\circ}}Q_{V} .
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Dually, if B is a convex, circled and bounded subset of X, we let
X(B)=\cup\{nB:n\geq 1\} and equip X(B) with the norm || . ||_{B} defined by

||x||_{B}= \inf\{\lambda\geq 0:x\in\lambda B\} (x\in X(B)) .

We also let J_{B} : X(B)arrow X to denote the embedding. Of course, J_{B} is contin-
uous.

Let (E, C, \mathscr{T}) be an ordered convex space. A seminorm p on E is
said to be L-prmuclear if the quotient map Q_{p} : Earrow E_{p} is cone-absolutely
summing. Clearly L-prenuclear seminorms on a locally decomposable space
are continuous.

THEOREM. 4. 1 Let (E, C, \mathscr{T}) be a locally solid space, p a seminorm
on E and suppose that V=\{x\in E:p(x)\leq 1\} . Then the following statements
are equivalent.

(a) p is an L-prenuclear seminorm.
(b) V^{o} is an or&r-bounded subset of E’.
(c) There exists f\in C’ such that

p(x) \leq\sup\{g(x):g\in[-f,f]\} (x\in E) .
(d) There exists a continuous montone seminorm r on E with p\leq r

such that Q_{p,r} : E_{r}arrow E_{p} is cone-absolutely summing.

Proof. By Theorem 3. 2, the implications (a)\Rightarrow(b)\Rightarrow(c) are valid ;
while the implication (d)\Rightarrow(a) is an immediate consequence of Lemma 3.1.
Therefore to complete the proof we have only to show that (c) implies (d).

Define, for each x\in E, that

r(x)= \sup\{g(x):g\in[-f,f]\} (x\in E) .

By Lemma 2. 1, we have

r(x)= \inf\{f(y):y\in C with - y\leq x\leq y\} .

r is a continuous seminorm on E such that p\leq r, and

r(u)=h(u) (u\in C) ;

hence E_{r} is an ordered normed space. If Q_{r}(x)\in Q_{r}(C), then there is u\in C

such that Q_{r}(x)=Q_{r}(u), and thus r(x)=r(u) ; therefore we can assume
without loss of generrlity that x\in C whenever Q_{r}(x)\in Q_{r}(C) . Now for any
subset \{Q_{r}(x_{1}\}, \cdots , Q_{r}(x_{n})\} of Q_{r}(C), we have

\sum_{i=1}^{n}||Q_{p,r}(Q_{r}(x_{i}))||_{p}\leq\sum_{i=1}^{n}r(x_{i})=r(\sum_{i=1}^{n}x_{i})=||\sum_{i=1}^{n}Q,(x_{i})||_{r}
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Therefore Q_{p,r} is conce-absolutely.
It is remarkable that the preceding theorem shows that a seminorm

p on E is L-prenuclear if and only if it is dominated by some \sigma_{S}(E, E’)-

continuous seminorm. Also the preceding theorem has many important
applications, we mention a few below.

Corollary 4. 2 For a locally solid space (E, C, \mathscr{T}) the following state-
mmts arh equivalmt.

(a) \mathscr{T}=o(E, E’) .
(b) Each continuous seminorm on E is L-prmuclear.
(c) For any continuous seminorm p on E there exists a continuous

seminorm r on E with p\leq r such that Q_{p,r}\in \mathscr{L}^{l}(E_{r}, E_{p}) .
(d) \mathscr{L}^{l}(E, Y)=\mathscr{L}(E, Y) for any normed space Y.

Proof This follows from Theorem 4.1 and Corollary 3.3.

Corollary 4. 3 If p and q are L-prenuclear seminorms on E then so
are p+q and \alpha p for all \alpha\geq 0 .

Corollary 4. 4 Let (E, C, \mathscr{T}) and (F, K, \mathscr{P}) be locally solid spaces. Thm
the following statements hold :

(a) If T\in \mathscr{L}(E, Y), then T\in \mathscr{L}^{l}(E, Y) if and only iffor any continuous
seminorm q on Y, q\circ T is an L-prenuclear seminorm on E.

(b) If T\in \mathscr{L}(E, F) is positive and if q is an L-prenuclear seminorm
on F then q\circ T is an L-prenuclear seminorm on E.

Recall that a seminorm p on X is prenuclear [11] if there is a \sigma(X’, X)-

closed equicontinuous subset B of X’ and a positive Radon measure \mu on
B such that

p(x) \leq\int_{B}|\langle x, x’\rangle|d\mu(x’) (x\in X) .

The following result establishes some relationship between prenuclear
seminorms and absoletdly summing mappings.

THEOREM 4. 5 Let p be a seminorm on X and suppose V=\{x\in X :
p(x)\leq 1\} . Then the following statemmts are equivalmt.

(a) p is a prenuclear seminorm.
(b) The quotimt map Q_{p}J\dot{r}om X onto X_{p} is absolutely summing.
(c) V^{o} is a preuuclear subset of X’.
(d) There exists a convex, circled, 0-neighbourhood W in X such that

the inequality
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\sum_{i=1}^{n}p(x_{i})\leq\sup\{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|:x’\in W^{o}\}

holds for any fifinite subset \{x_{1^{ }},\cdots, x_{n}\} of X.
(e) There exists a continuous seminorm r on X with p\leq r such that

Q_{p,r} : X_{r}arrow X_{p} is absolutely summing.

Proof. Since Q_{p}’ is an isometry from X_{p}’ onto X’(V^{o}), it follows from
Theorem 3.5 that (b) and (c) are equivalent. According to the definition
of absolutely summing mappings, it is trivial that (b) and (d) are equivalent.
Note that p(x)=||Q_{p}(x)||_{p} ; it follows from Theorem 3.5 that (a) and (b) are
equivalent. On the other hand, the implication (e)\Rightarrow(b) is a consequence
of Lemma 3.4. Therefore to complete the proof we have only to verify
that (d) implies (e).

Let r be the gauge of W Then r is a continuous seminorm on X
such that p\leq r. Let \Sigma denote the closed unit ball in X_{7}.. It is well-known
that Q_{r}’ is an isometry from X_{r}’ onto X’(W^{o}) ; it then follows that Q_{r}’(\Sigma^{o})

=W^{n}. Now for any finite subset \{Q_{r}(x_{1}), \cdots, Q_{r}(x_{n})\} of X_{r}, we have

sup \{\sum_{i=1}^{n}|\langle Q_{r}(x_{i}),f\backslash |/ : f \in\Sigma^{o}\}=\sup\{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle| : x’\in W^{0}\}t (1)

In view of the hypothesis and the equality (1), we obtain

\sum_{i=1}^{n}||Q_{p,r}(Q_{r}(x_{i}))||_{p}=\sum_{i=1}^{n}p(x_{i})\leq\sup\{\sum_{i=1}^{n}|_{\backslash }^{/}Q_{r}(x_{i}), f\rangle|:f\in\Sigma^{o}\}

which shows that (d) simplies (e).
The preceding theorem has many important applications; we mention

a few below :

Corollary 4. 6 For a locally convex space X, the following statements
are equivalent.

(a) X is nuclear.
(b) For each continuous seminorm p on X, Q_{p}\in \mathscr{L}^{s}(X, X_{p}) .
(c) For each continuous sminorm p on X there exists a continuous

seminorm r on X with p\leq r such that Q_{p,r}\in \mathscr{L}^{s}(X_{r}, X_{p}) .
(d) \mathscr{L}(X, Y)=\mathscr{L}^{s}(X, Y) for any normed space Y.
Corollary 4. 7 Ifp and q are prenuclear seminorms on Xthm so are

p+q and \alpha p for all \alpha\geq 0 .
Proof. It is trivial that \alpha p is prenuclear for any \alpha\geq 0 . To see the

prenuclearity of p+q, we define T:Xarrow X_{p}\cross X_{q} by setting
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T(x)=(Q_{p}(x), Q_{q}(x)) (x\in X) .

