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On the compact convex base of a dual cone

By Kaneyuki Yamamoro
(Received February 20, 1978)

Let X be a locally convex Hausdorff linear topological space over R,
where R is the field of real numbers endowed with its usual topology, X*
be its topological dual and K be a closed proper cone with vertex 6, i.e.,
a closed subset of X with the following properties: i) K+KcCK, ii) AKCc K
for all 220, and iii) KN(—K)={6}, where 6 denotes the zero element of
the linear space X. Then K allows us to introduce, by virtue of “x<y if
Yy—x&€K”, a partial order =, under which X is an ordered linear space
with possitive cone K. Let 4 be a non-empty subset of the dual cone K*=
{x*: x*e X*. z*(2)=0 for all x=K)} satisfying the following conditions :

(1) if xz*(x)=0 for all ¥4, then z=K;

(2) 4 is strongly compact and convex ;

(3) 6*&4.

Here 6* is reserved for the zero element of X*.

The use of 4 as a set of price systems is justified, when it is intended
to treat the infinite-dimensional commodity space (see [2]). Although, in
the finite-dimensional case, an example of 4 is easily found, it is not always
easy and even impossible to find such an example in the infinite-dimensional
case. The purpose of this paper is to discuss the existence of 4 in the
infinite-dimensional case. In the infinite-dimensional Banach space, there
exists no non-empty subset 4 of K* with X*=K*— K* satisfying (1), (2)
and (3). In fact, the following theorem holds :

THEOREM. Let X be a Banach space, K be a closed proper cone in
X and K* be its dual cone. Assume X*¥=K*—K*. If there exists a non-
empty subset 4 of K* which satisfies the above conditions (1), (2) and (3),
then X is finite-dimensional.

Proor. Let (U24)*~ denote the weak*-closure of U24. Then obviously
K*5(U d). 220 az0

120

Suppose that xF&(U2A4)»~ for some xf € K*. Then, by making use of

220
the separation theorem, there exists an x,& X such that

inf x*(xg) = 0> x5 () -
ey
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Hence z*(x)=0 for all z¥€4. By (1), this implies zy&K. Consequently
x¥(x,) =0, which is a contradiction. Therefore
K*=(Uad)».
220

Let y*=K*. Then there exist nets {z,acA} and {2, a4} such
that 2*cd, 0<2,<+oo and a net {1z, asA} converges weakly to y*.
Since 4 is strongly compact, it may be assumed that the net {z¥, ac A}
converges strongly to zf for some zy 4. On the other hand, by making
use of the separation theorem, (2) and (3) imply that there exists an x€X
such that z* (x)=e>0 for all x#¥=4. Then the net {127 (x), aE A} con-

*
verges to ¥*(x,), and consequently {4,aE A} converges to %;L(% (< o0).
0 \Zo

Thus {i., = A} is a bounded set. Hence it may be assumed that {2, a€ A}
converges to 4, for some 2. Then y*=2xy&24. Therefore, it has been
proved that K¥*C UA4. This shows Ui4=K*.

a20 iz0

Put 4= U 24. Then 4 is strongly compact, too. By making use of
0251

Xx=K* - K* X*={n(d—4). Here 4—4 is strongly compact, and so it is
n=1

strongly closed. It follows from the Baire’s category theorem that 4 has
a non-empty interior, while it is strongly compact. Hence X* is finite-
dimensional. Finally, X is also finite-dimensional.

ReEMARK. Although the condition (1) is in general weaker than the

condition (¥*) K¥=U44, it is equivalent to the condition (*) under the con-
220

dition (3), when X is a Banach space.
The following corollary is essentially another version of the above theo-
rem.

CoroLLARY 1. Let X be an infinite-dimensional Banach space and
4,C X* satisfy the following conditions :

(i) 4, is strongly (norm-) compact and convex
and

(i) 6*&4,.
Define K& and K, by

1) Kg=U2a4d,

220

and
Koz{x: x*(x);Ofor all x*ng‘}y

respectively. Assume
(iv) KoN(—Ky)={6}.
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K* = {25 = (0, 0 )y 0aZ0, 3 va< +00).
n=1
Put

1
x5 ':(1, o0 —5}7, >, 4d={x*: * < x*< x5} and

do={x*: x¥ S x* <2z} .

a) 4 satisfies (1) but does not satisfy (*). In fact, for example, 2/*&

K* but 2'*¢ U2ad, where

220 ’
ZIBx'*:<1 11 ) (1<a<?2)
’ 2“’ 3“7 ¢

b) 4, is convex and strongly (i.e. norm-) compact. 6*& 4, Let z=
(1,0,0,--)E(c). Then z*(xy)=1 for all 2*E4,.

c) Let K(’,“ZZLZJOMO and K,={x: z*(x)=0 for all z*€KJ}. Then K,
coincides with the set {x: z*(x)=0 for all z*¥4)}. In the vector lattice
(X, K), for each z€ X, z*, = and |z| denote sup (z, 6), sup (—z, 0) and sup
(x, —x), respectively. Since x*&4, means r*=zx*+y* for some y* with
g*<y*=x and

inf y*(x)=—a5(27),
0"§?/*§a:6

the following chain of equivalences is valid :

ze K,& inf 2¥(x) =20 = x5 (2)+ inf y*(2)=0

wred, p*sy*sa;
¢ (@) — 2 (27) 2 0 xf () = 225 (27) -

d) Let z€K,N(—K,). Then, z¥(z*)=2zf(x") and zf((—x)h)=2z5
((—z)7). Since (—2)*=2" and (—2) =z%, z7(z") =2z (x) and z¥(x7)=
2x5 (xh).

