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A right R module M iS Said to be an extending module if, for any

Submodule A of M, there exiStS a direct Summand A^{*} of M Such that A^{*}

iS an eSSential extention of A. Dually, M iS Said to be a lifting module
provided that, for any Submodule A of M, there exiStS a direct Summand
A^{*} of M which iS a co-eSSential Submodule of A in M, i . e. , A^{*}\subseteq A and
A/A^{*} iS Small in M/A^{*} .

In thiS paper we Study the following two conditionS :
(\#) Every injective R-module is a lifting module.
(\#)^{g} Every projective R-module is an extending module.

A major reaSon why we are intereSted in theSe (\#) and (\#)^{\#} comeS from the
fact that theSe conditions are cloSely related to the following conditionS due
to Harada [13]\sim [15] :

(*) Every non-small R-module contains a non-zero injective sub-
module.

(*)^{*} Every non-cosmall R-module contains a non-zero projective direct
summand.
Indeed, we Show the following theoremS which are main reSultS of thiS paper.

THEOREM I. The following conditions are equivalent for a given ring
R :

1) R satisfifies (\#) .
2) R is a right artinian ring xvith (^{*}) .
3) R is a right perfect ring and the family of all injective R-modules

is closed under taking small covers.
4) Every R-module is expressed as a direct sum of an injective module

and a small module.

THEOREM II . The following conditions are equivalent for a given ring
R :

1) R satisfifies (\#)^{\#} .
2) R is a ring with the ACC on right annihilator ideals and satisfifies

(^{*})^{*} .
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3) The family of all projective R-modules is closed under taking
essential extensions.

4) Every R-module is expressed as a direct sum of a projective module
and a singular module.

It should be noted that rings satisfying the conditions in Theorem I or
Theorem II are completely characterized in terms of ideals by Harada [13]\sim
[15]. To be specific, let R be a semi-perfect ring and let \{e_{i}\}\cup\{f_{i}\} be a
complete set of orthogonal primitive idempotents of R, where e_{i}R is a non-
small module and f_{i}R is a small module. It is shown in [13, Theorem 5]
that R satisfies the condition 2) in Theorem I iff, for each e_{i} , there exists n_{i}

such that e_{i}R/e_{i}S_{t} is injective for 0\leq t\leq n_{i} and e_{i}R/e_{i}S_{n_{i}+1} is a small module,
where \{S_{i}\} is the ascending Loewy chain of R as a right R-module. Dually,
it is shown in [15, Theorem 3. 6] that R satisfies the condition (^{*})^{*} iff 1)
each e_{i}R is injective, 2) each f_{j}R can be enbedded in some e_{i}R and 3) for
each e_{i} , there exists n_{i} such that e_{i}J_{t} is projective for t\leq n_{i} and e_{i}J_{n_{i}+1} is
a singular module, where \{J_{i}\} is the descending Loewy chain of R.

We call, in this paper, that R is a right H-ring if it satisfies one of
equivalent conditions in Theorem I ; while R is a right c0-H-rmg if it satisfies
one of the equivalent conditions in Theorem II. Left H-rings and left cO-H-
rings are symmetrically defined and both right and left H-rings (resp. both
right and left c0-//-rings) are simply called H-rings (resp. c0-H-rings). It is
shown in Theorem 4. 3 that a ring R is a QF-ring iff it is a right //-rings
with J(R)=Z(R) , and iff it is a right c0-H-r’mg with J(R)=Z(R) , where
J(R) and Z(R) are the Jacobson radical and the singular right ideal of R,
respectively. Generalized uniserial rings are also H rings and c0-H-rings
(cf. [23]). For an algebra R over a field of finite dimension, R is a right
H-ring iff it is a left c0-//-ring (Theorem 5. 1). Combining Theorems I and
II with the Colby-Rutter’s theorem [4, Theorem 1. 3], we see that right
H-rings and right c0-//-rings are semiprimary QF-3 rings. For a right
non-singular ring R, it is shown in Theorem 4. 6 that R is a right //-ring
iff it is a right c0-H-r’mg, and iff it is Morita equivalent to a finite direct sum
of upper triangular matrix rings over division rings. We can give two typical
examples of right H-rings and right c0-//-rings which are constructed by
local QF-rings. Using one of these examples, we show that right //-rings
(resp. right c0-H-r’mgs) are not always left H-rings (resp. left c0-//-rings).