Then T^{-1}(0)=(p+q)^{-1}(0), thus there is a unique algebraic isomorphism \hat{T}

from X_{p+q} into X_{p}\cross X_{q} such that T=\hat{T}\circ Q_{p,q} . Since X_{p}\cross X_{q} is a normed
space under the following norm

|| (Q_{p}(x), Q_{q}(y)) ||=p(x)+q(y) (x, y\in X)

and since

||\hat{T}(Q_{p+q}(x))||=||Tx||=p(x)+q(x)=||Q_{p+q}(x)||_{p+q} ,

it follows that \hat{T} is an isometry from X_{p+q} into X_{p}\cross X_{q} , and hence that
Q_{p+q}=\hat{T}^{-1_{\circ}}T. We complete the proof by showing that T is absolutely
summing.

By Theorem 4.5, there exist convex, circled, 0-neighbourhoods V and
W in X resp. such that the inequalities

\sum_{i=1}^{n}p(x_{i})\leq\sup\{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|:x’\in V^{o}\}

\sum_{f=1}^{m}q(y_{f})\leq\sup\{\sum_{j=1}^{m}|\langle y_{f}, y’\rangle|:y’\in W^{o}\}

hold for any finite subsets \{x_{1^{ }},\cdots, x_{n}\} and \{y_{1^{ }},\cdots, y_{m}\} of X. Let
U=2^{-1}(V\cap W) . Then U is a convex, circled, 0-neighbourhood in X such
that the inequality

\sum_{i=1}^{n}||Tx_{i}||\leq\sup\{\sum_{i=1}^{n}|\langle x_{i},f\rangle|:f\in U^{o}\}

holds for any finite subset \{x_{1^{ }},\cdots, x_{n}\} of X. Therefore T is absolutely
summing.

If T\in L(X, Y) and if q is a continuous seminorm on Y, then the
functional q\circ T, defined by

(q\circ T)(x)=q(Tx) (x\in X)

is a seminorm on X. If, in addition, T is absolutely summing then q\circ T

is prenuclear, as the following result shows.
Corollary 4. 8 For T\in \mathscr{L}(X, Y), the following statmmts hold:

(a) T\in \mathscr{L}^{s}(X, Y) if and only if for any continuous seminorm q on
Y, q\circ T is a prmucleare seminorm on X.

(b) If q is a prmuclear seminorm on Ythm q\circ T is a prmuclear
seminorm on X.
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Let s denote the F-space of rapidly decreasing sequences, namely the
vector space consisting of all number sequences \lambda=(\lambda_{n}) such that for any
integer k,

q_{k}( \lambda)=\sum_{n}n^{k}|\lambda_{n}|<\infty

and equipped with the topology determined by the family \{q_{k}\} of seminorms.
Let q be a seminorm on X. Randtke [10] calls q strongly nuclear (resp.
quasi-nuclear) if there exists \lambda=(\lambda_{n}) in s (resp. in l^{1}) and an equicontinuous
sequence (f_{n}) in X’ such that

q(x) \leq\sum_{n}|\lambda_{n}\langle x,f_{n}\rangle| (x\in X) .
It is clear that strongly nuclear seminorms are quasi-nuclear, and that each
\sigma(X, X’)-continuous seminorm on X is quasi-nuclear. Further, quasi-nuclear
seminorms are prenuclear, as the following result shows.

Corollary 4. 9 Quasi-nuclear seminorms on X are prmuclear.

Proof. Let q be a quasi-nuclear seminorm on X, let (\lambda_{n})\in l^{1}, and let
(f_{n}) be an equicontinuous sequence in X’ such that

q(x) \leq\sum_{n}|\lambda_{n}\langle x,f_{n}\rangle| (x\in X) .
Suppose that V is a convex, circled, 0-neighbourhood in X such that f_{n}\in V^{o}

for all n. Then for any finite subset \{x_{1^{ }},\cdots, x_{m}\} of X, we have

\sum_{f=1}^{m}q(x_{f})\leq\sum_{n}|\lambda_{n}|(\sum_{j=1}^{m}|\langle x_{f},f_{n}\rangle|)

\leq(\sum_{n}|\lambda_{n}|) sup \{\sum_{f=1}^{m}|\langle x_{f}, x’\rangle|:x’\in V^{o}\} .
Therefore q is prenuclear.

The following result establishes some connection between L-prenuclear
seminorms and prenuclear seminorms.

Proposition 4. 10 For a locally solid space (E, C, \mathscr{T}), prenuclear semin-
orms on E are L-prenuclear.

Proof. This follows from Theorems 4.1 and 4.5.

5. L-nuclear linear mappings

Recall that a linear map T:Xarrow Y is bounded (resp. precompact) if it
sends some neighbourhood of 0 in X into a bounded (resp. precompact)
subset of Y. Let \mathscr{L}^{lb}(X, Y) (resp. \mathscr{L}^{p} (X, Y)) denote the space consisting
<)f all bounded (resp. precompact) linear maps from X into Y. Then
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\mathscr{L}^{p}(X, Y)\subseteq \mathscr{L}^{lb}(X, Y)\subseteq \mathscr{L}(X, Y) and \mathscr{L}^{lb}(X, Y)=\mathscr{L}^{p}(X, Y(\sigma))

where Y(\sigma)=(Y, \sigma(Y, Y’)) .
Let (E, C, \mathscr{T}) be an ordered convex space. A linear map T from E

into Y is called a L-nuclear map if there exists a L-prenuclear seminorm
p on E such that \{Tx:p(x)\leq 1\} is a bounded subset of Y.

The set consisting of all L-nuclear linear mappings is denoted by
\mathscr{L}^{ln}(E, Y) . If E is locally decomposable, then \mathscr{L}^{ln}(E, Y)\subseteq \mathscr{L}^{lb}(E, Y), and
hence L-nuclear linear maps are continuous.

Lemma 5. 1. For a locally solid space (E, C, \mathscr{T}), the following asser-
tions holds

(a) \mathscr{L}^{ln}(E, Y) is a vector subspace of \mathscr{L}^{l}(E, Y) and

\mathscr{L}^{ln}(E, Y)=\mathscr{L}^{lb}(E(\sigma_{S}), Y)=\mathscr{L}^{p}(E(\sigma_{S}), Y(\sigma))

where E(\sigma_{S})=(E, C, \sigma_{S}(E, E’)) and Y(\sigma)=(Y, \sigma(Y, Y’)) . If, in addition, Y is
normable then \mathscr{L}^{ln}(E, Y)=\mathscr{L}^{l}(E, Y) .

(b) \mathscr{L}^{pn}(E, Y)\subseteq \mathscr{L}^{ln}(E, Y) .

Proof By theorem 4.1, the assertion (a) holds; while (b) follows from
Proposition 4. 10.

It is remarkable that the space \mathscr{L}^{ln}(E, Y) does not depend upon the
topologies on E and Y, but olny on the dual pairs \langle E, E’\rangle and \langle Y, Y’\rangle .

Proposition 5. 2. For a locally solid space (E, C, \mathscr{T}), the following
statements are equivalent.

(a) \mathscr{T}=o(E, E’) .
(b) \mathscr{L}^{ln}(E, Y)=\mathscr{L}^{lb}(E, Y) for any locally convex space Y.
(c) \mathscr{L}^{lb}(E, Y)\subset \mathscr{L}^{l}(E, Y) for any locally convex space Y.
(d) \mathscr{L}^{p}(E, Y)\subset \mathscr{L}^{ln}(E, Y) for any locally convex space Y.

