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\S 1. Introduction.

We consider the following problem
PROBLEM. Let M be a compact Riemannian manifold with positive

constant scalar curvature. If M adminits a nonisometric infifinitesimal prO-
jective transformation, then is M a space of positive constant curvature?

For this problem, the following results are known.
THEOREM A. Let M be a complete Riemannian manifold with parallel

Ricci tensor. IfM admits nonajfine infifinitesimal projective transformations,
then M is a space of positive constant curvature. [1].

THEOREM B. Let M be a compact Riemannian manifold with con-
sant scalar curvature K. If the scalar curvature is nonpositive, then an
infifinitesimal projective transformation is a motion. [2].

THEOREM C. Let M be a compact Riemannian manifold satisfying
a condition \nabla_{k}K_{fi}-\nabla_{f}K_{ki}=0, (K\neq 0), where \nabla_{k} , K_{fi} denote a covariant
derivative and Ricci tensor, respectively. The projective Killing vector v^{h}

can be decomposed uniquely as follows,

v^{h}=w^{h}+q^{h} ,

where w^{h} and q^{h} are Killing vector and gradient projective Killing vector,
respectively. [2].

THEOREM D. Let M be a compact Rimannian manifold satisfying
a condition \nabla_{k}K_{fi}-\nabla_{f}K_{ki}=0, (K\neq 0). If M admits nonisometric infifini-
tesimal projective transformations, then M is a space of positive constant
curvature. [2].

The purpose of this paper is to prove the following theorems
THEOREM 1. Let M be a complete, connected and simply connectected

Riemannian manifold with positive constant scalar curvature. If a prO-
jective Killing vector v^{h} is decomposable as follows,
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v^{h}=w^{h}- \frac{n(n-1)}{2K}f^{h} ,

where w^{h} and \frac{n(n-1)}{2K}f^{h} are a Killing vector and a non-zero gradimt

projective Killing vector, respectively, then M is isometric to a sphere of
radius \mapsto\frac{n(n-1)}{K} .

THEOREM 2. Let M be a compact Riemannian manifold with constant
scalar curvature and let v^{h} be a projective Killing vector. Put f=\nabla_{i}v^{i}/n+1 .
Then the following conditions are equivalent.

(1 w^{h}=v^{h}+ \frac{n(n-1)}{2K}f^{h} is a Killing vector,

(2) Z_{kji}^{h}f^{k}=0, where Z_{kfi}^{h}=K_{kji}^{h}+ \frac{K}{n(n-1)}(\delta_{j}^{h}g_{ki}-\delta_{k}^{h}g_{ji}), and K_{kfi}^{h} de-

notes the Riemannian curvature tensor,

(3) G_{ji}f^{j}=0 , where G_{fi}=K_{ji}- \frac{K}{n}g_{fi} .
A vector field v^{h} is called an infinitesimal projective transformation or

a projective Killing vector if it satisfies

(1. 1) \mathfrak{L}

\{\begin{array}{l}hji\end{array}\}=\nabla_{j}\nabla_{i}v^{h}+K_{kji}^{h}v^{k}=\delta_{j}^{h}\varphi_{i}+\delta_{i}^{h}\varphi_{j}’.

where \mathfrak{L}, \{\begin{array}{l}hji\end{array}\} , \varphi_{i} denote Lie derivation with respect to v^{h}, ChristoffePs
symbol and associated vector, respectively. From this equations, we get
following results

\mathfrak{L}K_{kji}^{h}=-\delta_{k}^{h}\nabla_{j}\varphi_{i}+\delta_{j}^{h}\nabla_{k}\varphi_{i} ,
\mathfrak{L}K_{ji}=-(n-1)\nabla_{f}\varphi_{i} .
\nabla^{i}\nabla_{i}v_{j}+K_{ji}v=2i\varphi_{j} ,
\nabla_{j}(\nabla_{i}v^{i})=(n+1)\varphi_{j}\uparrow

We have f_{j}=\varphi_{f} , where f_{f} means \nabla_{j}f, therefore \varphi_{J} is a gradient vector
and in the following discussions, we use f_{f} instead of \varphi_{J} .

\S 2. Proof of Theorem 1.