I. Preliminaries

Throughout this paper we assume that R is an associative ring with
identity and all R-modules considered are unitary right R modules, Let M
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be an R-module. We use E(M) , J(M) , Soc (M) and Z(M) to denote the
injective hull, the Jacobson radical, the socle and the singular submodule of
M, respectively. Furthermore, by \{J_{i}(M)\}_{I} and \{S_{i}(M)\}_{I} , we denote the
descending Loewy chain and the ascending Loewy chain of M, respectively;

J_{0}(M)=M S_{0}(M)=0

J_{1}(M)=J(M) S_{1}(M)=Soc(M)

For submodules A, B of M with A\subseteq B, we write A\subseteq_{e}B to denote that A
is an essential submodule of B ; while we use A\subseteq_{c}B in M to denote that
A is co essential in B, i . e. , B/A is a small submodule of M/A. For a
subset X of M, Ann_{r}(X) (resp. Ann_{l}(X) ) means its right (resp. left) anni-
hilator ideal \{r\in R|Xr=0\} (resp. \{r\in R|rX=0\} ).

For two R modules M and N, we use the symbol M\subseteq N to stand for
‘ M is isomorphic to a submodule of N’ For given set S, |S| denotes its
cardinal number. The term ‘ACC means the ascending chain condition.
For a cardinal \tau , \tau M means the direct sum of \tau-copies of an R module M.

DEFINITION. We say that an R module M is an extending module if,
for any submodule A of M, there exists a direct summand A^{*} of M such
that A\subseteq_{e}A* . Dually, we say that M is a lifting module if, for any sub-
module A of M, there exists a direct summand A^{*} of M such that A^{*}\subseteq_{C}A

in M.

DEFINITION ([17]). An R module M is said to have the extending
property of uniform modules if, for any uniform submodule A of M, there
exists a direct summand A^{*} of M with A\subseteq_{e}A* . In the case when M has
a decomposition M= \sum_{I}\oplus M_{\alpha} , M is said to have the extending property of
fifinite contained uniform modules with respect to M= \sum_{I}\oplus M_{\alpha} if, for any

uniform submodule A of M with A \subseteq\sum_{F}\oplus M_{\beta} for some finite subset F of I,

there exists a direct summand A^{*} of M such that A\subseteq_{e}A^{*} .

DEFINITION ([18], [21]). An R module M is said to be continuous if M
is an extending module and satisfies the condition: For any direct summand
A of M, every monomorphic image of A to M is a direct summand of M.
M is said to be quasi-continuous if M is an extending module and satisfies
the condition: For any direct summands A_{1} , A_{2} of M, the condition M_{e}\supseteq A_{1}

\oplus A_{2} implies M=A_{1}\oplus A_{2} .

DEFINITION ([22], cf [20]). An R module M is said to be semiperfect if
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M is a lifting module and satisfies the condition: For any direct summand
A of M and any epimorphism \varphi from M to M/A, ker \varphi is a direct summand
of M. M is said to be quasi-semiperfect if M is a lifting module and satisfies
the condition: For any direct summands A_{1} , A_{2} of M, if M=A_{1}+A_{2} and
A_{1}\cap A_{2} is small in M then M=A_{1}\oplus A_{2} .

We note that quasi- injective\Rightarrow continuous\Rightarrow quasi -continuous; while semi-
perfect\Rightarrow quasi -semiperfect, and that, when R is a right perfect ring, quasi-
projective\Rightarrow semiperfect .

DEFINITION ([13]\sim [15], cf [24]). An R module M is said to be a small
module if it is small in its injective hull, and is said to be a non-small module
if it is not a small module. Dually, M is said to be a cosmall module if, for
any projective module P and any epimorphism f:Parrow M, kerf is an essential
submodule of P, and M is said to be a non-cosmall module if it is not a
cosmall module.

The following results are used in this paper.

THEOREM A ([6, 20. 3 A, 20. 6 A] , cf [23]). For a given quasi-injective
R-module M, the following conditions are equivalent:

1) M is \Sigma-quasi-injective.
2) \chi_{0}M is quasi-injective.
3) E(M) is \Sigma -injective.
4) \chi_{0}E(M) is injective
5) The ACC holds on \{Ann_{r}(X)|X\subseteq E(M)\} .

Further, when this is so, M is expressed as a direct sum of completely
indecomposable modules.

THEOREM B ([7], [26]). Quasi-injective R-modules satisfy the exchange
property.

THEOREM C. If M is a \Sigma quasi-injective R-module, then M satisfifies the
following condition:

(K) For any independent family \{A_{\alpha}\}_{I} of submodules of M, if \sum_{I}\oplus A_{\alpha}

is a locally direct summand of M, i . e. , \sum_{F}\oplus A_{\beta}\langle\oplus M for any fifinite subset

F of I, then \sum_{I}\oplus A_{\alpha} is just a direct summand of M.