Proof The implication (a)\Rightarrow(b) follows from Lemma 5. 1, while (c)\Rightarrow

(a) follows from Corollary 4. 2. Therefore (a), (b) and (c) are equivalent.
Clearly (b) implies (d), therefore we complete the proof by showing that (d)
implies \mathscr{L}(E, Z)=\mathscr{L}^{l}(E, Z) for any normed space Z. In fact, if T\in \mathscr{L}(E,\cdot Z) ,

then T\in \mathscr{L}^{p}(E, Z(\sigma)) where Z(\sigma)=(Z, \sigma(Z, Z’)) . On the other hand, by
Mackey’s theorem, \mathscr{L}^{ln}(E, Z)=\mathscr{L}^{ln}(E, Z(\sigma)) . We conclude from

\mathscr{L}^{p} (E, Z(\sigma))\subset \mathscr{L}^{ln}(E, Z(\sigma))=\mathscr{L}^{ln}(E, Z)\subset \mathscr{L}^{l}(E, Z)

that \mathscr{L}(E, Z)=\mathscr{L}^{l}(E, Z) .
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Lemma 5. 3. Let E and F be locally solid spaces, Then the following
dssertions hold:

(a) If T\in \mathscr{L}^{ln}(E, X) and S\in \mathscr{L}(X, Y) then S\circ T\in \mathscr{L}^{ln}(E, Y) .
(b) If S\in \mathscr{L}(E, F) is positive and if T\in \mathscr{L}^{ln}(E, Y)thmT\circ S\in \mathscr{L}^{ln}(E, Y) .
The proof is straightforward and will be omitted.
Before giving |_{a} representation of L-nuclear mappings, we need the

following result which is of interest in itself.

Lemma 5. 4. Let (E, C, \mathscr{T}) be an ordered convex space for which C
is gmerating, h\in C’ and suppose that

r(x)= \inf\{h(u):u\in C with - u\leq x\leq u\} (x\in X) .

Then E_{r} is a base normed space.
Proof For any Q_{r}(u)\in Q_{r}(C), we can assume without loss of generality

that u\in C. For any Q_{r}(u), Q_{r}(w) in Q_{r}(C), we have

||Q_{r}(u)+Q_{r}(w)||_{r}=r(u+w)=h(u+w)=||Q_{r}(u)||_{r}+||Q_{r}(w)||_{r}

which shows that the norm || . ||_{r} is additive on Q_{r}(C) . On the other hand,
if ||Q_{r}(x)||_{r}<1 , then there is u\in C with - u\leq x\leq u such that h(u)<1 .
Since -Q_{r}(u)\leq Q_{r}(x)\leq Q_{r}(u) and since

||Q_{r}(u)||_{r}=r(u)=h(u)<1 ,

it follows that the open unit ball \Sigma in E_{r} is absolutely dominated (i.e. ,
\Sigma\subseteq S(\Sigma)) . The additivity of || . ||_{r} insures that \Sigma is solid. Therefore, by
[16, (9. 5)], E_{r} is a base normed space.

As a consequence of Lemma 5.3, we conclude that if (E, C, \mathscr{T}) is an
L-nuclear locally solid space, then there is a family \{(E_{\alpha}, C_{\alpha}, ||. ||_{\alpha}):\alpha\in\Gamma\} of
base normed spaces and a family \{T_{\alpha} : \alpha\in\Gamma\} of positive continuous linear
mappings such that \mathscr{T} is the projective topology with respect to \{(E_{\alpha}, C_{\alpha} ,
|| . ||_{\alpha} , T_{\alpha}) : \alpha\in\Gamma}.

THEOREM 5. 5. Let (E, C, \mathscr{T}) be a locally solid space and suppose that
T\in \mathscr{L}(E, Y) . Thm the following statemmts are equivalent.

(a) T\in \mathscr{L}^{ln}(E, Y).
(b) There exists f\in C’ such that for any 0-neighbourhood U in Y there

is \alpha\geq 0 for which T’(U^{o})\subseteq\alpha [-f,f] .
(c) There exists h\in C’ such that for any continuous seminorm q on

Y there is \alpha_{q}\geq 0 for which
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q(Tx)\leq\alpha_{q} inf \{h(y):y\in C with - y\leq x\leq y\} (x\in E) .

(d) T’\in \mathscr{L}^{o}(Y’(\beta), E’),where\mathscr{L}^{o}(Y’(\beta), E’) is the space consisting of all
linear maps that send some \beta(Y’, Y)-neighbourhoods of 0 in Y’ into an
order-bounded subset of E’.

(e) T is the composite of a sequmce of continuous linerr mappings

Earrow Farrow Xarrow YQ\hat{T}J
,

where F is a base normed space, X is a normed space, Q is positive and
\hat{T} is cone-absolutely summing [or L-nuclear).

Proof The equivalence of (a), (b) and (c) follow from Theorem 4.1,
and the implication (e)\Rightarrow(a) follows from Lemmas 5.1 and 5.3. We com-
plete the proof by showing that (a)\Leftrightarrow(d)\Rightarrow(e) .

(a)\Rightarrow(d) : Let p be an L-prenuclear seminorm on E such that B=
\{Tx\in Y:p(x)\backslash <1\}\backslash is a bounded subset of Y, let V=\{x\in E:p(x)\leq 1\} and
suppose that f, in C’ is such that

p(x) \leq\sup\{g(x):g\in[-f,f]\} (x\in E) .

Then V^{o}\subseteq[-f,f] . Since B^{o}=(T(V))^{o}=(T’)^{-1}(V^{o}), we conclude from T’(B^{o})

\subseteq V^{o}\subseteq[-f,f] that T’\in \mathscr{L}^{o}(Y’(\beta), E’) .
(d)\Rightarrow(a) : Let B be a convex, circled bounded subset of Y, and let f,

in C’,\cdot be such that T’(B^{o})\subseteq[-f,f] . Since [– f, f]^{o}\subseteq T^{-1}(B^{oo})=T^{-1}(B), it
follows that T([-f,f]^{o})\subset B. Clearly the gauge of [– f,f]^{o} is an L-prenuclear
seminorm on E, hence T\in \mathscr{L}^{ln}(E, Y) .

(a)\Rightarrow(e) : Let p be an L-prenuclear seminorm on E such that B=
\{Tx\in Y:p(x)\leq 1\} is a bounded subset of Y. Then p^{-1}(0)\subseteq T^{-1}(0), and
thus there exists a continuous linear map S from E_{p} onto Y(B) (Since
||S||\leq 1) such that T=J_{B}\circ S\circ Q_{p} . On the other hand, since p is L-prenuclear,
by Theorem 4.1, there exists h\in C’ such that

p(x) \leq\inf\{h(u):u\in C, x\in[-u, u]\} (x\in E)(

Let r(x)= \inf\{h(u) : u\in C, x\in[-u, u]\}(x\in E) . Then p\leq r and Q_{p,r} : E_{r}- E_{p}

is cone-absolutely summing. Define \hat{T}=S\circ Q_{p,r} . \hat{T} is a cone-absolutely
summing map from E_{r} onto Y(B) and

T=J_{B}\circ\hat{T}\circ Q_{r} .

Clearly Q_{r} is positive. Lemma 5.4 insures that E_{r} is a base normed space.
Therefore (a) implies (e).
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According to the proof of the implication (a)\Rightarrow(e) and Lemmas (5.1)
and (5.3), we see that T\in \mathscr{L}(E, Y) is L-nuclear if and only if there exists
an L-prenuclear seminorm q on E and S\in \mathscr{L}(E_{q}, F) such that T=S\circ Q_{q} .

Corollary 5. 6. For a locally solid space (E, C, \mathscr{T}), the identity map
I:Earrow E is L-nuclear if and only if E’ contains an order unit and \mathscr{T}=

o(E, E’).
A linear map \prime T from E into F is said to be order-boun&d if it maps

some order-bounded set in E into an order-bounded set in F. Denote by
L^{b}(E, F) the space consisting of all order-bounded linear mappings from E
into F. If E and F are Riesz spaces and if F is order-complete then L^{b}(E, F)

is an order-complete Riesz space under the natural ordering (see Peressini
[7, p. 22] ). We denote by \mathscr{L}^{o}(E, Y) the space consisting of all linear
mappings T:Xarrow F each of which sends some 0-neighbourhood in E into
an order-bounded subset of Y. If E is also a locally convex Riesz space
and if F is an order-complete locally 0-convex Riesz space, then Peressini [8]
has shown that \mathscr{L}^{o}(E, F)\subseteq \mathscr{L}^{lb}(E, F) and that \mathscr{L}^{o}(E, F) is a lattice ideal
in L^{b}(E, F) .