LEMMA 1. Let M be a complete, connected and simply connected Rie-
mannian manifold of dimension n. In order that M admits a nontrivial
solution \psi for the system of differential equations

\nabla_{k}\nabla_{j}\psi_{i}+K(2\psi_{k}g_{fi}+\psi_{f}g_{ik}+\psi_{i}g_{kf})=0 , K>0 , \psi_{i}=\nabla_{i}\psi ,
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it is necessary and sufficient that M be isometric xvith a sphers S^{n} of radius
\frac{1}{\sqrt{K}} in Euclidean (n+1)-space.

For this Lemma, see [3].

Lemma 2. If v_{h}=w_{h}- \frac{n(n-1)}{2K}f_{h} , then we have

\nabla_{h}\nabla_{f}f_{i}+\frac{K}{n(n-1)}(2f_{h}g_{ji}+f_{f}g_{hi}+f_{i}g_{hf})=0 .

PROOF. Substituting v_{h} into (1. 1), since w_{h} is the Killing vector, we
obtain

(2. 1) \nabla_{f}\nabla_{i}f_{h}+K_{kjih}f^{k}=-\frac{2K}{n(n-1)}(g_{hf}f_{i}+g_{hi}f_{f}) .

Since \nabla_{i}f_{h}=\nabla_{h}f_{i} , we hove
0=\nabla_{f}\nabla_{i}f_{h}-\nabla_{f}\nabla_{h}f_{i}

=-K_{kfih}f^{k}- \frac{2K}{n(n-1)}(g_{hf}f_{i}+g_{hi}f_{f})+K_{kfhi}f^{k}

+ \frac{2K}{n(n-1)}(g_{fi}f_{h}+g_{hi}f_{f})

=-2K_{kfih}f^{k}- \frac{2K}{n(n-1)}(g_{hf}f_{i}-g_{fi}f_{h}) .

Substituting this result into (2. 1), we get

\nabla_{j}\nabla_{i}f_{h}+\frac{K}{n(n-1)}(2f_{f}g_{hi}+f_{i}g_{hf}+f_{h}g_{if})=0 .

From Lemma 1, and Lemma 2, we have Theorem 1.

\S 3. Proof of Theorem 2.

In this section we assume M is compact and the scalar curvature is
constant.

Lemma 3. If w^{h}=v^{h}+ \frac{n(n-1)}{2K}f^{h} is a Killing vector, then we have
Z_{kfi}^{h}f^{k}=0 .

This is obious from the proof of Theorem 1.
Lemma 4. If Z_{kfi}^{h}f^{k}=0 , then we obtain G_{fi}f^{f}=0 .

This proof is trivial.
LEMMA 5. There is the following equation,
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(n –1) \Delta^{2}f+2K\Delta f+2K_{fi}\nabla^{f}f^{i}=0 ,

where \Delta means g^{fi}\nabla_{j}\nabla_{i} .
For this Lemma, see [2].

Lemma 6. If G_{ji}f^{j}=0 , then we have \Delta f=-\frac{2(n+1)}{n(n-1)}Kf.
Proof is the same as that in page 266, [2].

Lemma 7. A necessary and sufficient condition for a vector fifield w^{h}

in M to be a Killing vector is \nabla_{i}w^{i}=0 and \nabla^{j}\nabla_{j}w^{h}+K_{i}^{h}w^{i}=0 .
For thisLemma, see [4].

Lemma 8. If G_{fi}f^{f}=0 , then we get v^{h}=w^{h}- \frac{n(n-1)}{2K}f^{h} .

PROOF. If we put w^{h}=v^{h}+ \frac{n(n-1)}{2K}f^{h} , then we have

\nabla^{i}w_{i}=\nabla^{i}v_{i}+\frac{n(n-1)}{2K}\Delta f

=(n+1)f-(n+1)f
=0 ,

\nabla^{f}\nabla_{f}w^{i}+K_{i}^{j}w_{j}=\nabla^{f}\nabla_{f}v^{i}+K_{i}^{f}v_{f}+\frac{n(n-1)}{2K}\{\nabla^{f}\nabla_{f}f_{i}+K_{i}^{f}f_{f}\}

=2f_{i}+ \frac{n(n-1)}{2K}\{_{-}\frac{2(n+1)}{n(n-1)}Kf_{i}+\frac{2K}{n}f_{i}\}

=0t
Therefore w_{i} is a Killing vector from the Lemma 7. Consequently we
arrive at the complete proof of Theorem 2 by means of Lemma 3, Lemma
4 and Lemma 8.
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