PROOF. This is clear from Theorems A, B and [12, Theorem 3. 2. 5].

We quote the Colby-Rutter’s characterizations of semiprimary QF-3
rings ([4, Theorem 1. 3]) as follows :

THEOREM D. The following conditions are equivalent for a given ring
R :
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1) R is ring perfect and contains a faithful \Sigma -injective right ideal.
2) R is right perfect and the injective hull of every projective R-module

is projective.
3) R is right perfect and the projective cover of every injective R-

module is injective.
4) R is right and left perfect and contains faithful injective right and

left ideals, respectively.
When this is so, then R satisfifies ACC on right, and also left, annihilator
ideals. The conditions 1)\sim 4) are right-left symmetric, and a ring R satisfy-
ing one of these conditions is just a semiprimary QF-3 ring.

2. H-ring

In this section, we shall prove Theorem I mentioned in introduction.
Therefore, we are concerned with the following:

(\#) Every injective R-module is a lifting module.
(*) Every non-small R-module contains a non-zero injective sub-

module.
(ICC) The family of all injective R-modules is closed under taking

small covers, i . e. , for any exact sequence Parrow Earrow 0\phi where E is injective and
ker\phi is small in P, P is injective.

(ISD) Every R-module is expressed as a direct sum of an injective
module and a small module.

The condition (^{*}) is due to Harada ([13], [15]). It is easy to see that
(^{*}) is equivalent to the following condition: Let E be an injective R-module
and A a submodule of E such that A is not small in E. Then, A contains
a non-zero direct summand of E. On the other hand, we know that an
R-module M is a lifting module iff, for any submodule A of M, there exists
a decomposition M=A^{*}\oplus A^{**} such that A^{*}\subseteq A and A\cap A^{*\dotplus^{1}}

’ is small in
A** . As a result, we have

PROPOSITION 2. 1. (\#) implies (^{*}) .
PROPOSITION 2. 2. (\#) implies (ICC).

PROOF. Let Parrow Earrow 0\phi be an exact sequence such that E is injective and
ker \phi is small in P. Then we can take an epimorphism \phi’ : E(P)arrow E with
\phi’|P=\phi . By (\#) , we have a decomposition P=X\oplus Y such that X is injective
and Y is small in E(P) . Then \phi’ ( Y)=\phi(Y) is small in E. So we get from
E=\phi(X)\dagger\phi(Y) that E=\phi(Y) . Therefore, P=X+ker\phi and hence P=X
since ker \phi is small in P. Thus, P is injective



Lifting modules, extending modules and their applications to QF-rings 315

PROPOSITION 2. 3. (\#) is equivalent to {ISD).

PROOF. Obviuos.

Lemma 2. 4. If an R-module M satisfifies the condition (K) in Theorem
C, then M is expressed as a direct sum of indecomposable modules.

PROOF. Assume that M does not contain a non-zero indecomposable
direct summand. Then, using (K), we can see that every non-zero direct
summand of M is expressed as a direct sum of countably infinite non-zero
submodules. In particular, we express M=N_{1}\oplus N_{2} with each N_{i}\neq 0 . We
pick a non-zero element x in N_{1} . By Zorn’s lemma, we can take a maximal
independent family \{M_{\alpha}\}_{I} of submodules of M such that x \not\in M’=\sum_{I}\oplus M_{\alpha}

and M’= \sum_{I}\oplus M_{\alpha} is a locally direct summand of M. Then, by (K), M=
M\oplus M’ for some submodule M’ Since x\not\in M’ , we see M’\neq 0 . Therefore,
M’ is written as a direct sum of countably infinite non-zero submodules;
say M’= \sum_{J}\oplus T_{\beta} . Since x \in M=M’\oplus\sum_{J}\oplus T_{\beta} , there exists a finite subset F

of J with x \in M\oplus\sum_{f},\oplus T_{\gamma} . Then, if x \in M’\bigoplus_{J}\sum_{-F}\oplus T_{\beta}, M’ must contain x,

a contradiction. So, x \not\in M’\bigoplus_{J}\sum_{-F}\oplus T_{\beta} . However, this contradicts the maxi-

mality of M’ . Thus, we conclude that M and every non-zero direct summand
of M contain non-zero indecomposable direct summands. From this fact and
(K), M is clearly expressed as a direct sum of indecomposable modules.

Lemma 2. 5. If M is a continuous lifting R-module, then it satisfifies
the condition (K) in Theorem C.