Proposition 5. 7. Let F be a locally convex Riesz space, X a locally
convex space and suppase that T is a linear map from X into F. Then
the following assertions hold.

(a) If T\in \mathscr{L}^{o}(X, F) then T’\in \mathscr{L}^{ln}(F’(\sigma_{S}), X’(\beta)) and T’\in \mathscr{L}^{o}(X_{e}’, [F]),
there T’ is the second adjoint map of T, [F] is the l ideal (i.e. , solid
subspace of F’) in F’ generated by F and X_{e}’ is the bidual equipped with
the natural topology.

(b) If X is infrabarrelled, F is an l ideal in F’ and if T’\in \mathscr{L}^{ln}(F’(\sigma_{S}),
X’(\beta)), thm T\in \mathscr{L}^{o}(X, F) .

Proof (a) There is a convex, circled, 0-neighbourhood U in X and
0\leq y\in F such that T(U)\subseteq[-y, y] . It is easily seen that T’([-y, y^{o}])\subseteq U^{o} .
Hence T’\in \mathscr{L}^{ln}(F’(\sigma_{S}), X’(\beta)) because the gauge of [– y, y]^{o} is L-prenuclear.
If U^{o\pi} (resp. [– y, y]^{o\pi}) is the polar of U^{o} (resp. [– y, y]^{o}) taken in X’ (resp.
F’), then

U^{o\pi}\subseteq(T’([-y, y]^{o}))^{\pi}=(T’)^{-1}([-y, y]^{o\pi})

and so T’(U^{o\pi})\subseteq[-y, y]^{o\pi}. Notice that the set \{\psi\in Y’ :-- y\leq\psi\leq y\} is a
\sigma(Y’,\cdot Y’)-closed, order-bounded subset of [F] . Therefore, T’\in \mathscr{L}^{o}(X_{e}’, [F])

because U^{o\pi} is a neighbourhood of 0 in X_{e}’ .
(b) We now assume that X is infrabarreled and that F is an l-ideal
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in F’. If T’\in \mathscr{L}^{ln}(F’(\sigma_{S}), X’(\beta)) then there is 0\leq y\in F such that M=T’(W)
is a \beta(X’, X)-bounded, convex, circled subset of X’, where W=\{g\in F’ :
\langle y, |g|\rangle\leq 1\} . It is easily seen that T(M^{o})\subseteq[-y, y] , where M^{o} is the polar
of M taken in X. Since X is infrabarrelled, M^{o} is a neighbourhood of 0
in E, therefore T\in \mathscr{L}^{o}(X, F) , and the proof is complete.

A linear map T:Xarrow Y is said to be prmuclear (resp. quasi-nuclear,
s-type [10] ) if there exists a prenuclear (resp. quasi-nuclear, strongly nuclear)
seminorm p on X such that \{Tx\in Y:p(x)\leq 1\} is a bounded subset of Y.

The set consisting of all prenuclear (resp. quasi-nuclear, s-type) linear
mappings is denoted by \mathscr{L}^{pn}(X, Y) (resp. \mathscr{L}^{qn} (X, Y), s(X, Y)). It is clear
that \mathscr{L}^{pn}(X, Y)\subseteq \mathscr{L}^{lb}(X, Y), therefore prenuclear linear mappings are
continuous.

Lemma 5. 8. The following assertions hold:

(a) \mathscr{L}^{pn}(X, Y) is a vector subspace of \mathscr{L}^{lb}(X, Y) and

s(X, Y)\subseteq \mathscr{L}^{qn}(X, Y)\subseteq \mathscr{L}^{pn}(X, Y)\subseteq \mathscr{L}^{s}(X, Y) ;

\mathscr{L}^{pn}(X, Y)=\mathscr{L}^{pn}(X, Y(\sigma)) . (5. 1)

If, in Mition, F is normable thm\mathscr{L}^{pn}(X, Y)=\mathscr{L}^{s}(X, Y) .
(b) \mathscr{L}^{- lb}(X(\sigma), Y)\subseteq \mathscr{L}^{qn}(X, Y) .

Proof The assertion (b) is obvious. By Corollary 4.6, \mathscr{L}^{pn}(X, Y) is
a vector subspace of \mathscr{L}^{lb}(X, Y) . In view of Corollary 4.9 and Theorems
4.5 and 3.4, the formula (5.1) is valid. Finally, if F is normable then it
is true that \mathscr{L}^{pn}(X, Y)=\mathscr{L}^{s}(X, Y) . Therefore the proof is complete.

It is easy to see that the definition of quasi-nuclear maps coincides
with the usual definition (see Pietsch [9]) in the normed space case.
Therefore, in view of Pietsch [9, (3. 2. 10) and (2.4.4)], \mathscr{L}^{qn}(X, Y) is, in
general, not equal to \mathscr{L}^{pn}(X, Y) . At the end of this section we shall give
an example to show that \mathscr{L}^{pn}(X, Y) is, in general, not equal to \mathscr{L}^{s}(X, Y) .

Proposition 5. 9. The following statemmts are equivdmt.

(a) X is nuclear.
(b) \mathscr{L}^{pn}(X, Y)=\mathscr{L}^{lb}(X, Y) for any locally convex space Y.
(c) \mathscr{L}^{lb}(X, Y)\subset \mathscr{L}^{s}(X, Y) for any locally convex space Y.
(d) \mathscr{L}^{p}(X, Y)\subseteq \mathscr{L}^{pn}(X, Y) for any locally convex space Y.
Proof The equivalence of (a), (b) and (c) follow from Lemma 5. 8;

obviously (b) implies (d). According to Corollary 4.6, by a similar argu-
ment given in the proof of (d)\Rightarrow(a) in Proposition 5.2, we have that (d)
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implies (a).
Parts of the following result are due to Randtke [10, p. 97].

Lemma 5. 10. Let Z be a locally convex space, and suppose that
T\in \mathscr{L}(X, Y), S\in \mathscr{L}(Y, Z) . If one of them is prenuclear (resp. quasi-nuclear,
s-type) then S\circ T is prenuclear (resp. quasi-nuclear, s-type)

Proof. This follows from Corollary 4.3.
Brudovski_{\check{1}}[1,2] has given some characterizations of s-type mappings.

We now present a representation of prenuclear linear mappings as follows:

THEOREM 5. 11. Let T be a continuous linear map from X into Y.
the following statements are equivalent.

(a) T\in \mathscr{L}^{pn}(X, Y) .
(b) There exists a convex, circled, prenuclear subset M of X’ such that

for any continuous seminorm q on Y there is \alpha_{q}\geq 0 for which the inequality

q(Tx)\leq\alpha_{q}r(x)

holds for any x\in X, where r is the gauge of the polar M^{o} of M.
(c) There exists a \sigma(X’, X)-closed equicontinuous subset B on X’ and

a positive Radon measure \mu on B such that for any continuous seminorm
q on Y there is \alpha_{q}\geq 0 for which

q(Tx) \leq\alpha_{q}\int_{B}|\langle x, x’\rangle|d\mu(x’) (x\in X) .

(d) There exists a convex, circled, 0-neighbourhood V in X such that
for any continuous seminorm q on Y there is \alpha_{q}\geq 0 for which the inequality

\sum_{i=1}^{n}q(Tx_{i})\leq\alpha_{q} sup \{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|:x’\in V^{o}\}

holds for any fifinite subset \{x_{1^{ }},\cdots, x_{n}\} of X.
(e) T is the composite of a sequence of continuous linear mappings

Xarrow Zarrow Garrow YQ\acute{\grave{T}}J

where Z and G are normed spaces and \hat{T} is absolutely summing (or
prenuclear).