1
Hence z¥(z*)=0=ux(x"). Remembering that xy = (1, *217, 30 ), xt=0=

x~ and so z=40.
Thus it has been shown that K, is a proper cone. (n)

e) Let £,=(1,0,0,-) and xn=<%, 0, -0, —%, 0, 0,"->(n=2,3,---).

Then z,—x,=6 and so x((xe—2,)") =225 ((2o— 2a)7)-
Hence zy,—x,€K,, i. €., 2,=xy.
(1}
On the other hand, since zf(z))= —;— and zJ(x;) = o x5 (x)) = 2x5 (x;)

and so #<zxz,. Thus it has been shown that
0
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Then
X*x K§—K§ .

REMARK. By utilizing (iv), K§ — K is weak*-dense in X*, i.e.,
(Ki— K3~ = X*.

CoroLLARY 2. Let (X,K) be an infinite-dimensional Banach lattice.
Then there exists no strongly-compact and convex subset 4 of X* such that

K¥=U24 and 6*& 4.

220

In spite of corollary 2, even if (X, K) is an infinite-dimensional Banach
lattice, it is possible to construct a subcone K¥C K* so that 4, satisfies all
the conditions (i), (i) and (iii) of corollary 1. Here K,DK may be called
an augumented cone in comparison with the original cone K.

Let K be a closed proper cone in a locally convex Hausdoff linear to-
pological space X. Take a non-empty subset 4 of K* satisfying (2). For
example, in the infinite-dimensional Banach spaces, a non-empty subset 4
of K* satisfying the conditions (1) and (2) is easily found. Starting from
this 4, one method of the construction of 4, satisfying the conditions (1'),
() and (ii) (equivalently (i), (i) and (iii) in the Banach space) is stated as fol-
lows, where the condition (1) is a following modification of (1):

(') if x*(x)=0 for all £*=4,, then z=K,.

Since K* is not always proper, choose xy¥ so that zreK* and x*& — K*.
Put 4y=x5+4. Then 4, satisfies (i) and (ii). Next put K}= U4, and K,=

220
{z: 2*(x)=0 for all x*=K}}. If K*— K} is weak*-dense in X* and not

weak*-closed, then K, is proper and Kj— K} X*. The partial order in-
troduced by K, is denoted by <. In a normed space X, it is sufficient for
0
Ky — K7 % X* that there exists an order interval {z: 2& X, <2<y} which
0 0

is not norm-bounded (see [I] p. 216 and p. 220). These 4, and K, may
satisfy the desired conditions (1'), (i) and (ii) in the infinite-dimensional spaces.
The following examples show that this really occurs in the infinite-dimen-
sional spaces.

ExampLE 1. Let X=(c)
and

Kz{x: L= (U, Usgy **y Upy ***)y Up=0, lim un=0}.

Then X*=1[, and
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T, E{x: 0= x= x4} (n=2,3,--).
0 0

This order interval is not norm-bounded, because sup ||zl = 0.
n
Hence Kf— Kf= X*.

ExampLE 2. Let X=C|[0,1]. Then X* is the space of signed measures
on [0,1]. Define ¢}< X* by

6:(f) = S:fu) dr+1 S: cos (nzt) fle) & for all FE X.

Since

cos (nxt)  cos (mnt) dt<l+i
= =n m’

gz =gzl =,

@ converges strongly to some ¢Xi& X*. The set {df, ¢5, ---. #%} is strongly
(i. e. norm-) compact. Take 4, as the (norm-) closed convex hull of this set.
Then 4, is (norm-) compact.

a) If fo(t)=1 for all r<]0, 1], then ¢} (fy)=1 for all n.
Hence ¢*(fy)=1 for all ¢*=4,. Therefore *& 4,

b) Put K{,“ZZLZJOZAO and Ky={f: ¢*(f)=0 for all p*=KF}. Then K,
coincides with the set {f: ¢X(/)=0 (n=1,2,---)}.

c) Let feKiN(—K;). Then

S:f () dt+’~7175: cos (nrt) f(t) dt =0 for all 7.

On the other hand,

H|—0 as n—oco .
n Jo n o=z=s1 f( )I ’

le cos (nxt) f(t) dtl = 1 sup

Hence

0 0

Slf(t) dt =0 and Sl cos (nat) f(t) dt =0 for all n.

Since the set {cos(xt), cos (2xt), ---, cos (nxt), ---} is total, f=@. Thus it has
been shown that K, is proper.
d) Define f,,€CJ[0,1] (m=0,1,2,---) as follows:

So®)=1 for all : [0, 1]
and
Jm(t) = m cos (mnt) for all ¢t [0, 1] (m=1,2,-).
Then ¢X(fy)=1 (n=1,2,+) and



188 K. Yamamoto

5nm

Gn (fm) = mjl cos (mxt) dt + %X: cos (nxt) cos (mnt) dt = %
(n=1,2,; m=1,2,--),

where 6, denotes Kronecker’s symbol. Hence, for each m=1, 2, --.

X fo) =¥ (fm)=0 for all n=1, 2, ---. Therefore, for each m=1, 2

¢*(fo) = ¢* (fm) = o* (0) for all g*=K§. This means

fuelf: fEC0,1], 0SF<A).

s
’

On the other hand, sup ||fuml|le=00. Thus the order interval which is not

norm-bounded is obtained. Hence Kf— K= X*, i.e., Kf is not generating.
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