Proof. T is prenuclear if and only if there exists a prenuclear seminorm
p on X such that for any continuous seminorm p on Y there is \alpha_{q}\geq 0 for
which

q(Tx)\leq\alpha_{q}p(x) (x\in X) .
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Then, in view of Theorem 4.5, the statements (a)-(d) are mutually equiv-
alent. On the other hand, by Lemmas 5.8 and 5.10, (e) implies (a). It
remains to verify that (a) implies (e).

Let T\in \mathscr{L}^{pn}(X, Y) and let p be a prenuclear seminorm on X such that
B=\{Tx:p(x)\leq 1\} is a bounded subset of Y. The boundedness of B insures
that p^{-1}(0)\subseteq T^{-1}(0), so there exists a continuous linear map S from X_{p} onto
Y(B) (since ||S||\leq 1 ) such that T=J_{B}\circ S\circ Q_{p} . On the other hand, since p
is prenuclear, by Theorem 4.5, there exists a continuous seminorm r on
X with p\leq r such that Q_{p,r} : X_{r}- X_{p} is absolutely summing. Define

\hat{T}=S\circ Q_{p,r} .
Then \hat{T} is an absolutely summing map from X_{r} onto Y(B) and

T=J_{B}\circ\hat{T}\circ Q_{r} .
Therefore (a) implies (e).

Recall that a locally convex space X is nuclear if and only if each
equicontinuous subset of X’ is prenuclear or, equivaledtly, each continuous
seminorm on X is prenuclear (see Schaefer [11, p. 178]).

Corollary 5. 12. The identity map I:Xarrow X is prenuclear if and only
if X is a normable and fifinite dimensional space.

Proof. If I is a prenuclear linear map, then by Theorem 5.9, there
exists a convex, circled, prenuclear subset M of X’ such that for any
continuous seminorm q on X there is \alpha_{q}\geq 0 such that

q(x)\leq\alpha_{q}p(x) (x\in X) ,

where p is the gauge of M^{o} . Therefore the topology on X is determined
by the single seminorm p ; consequently X is normable. On the other
hand, M is the unit ball in the Banach dual X’ which is prenuclear, thus
X is nuclear, and surely must be finite dimensional.

Conversely, if X is normable and finite dimensional, then X is nuclear.
In view of Corollary 3.6, the identy map is absolutely summing, and hence
must be prenuclear by making use of Lemma 5.8.

Corollary 5. 13. (Dvoretzky and Rogers). A normed space X is finite
dimmsional if and only if every summable family in X is absolutely
summable.

Proof. In view of . Lemma 5.8, absolutely summing mappings are
prenuclear. Therefore this result follows from Corollaries 5.12 and 3.6.

Corollary 5. 12. If T\in \mathscr{L}^{pn}(X, Y) and S\in \mathscr{L}^{pn}(Y, Z) then S\circ T is a
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nuclear mapping from X into Z.
Proof. By Theorem 5.11 the mappings T and S can be decomposed

in the following way:
Q_{1}

\hat{T}
J_{1}

Xarrow X_{1}arrow X_{2}arrow Y

Yarrow Y_{1}arrow Y_{2}arrow Q_{2}\hat{S}J_{2} Z.,

where X_{1} , X_{2}, Y_{1} and Y_{2} are normed spaces, \hat{T}\in \mathscr{L}^{s}(X_{1}, X_{2}) and \hat{S}\in \mathscr{L}^{s}(Y_{1}, Y_{2}) .
Define

L=Q_{2}\circ J_{1^{O}}\hat{T}

Then L\in \mathscr{L}^{s}(X_{1}, Y_{1}) , and hence by Pietsh [9, (3.3.5)], \hat{S}\circ L is a nuclear
map from X_{1} inio Y_{2} because X_{1} , Y_{1} and Y_{2} are normed spaces. As

S\circ T=J_{2}\circ\hat{S}\circ L\circ Q_{1} ,

we conclude that S\circ T is a nuclear mapping from X into Z.
Corollary 5. 15. If T\in \mathscr{L}^{qn}(X, Y) and S\in \mathscr{L}^{qn}(Y, Z) then S\circ T is a

nuclear mapping from X into Z.
Proof. This follows from Lemma 5.8 and Corollary 5.14.
Examples 5. 16. (a) It is well-known that the space c_{0} consisting of

all null-sequences of real numbers is a Banach lattice equipped with the
usual norm and usual ordering, and that l^{1} is its topological dual without
order unit. According to Corollary 3.3, c_{0}(\sigma_{s})=(c_{0}, \sigma_{s}(c_{0}, l^{1})) is an L-nuclear
space and hence I\in \mathscr{L}^{l}(c_{0}(\sigma_{s}), c_{0}(\sigma_{s})), where I is the identity map. But
Corollary 5.6 shows that I\not\in-\mathscr{L}^{ln}(c_{0}(\sigma_{s}), c_{0}(\sigma_{s})) , and Proposition 5.2 indicates
that I\not\in \mathscr{L}^{lb}(c_{0}(\sigma_{s}), c_{0}(\sigma_{s})), I\not\in \mathscr{L}^{p}(c_{0}(\sigma_{s}), c_{0}(\sigma_{s})) . Therefore we conclude that
\mathscr{L}^{ln}(E, Y)\neq \mathscr{L}^{l}(E, Y), \mathscr{L}^{l}(E, Y)\neq \mathscr{L}^{lb}(E, Y) and that \mathscr{L}^{lb}(E, Y)\neq \mathscr{L}(E, Y) .

(b) For any infinite dimensional locally convex space X, it is well-
known that X(\sigma)=(X, \sigma(X, X’)) is a nuclear space. By Corollary 3.6,
.[\in \mathscr{L}^{s}(X(\sigma), X(\sigma)), but corollary 5.12 shows that I\not\subset \mathscr{L}^{pn}(X(\sigma), X(\sigma)) . There-
fore we conclude that \mathscr{L}^{pn}(X, Y)\neq \mathscr{L}^{s}(X, Y) .

(c) Since the dual space of l^{1} is an AM-space with order unit, it
follows from Corollary 5.6 that I\in \mathscr{L}^{ln}(l^{1}, l^{1}) . As l^{1} is not nuclear, it follows
that I\not\subset \mathscr{L}^{s}(l^{1}, l^{1}) and surely I\not\in \mathscr{L}^{pn}(l^{1}, l^{1}) . Therefore we conclude that
\mathscr{L}^{pn}(E, Y)\neq \mathscr{L}^{ln}(E, Y) .

6. Lattice properties of L-nuclear mappings

In this section (E, C, \mathscr{T}) and (F, K, \mathscr{P}) are assumed to be locally convex
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Riesz spaces. Recall that (F, K, \mathscr{P}) is boundedly order-complete if every
\mathscr{P}-bounded subset of F which is directed upwards has a supremum, and
that (F, K, \mathscr{P}) is locally order-complete if \mathscr{P} has a neighbourhood base at
0 consisting of convex, solid and order-complete subsets of F. In [15], we
have shown that if (F, K, _{-},\mathcal{P}) is both locally and boundedly order-complete
then \mathscr{L}^{l}(E, F) is an l-ideal in L^{b}(E, F)(i.e., \mathscr{L}^{l}.(E, F) is a solid subspace
of \mathscr{L}^{b}(E, F) .

Proposition 6.1. If (F, K, \mathscr{P}) is both boundedly and locdly or&r-
complete then \mathscr{L}^{ln}(E, F) is an l-ideal in L^{b}(E, F) .

Proof. Suppose that T\in \mathscr{L}^{ln}(E, F) . Since \mathscr{L}^{ln}.(E, F)\subseteq \mathscr{L}^{l}(E, F), it then
follows from [7] that |T| exists in L^{b}(E, F), where |T| is defined by

|T|(u)= \sup\{\sum_{i=1}^{n}|Tu_{i}| : u= \sum_{i=1}^{n}u_{i} , u_{i}\in C\} for all u\in C

We now show that |T|\in \mathscr{L}^{ln}(E, F) . Let f, in C’, be such that for any
continuous Riesz seminorm r on F there exists \alpha_{r}\geq 0 for which the inequality

r(Tx)\leq\alpha_{r}\langle|x|, f\rangle (6. 1)

holds for all x\in E. According to the hypothesis, by [5, Lemma 1] there
exists a continuous Riesz seminorm q on F such that

r(|T|u) \leq\sup\{q(\sum_{i=1}^{n}|Tu_{i}|):u=\sum_{i=1}^{n}u_{i} , u_{i}\in C\} (6. 2)

holds for any u\in C. For this q there exists \alpha_{q}\geq 0 such that the inequality
(6.1) holds for all x\in E, therefore for any finite subset \{u_{1^{ }},\cdots, u_{n}\} of C

with u= \sum_{i=1}^{n}u_{i} , we obtain

q( \sum_{i=1}^{n}|Tu_{i}|)\leq\sum_{i=1}^{n}q(Tu_{i})\leq\alpha_{q}\langle\sum_{i=1}^{n}u_{i} , f\rangle=\alpha_{q}\langle u,f\rangle

and thus

r(|T|u)\leq\alpha_{q}\langle u,f\rangle for all u\in C .

Now for any x\in E, there is

r(|T|x)\leq r(|T|x^{+})+r(_{\backslash }|T|x^{-})\leq\alpha_{q}\langle|x|,f\rangle

which implies that |T|\in \mathscr{L}^{ln}(E, F) .
Finally, it is not hard to see that \mathscr{L}^{ln}(E, F) is a solid subspace of

L^{b}(E, F) . Therefore the proof is complete.
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Corollary 6. 2. If (F, K, \mathscr{B}) is a complete L-nuclear space then \mathscr{L}^{ln}(E, F)

is an l-ided in L^{b}(E, F) .
Proof Since \mathscr{P}=o(F, F’), it follows from [16, (13. 9)] that F is \mathscr{F}-

complete if and only if (F, K, \mathscr{P}) is both boundedly and locally order-
complete. The result now follows from Proposition 6.1.

Corollary 6. 3. If (E, C, \mathscr{T}) is an L-nuclear space and if (F, K, \mathscr{B}) is
both boundedly and locally order-complete (in particular, F is a complete
L-nuclear space), then \mathscr{L}^{lb}(E, F) is an l-ideal in L^{b}(E, F) .

Proof This follows from Proposition 5.2 and Prosition 6.1.
It is known from Theorem 5.5 that the mapping T\simarrow T’ is an order

isomorphism from \mathscr{L}^{ln}(E, F) onto \mathscr{L}^{o}(F’(\beta), E’), where T’ is the adjoint
mrp of T. Since (F’, K’\beta(F’, F)) is a locally convex Riesz space and since
(E’, C’, \sigma(E’, E)) is an order-complete locally o convex Riesz space (i.e. , an
order-complete Riesz space for which C’ is a normal cone in (E’, \sigma(E’, E))),
by Peressini [8, Proposition 3], \mathscr{L}_{-}^{o}(F’(\beta), E’) is an l-ideal in L^{b}(F’, E’) and is
contained in \mathscr{L}(F’(\beta), E’(\sigma)) . Therefore for any T\in \mathscr{L}^{ln}(E, F), the absolute-
value |T’| of T’, defined by

|T’|(g)= \sup\{T’(h):|h|\leq g , h\in F’\}

= \sup\{\sum_{i=1}^{n}T’(g_{i}):g_{i}\in K’,\sum_{i=1}^{n}g_{i}=g\} (g\in K’)

exists in \mathscr{L}^{o}(F’(\beta), E’) ; consequently, there exists a unique element in
\mathscr{L}^{ln}(E, F), denoted by a(T), such that

(a(T))’=|T’| (6. 3)

On the other hand, for any u\in C and any g\in K’ , since

\langle(a(T)\pm T)u, g\rangle=\langle u, (|T’|\pm T’)g\rangle\geq 0 ,

a(T)\pm T are positive L-nuclear maps from E into F ; further, if S\in \mathscr{L}^{ln}.(E, F)

is such that \pm T\leq S, then it is easily seen that a(T)\leq S. Therefore a(T)
is the absolute-value of T. Moreover, we have the following relation

T([-u, u])\subseteq[-a(T)u, a(T)u] (u\in C)

which shows that T\in L^{b}(E, F) . We conclude that \mathscr{L}^{ln}(E, F) is an order-
complete Riesz space under the lattice operations a(.) defined by the formula
(6.3) and is only a subspace of L^{b}(E, F) because the map T\simarrow T’ becomes
an l isomorphism from \mathscr{L}^{ln}(E, F) onto \mathscr{L}^{o}(F’(\beta), E’) . (It should be noted
that L^{b}(E, F) may not be a Riesz space.)
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Now if L^{b}(E, F) is a Riesz space and if T, in \mathscr{L}^{ln}(E, F), is such that
the map |T| defined by

|T|(u)= \sup\{\sum_{i=1}^{n}|Tu_{i}| : u_{i} \in C,\sum_{i=1}^{n}u_{i}=u\} (u\in C)

exists in L^{b}(E, F), then |T|=a(T)=|T’|’ and \mathscr{L}^{ln}(E, F) is an l-ideal in
L^{b}(E, F) . In fact, |T|\leq a(T) and hence

|T|’\leq(a(T))’=|T’| (6. 4)

The existences of |T| also insures that \pm T\leq|T| , hence \pm 7^{\tau}’\leq|T|’ or,
equivalently,

|7’’|\leq|T|’

Combining this with the formula (6.4), we obtain |T’|=|T|’ ; consequently,

|T|=a(T)=|T’|’

Finally, if 0\leq S\leq T where T\in \mathscr{L}^{ln}(E, F) and S\in L^{b}(E, F), there exists f\in C’

such that for any continuous Riesz seminorm r on F there is \alpha_{r}\geq 0 for which

r(Tx)\leq\alpha_{r}\langle|x|,f\rangle

holds for all x\in E. It then follows that

r(Sx)\leq r(Sx^{+})+r(Sx^{-})\leq\alpha_{r}\langle|x| , f\rangle for all x\in E .

Therefore \mathscr{L}^{ln}(E, F) is an l-ideal in L^{b}(E, F) . We may summarize in the
following result.

Proposition 6. 4. \mathscr{L}^{ln}(E, F) is an order-complete Riesz space and is
a subspace of L^{b}(E, F) . If, in addition, L^{b}(E, F) is a Riesz space and |T|

exists in \mathscr{L}^{ln}.(E, F) for any T\in \mathscr{L}^{ln}(E, F), thm\mathscr{L}^{ln}(E, F) is an l-ideal in
L^{b}(E, F) and the equalities

|T|’=|7’’| , |T|=|T’|’

hold for all T\in \mathscr{L}^{ln}(E, F) .
Let \mathscr{L} be a locally convex topology on a Riesz space (F, K). May and

Chivukula [5] called that (F, K, \mathscr{L}) has property (C) if it satisfies the
following two conditions :

(i) every \mathscr{L} -compact subset of F has a supremum in F ;
(ii) for any continuous seminorm r on F, there exists a continuous

seminorm q on F such that for any \mathscr{L} -compact subset B of F the following
inequality holds
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r( \sup B)\leq\sup\{q(b):b\in B\} .

Let G be an ordered vector space. Recall that a subspace G_{1} of G is
called an 0-ideal in G if it follows from 0\leq x\leq u with u\in G_{1} and x\in G

that x\in G_{1} . Therefore a Riesz subspace of E is an l-ideal if and only if
it is an 0-ideal. According to Theorem 4.1, it is easily see that \mathscr{L}^{ln}(E, F)

and \mathscr{L}^{l}(E, F) are always 0-ideals in \mathscr{L}. (E, F). Also Proposition 6.2 shows
that \mathscr{L}^{ln}(E, F) is always an 0-ideal in L^{b}(E, F) .

Proposition 6. 5. Let E be an l-ideal in the bidual E’ of E, (F, K)

a Riesz space and suppose that the locally convex space (F, \mathscr{L}) has the
property (C). Then the following assertions hold.

(a) \mathscr{L}^{l}(E, F) is a Riesz space under the lattice operation

|T|(u)= \sup\{Tx:|x|\leq u\} (u\in C) , (6. 5)

and is contained in L^{b}(E, F) (note that L^{b}(E, F) is not necessarily a Riesz
space).

(b) \mathscr{L}^{ln}(E, F) is an l-ideal in \mathscr{L}^{l}(E, F) .
(c) If F is order-complete then \mathscr{L}^{l}(E, F) is an l-ideal in L^{b}(E, F) .
Proof (a) Since E is an l-ideal in E_{-}’,

, it follows from [16, (13.5)]
that each order-interval in E is \sigma(E, E’)-compact. If T\in \mathscr{L}^{l}(E, F), T is
continuous with respect to \sigma(E, E’) and \mathscr{L} , hence T([-u, u]) is a \mathscr{L} -

compact subset of F for any u\in C. By the hypothesis, the supremum

|T|(u)= \sup\{Tx:|x|\leq u\}

exists for any u\in C. As |T| is positive, |T|\in L^{b}(E, F) and so \mathscr{L}^{l}(E, F)\subseteq

L^{b}(E, F) . Further we show that |T| is cone-absolutely summing. In fact,
for any continuous seminorm r on F, there exists a continuous seminorm
q on F such that

r(|T|u) \leq\sup\{q(Tx):|x|\leq u\} (u\in C) . (6. 6)

On the other hand, since T\in \mathscr{L}^{l}(E, F), by Corollary 4.8, there is f\in C’

such that
q(Tx)\leq\langle|x|, f\rangle for all x\in X

Combining this with the inequality (6.6), we obtain

r(|T|u)\leq\langle u, f\rangle for all u\in C1

Now for any x\in E, we have
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r(|T|x)\leq r(|T|x^{+})+r(|T|x^{-})\leq\langle|x|, f\rangle

Consequently, |T|\in \mathscr{L}^{l}(E, F) in view of Corollary 4.8; therefore \mathscr{L}^{l}(E, F)

is a Riesz space and is contained in L^{b}(E, F) .
(b) Since \mathscr{L}^{ln}(E, F)\subseteq \mathscr{L}^{l}(E, F), for any T\in \mathscr{L}^{ln}(E, F), |T| exists in

\mathscr{L}^{l}(E, F), and there is f\in C’ such that for any continuous seminorm q on
F there exists \alpha_{q}\geq 0 for which the inequality

q(Tx)\leq\alpha_{q}\langle|x|, f\rangle

holds for all x\in E. Now it is easily seen that |T|\in \mathscr{L}^{ln}(E, F). Therefor
\mathscr{L}^{ln}(E, F) is a Riesz subspace of \mathscr{L}^{l}.(E, F) . It was noted that \mathscr{L}^{ln}(E, F) is
always an 0-ideal in \mathscr{L}^{l}(E, F) . Hence \mathscr{L}^{ln}(E, F) is an l-ideal in \mathscr{L}^{l}.(E, F) .

(c) The order-completeness of F insures that L^{b}(E, F) is an order-
complete Riesz space under the usual lattice operations defined by the
equality (6.5). According to the conclusion (a), \mathscr{L}^{l}(E, F) is a Riesz subspace
of L^{b}(E, F) and surely an l-ideal in L^{b}(E, F) .

7. A characterization of \mathscr{L}^{lb}(l^{1}\langle A, E\rangle, l^{1} [A Y])

Let (E, C, \mathscr{T}) be a locally solid space. It is easily seen that T\in \mathscr{L}^{lb}(E, Y)

if and only if there exists a continuous seminorm p on E such that for
any continuous seminorm q on Y there is \alpha_{q}\geq 0 for which

q(Tu)\leq\alpha_{q}p(u) (u\in C) .
Suppose now that T\in \mathscr{L}(E, Y) . Then by the above remark, T_{A}\in \mathscr{L}^{lb}

(l^{1}\langle A, E\rangle, l^{1}[A, Y]) if and only if there exists a continuous seminorm p on
E such that for any continuous seminorm q on Y there is \alpha_{q}\geq 0 for which
the inequality

\sum_{i=1}^{n}q(Tu_{i})\leq\alpha_{q}p(\sum_{i=1}^{n}u_{i}) (7. 1)

holds for any finite subset \{u_{1^{ }},\cdots, u_{n}\} of C. For convenience of expression,
we write

\mathscr{L}^{sl}(E, Y)=\{T\in \mathscr{L}(E, Y):T_{N}\in \mathscr{L}^{lb}(l^{1}\langle N, E\rangle, l^{1}[N, Y])\} .
It is easily seen that

\mathscr{L}^{ln}(E, Y)\subseteq \mathscr{L}^{tl}(E, Y)\subseteq \mathscr{L}^{lb}(E, Y)\cap \mathscr{L}^{l}(E, Y) .
and that if Y is normable then

\mathscr{L}^{ln}(E, Y)=\mathscr{L}^{sl}(E, Y)=\mathscr{L}^{l}(E, Y) .
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Elements in \mathscr{L}^{sl}(E,,Y) are called ’str0ng1y cone- absol^{1}utely summing mappings.

THEOREM 7. 1. 1_{*}Let (E, C, \mathscr{T}) be a locally solid space and suppose that
T\in \mathscr{L}(E, Y) . Then T\in \mathscr{L}^{sl}(E\backslash ’ Y) if and only if there exists a strongly
monotone, c_{k}ontinuous seminorm p on E and \hat{T}\in \mathscr{L}(E_{p}, Y) with T=\hat{T}\circ Q_{p}

such that \hat{T} maps positive summable families in E_{p} into absolutely summable
families in Y.

Proof Necessity. Let p be a .continuous strongly monotone seminorm
on E such that the inequality (7.1) holds, and suppose that B=\{Tx\in Y :
p(x)\leq 1\} . Then p^{-1}(0)\subseteq T^{-1}(0), and hence there exists a \hat{T}\in \mathscr{L}(E_{p}, Y) such
that T=\hat{T}\circ Q_{p} . Let (Q_{p}(u_{i}), A)\in C.(A, E_{p}) . Without loss of generality one
can assume that u_{i}\in C. For any \delta>0 there exists \alpha_{0}\in \mathscr{T}(A) such that

p( \sum_{i\in\alpha}u_{i})=||\sum_{i\epsilon\alpha}Q_{p}(u_{i})||_{p}\leq\delta (7. 2)

whenever \alpha\in \mathscr{T}(A) with \dot{\alpha}\cap\alpha_{0}=\psi . Therefore inequalities (7. 1) and (7. 2)

insure that (\hat{T}(Q_{p}(x_{i})), A) is absolutely summable in Y.
Sufficiency. Let V=\{x\in E:p(x)\leq 1\} and let \Sigma be the closed unit ball

in the normed space E_{p} . Denote by V^{o} th\‘e polar of V taken in E’, and
\backslash by\Sigma^{\pi} the polar of \Sigma taken in the Banach dual space E_{p}’ . It follows from
the isometry of the adjoint Q_{p}’ from E_{p}’ onto E’(V^{o}) that V^{o}=Q_{p}’(\Sigma^{\pi}), and
hence that

\epsilon_{p}(x_{i}, A)=\epsilon_{|\{.||_{p}}(Q_{p}(x_{i}), A) for all (x_{i}, A)\in l’(A, E) .

Letting

\sqrt[o]{}\swarrow=\{( Q_{p}(u_{i}), A)\in C.(A, E_{p}):\epsilon_{||.||_{p}}(Q_{p}(u_{i}), A)\leq 1\}

and
\hat{T}_{A} (Q_{p}(x_{i}), A)=(\hat{T}(Q_{p}(x_{i})), A) for all (Q_{p}(x_{i}), A)\in l^{1}(A, E_{p}) .

A similar a\grave{r}gument given in the proof of Pietsch [9, (2.1.2)] shows that
\hat{T}_{A}(^{o}1l) is a bounded subset of l^{1}[A, Y] . Therefore, for any continuous
seminorm q on Y, there is \mu_{q}\geq 0 such that the following inequality holds.

\pi_{q} ( \hat{T}(Q_{p}(u_{i})) , A)\leq\mu_{q}\epsilon_{||.||_{q}}(Q_{p}(u_{i}), A)=\mu_{q}\epsilon_{p}(u_{i}, A) (7. 3)

whenever (u_{i}, A)\in C.(A, E) . We conclude from the formula (7.3) and from
Lemma 2.4 that T\in \mathscr{L}^{sl}(E, Y) .

Corollary 7. 2. Let (E, C, ||. ||) be a normed, locally solid space and Y

a normed space. Thm a linear map T:Earrow Y is L-nuclear (or cone-
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absolutely summing) if and only if T maps positive summable families in
E into absolutely summable families in Y.

As an application of Corollaries 7.2 and 5.6, we obtain the following
interesting result, which should be compared with the theorem of Dvoretzky-
Rogers.

Corollary 7. 3. In a normed, locally solid space E for which E’ has
no any order- unit, there are positive summable families which are not
absolutely sum_{n}mable.

Proof. Let E be a normed, locally solid space for which E’ has no
any order-unit. If every positive summable families is absolutely summabl,
then Corollary 7.2 insures that the identity map is L-nuclear. Therefore
by Corollary 5.6, E’ has an order-unit, contrary to the hypothesis. This
contradition shows that there are positive summable families in E which
are not absolutely summable.

Corollary 7. 4. Let E and F be locally solid spaces. If T\in \mathscr{L}^{sl}(E, F\rangle|

and if S\in \mathscr{L}(F, Y) can be factorized through a nomed space, thm
S\circ T\in \mathscr{L}^{ln}(E, Y) . In particular the product of two strongly cone-absolutely
summing mappings is L-nuclear.

Proof. Let G be a normed space such that S is the compose of a
sequence of continuous linear mappings

Farrow Garrow YQ\hat{S}

By Theorem 7.1, the mapping T can be decomposed in the following way

Earrow E_{p}arrow FQ_{p}\hat{T}

where p is a continuous, strongly monotone seminorm on E, and \hat{T}\in \mathscr{L}(E_{p}, F)

maps positive summable sequences in E_{p} into absolutely summable sequences
in Y. Define H=Q\circ\hat{T}, sines Q is continuous, H maps positive summable
sequences in E_{p} into absolutely summable sequences in F. By Corollary
7.2, H is an L-nuclear map from E_{p} into G. On the other hand, since
Q_{p} is positive and since

S\circ T=\hat{S}\circ H\circ Q_{p} ,

we conclude from Lemma 5.3 that S\circ T is L-nuclear.
Let X and Y be locally convex spaces and suppose that T\in \mathscr{L}(X, Y).

Then it is easily seen that T_{A}\in \mathscr{L}^{lb}(l^{1}(A, X), l^{1}[A, Y]) if and only if there
exists a convex, circled, 0-neighbourhood V in X such that for any con-
tinuous seminorm q on Y there is \alpha_{q}\geq 0 for which the inequality
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\sum_{i=1}^{n}q(Tx_{i})\leq\alpha_{q} sup \{\sum_{i=1}^{n}|\langle x_{i}, x’\rangle|:x’\in V^{0}\} (7. 4)

holds for any finite subset \{X_{1}^{ },\cdots, X_{n}\} of X ; conseqently T\in \mathscr{L}^{lb}(X, Y) .
For simplicity of notation, we write

\mathscr{L}^{ss}(X, Y)=\{T\in \mathscr{L}(X, Y):T_{N}\in \mathscr{L}^{lb}(l^{1}(N, X), l^{1}[N, Y])\}1

Clearly we have
\mathscr{L}^{pn}(X, Y)\subseteq \mathscr{L}^{ss}(X, Y)\subseteq \mathscr{L}^{lb}(X, Y)\cap \mathscr{L}^{s}(X, Y) .

THEOREM 7. 5. Let T\in \mathscr{L}(X, Y) . Then T_{A}\in \mathscr{L}^{lb}(l^{1}(A, X), l^{1}[A, Y]) if
and on/y if there exists a convex circled, 0-neighbourhood V in X and
\hat{T}\in \mathscr{L}(X_{V}, Y) such that

T=\hat{T}\circ Q_{V} and \hat{T}_{A}\in L (l^{1}(A, X_{V}), l^{1}[A, Y]).
Proof. Necessity. Let V be a conuex, circled, 0-neighbourhood in X

such that the inequality (7.4) holds. Let p be the gauge of V and B=T(V).
According to the inequality (7.4), B is a bounded subset of Y and so
p^{-1}(0)\subseteq T^{-1}(0) ; thus there exists \hat{T}\in \mathscr{L}(X_{V}, Y) such that T=\hat{T}\circ Q_{V} . Since
Q_{V}’ is an isometry from X_{V}’ onto X’(V^{o}), by making use of the formula
(7.4), it is not hard to see that \hat{T}_{A}\in L(l^{1}(A, X_{V}), l^{1}[A, Y]) .

Sufficimcy. Since X_{V} is a normed space, it follows from Theorem 3.5
that \hat{T}_{A}\in \mathscr{L}(l^{1}(A, X_{V}), l^{1}[A, Y]), and hence that \hat{T}\in \mathscr{L}^{s}(X_{V}, Y). Let \Sigma denote
the unit ball in X_{V} . Then Q_{V}’(\Sigma^{o})=V^{o} . For any continuous seminorm q

on Y there is \alpha_{q}\geq 0 such that the inequality

\sum_{i=1}^{n}q(\acute{\grave{T}}(Q_{V}(x_{i})))\leq\sup\{\sum_{i=1}^{n}|\langle Q_{V}(x_{i}), f\rangle|:f\in\Sigma^{o}\}

holds for any finite subset \{Q_{V}(x_{1}), \cdots, Q_{V}(x_{n})\} of X_{V} . Now it is easy to

see that the formula (7.4) holds, therefore T_{A}\in \mathscr{L}^{lb}(l^{1}(A, X), l^{1}[A, Y]) .
Corollary 7. 6. If T\in \mathscr{L}^{ss}(X, Y) and S\in \mathscr{L}^{ss}(Y, Z) then S\circ T\in \mathscr{L}^{pn}(X, Z) .
Proof. By Theorem 6,1, the mappings T and S can be decomposed

in the following way:

Q_{\gamma}
\hat{T}

Xarrow X_{V}arrow Y

Yarrow Y_{W}arrow ZQ_{W}\hat{S}

,

where V and W are convex, circled 0-neighbourhoods in X and Y resp.

and \hat{T}\in \mathscr{L}(X_{V}, Y) (resp. \hat{S}\in \mathscr{L} ( Y_{W}, Z)) sends summable families in X_{V} (resp.



Characterizations of the topology of uniform convergence on order-intervals 199

Y_{W}) into absolutely summable families in Y (resp. Z). Define
L=Q_{W}\circ\acute{T}

Since Q_{W} is continuons, Q_{W}(l^{1}[A, Y])\subseteq l^{1}[A, Y_{W}] , thus

L(l^{1}(A, X_{V}))\subseteq l^{1}[A, Y_{W}] .

Since X_{V} and Y_{W} are normed spaces, it follows from Theorem 3.5 and
Lemma 5.8 that L\in \mathscr{L}^{pn}(X_{V}, Y_{W}) . In view of Lemma 5.10 and

S\circ T=\hat{S}\circ L\circ Q_{V} ,

we conclude that S\circ T\in \mathscr{L}^{pn}(X, Y) .
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