PROOF. Let \{A_{\alpha}\}_{I} be an independent family of submodules of M such
that A= \sum_{I}\oplus A_{\alpha} is a locally direct summand of M. Since M is a lifting

R-module, we have a decomposition M=A^{*}\oplus A^{**} such that A=A^{*}\oplus(A\cap

A^{**}) and A\cap A^{**} is small in A^{**} . We want to show A=A^{*} . Assume
that A\cap A**\neq 0 and take a non-zero element x in A\cap A^{**} . Then xR\underline{\subset}

A_{\alpha_{1}}\oplus\cdots\oplus A_{\alpha n} for some \{\alpha_{1}, \cdots, \alpha_{n}\}\subseteq I. Since B=A_{\alpha_{1}}\oplus\cdots\oplus A_{\alpha n} is an ex-
tending module (cf. [21, Proposition 1.4]), there exists a direct summand
X\langle\oplus B with xR\subseteq_{e}X. Then, we see that X\cap A^{*}=0 ; whence there exists
a submodule Y\subseteq A\cap A^{**} with X_{-}^{-}Y. However, the continuity of M shows
that Y\langle\oplus M, which contradicts that Y is small in M. Accordingly, A\cap A^{**}

=0.
By Proposition 2. 1, Lemmas 2. 4 and 2. 5 and [15, Lemma 2. 1], we

have

PROPOSITION 2. 6. Assume that (\#) holds. Then, every injective R-
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module is expressed as a direct sum of cyclic hollow modules. Therefore,
R is a right artinian ring, by Faith-Walker’s theorem ([5], [6, 20. 17]).

PROPOSITION 2. 7. If R is a right noetherian ring with (^{*}) then it
satisfifies (\#) .

PROOF. Let E be an injective R-module and A a non-small submodule
of E. We can take a maximal independent family \{A_{\alpha}\}_{I} of non-zero injective
submodules of A. Put A’= \sum_{I}\oplus A_{\alpha} . Since R is right noetherian, A’ is also

injective (cf. [5, 20. 1]); whence we have E=A’\oplus A’ for some submodule A’ .
So, we may show that A\cap A’ is small in A’ If not, then we can take
a non-zero injective submodule of A\cap A’ since A’ also satisfies (^{*}) . But
this contradicts the maximality of \{A_{\alpha}\}_{I} .

Lemma 2. 8. Consider an exact sequence : H= \sum_{I}\oplus H_{\alpha}-arrow Earrow 0\phi , where

each H_{\alpha} is a cyclic hollow injective R-module with non-zero socle and E
is an indecomposable injective R-module but not cyclic hollow. Then, ker\phi

contains Soc (H).

PROOF. Put K=ker\phi and S_{\alpha}=Soc(H_{\alpha}) for each \alpha\in I. If K does not
contain Soc (H) then there exists \alpha\in I such that S_{\alpha}\not\equiv.K . In this case,
(S_{\alpha}+K)/K_{-}^{\sim}S_{\alpha} and hence S_{\alpha}\subset E\sim. This implies that E(S_{\alpha})=H_{\alpha}\sim-E ; whence
E is cyclic hollow, a contradiction.

NOTATION. For convenience’s sake of the statement of the lemma
below, we say that an R module M satisfies (F) if M satisfies the ACC on
\{Ann_{r}(X)|X\subseteq M\} .

Lemma 2. 9. Let e be an idempotent of R. If eR satisfifies (F) then
eR/eAnn_{l}(J^{k}) satisfifies (F).for all integer k\geq 1 , where J=J(R) .

PROOF. We put \overline{eR}=eR/eAnn_{l}(J^{k}) and \overline{\overline{eR}}=eR/eAnn_{l}(J^{K+1}) . Assuming
that \overline{eR} satisfies (F), we want to show that \overline{\overline{eR}} satisfies (F). For any subset
X of eR, we note that

Ann_{r}(\overline{X})=\{r\in R|Xr\subseteq eAnn_{l}(J^{k})\}

=\{r\in R|XrJ^{k}=0\} ,

Ann_{r}(\overline{\overline{X}})=\{r\in R|Xr\subseteq eAnn_{l}(J^{k+1})\}

=\{r\in R|XrJ^{k+1}=0\}

Now, assume that e\overline{\overline{R}} does not satisfy (F). Then we can take subsets \{X_{i}\}

of eR such that X_{1}\supseteq X_{2}\supseteq\cdots and
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Ann_{r}(\overline{\overline{X}}_{1})\subseteqq Ann_{r}(\overline{\overline{X}}_{2})\subseteqq\cdots

Then, there exist r_{2} , r_{3} , \cdots in R such that X_{i}r_{i}J^{k\dagger 1}=0 but X_{i-1}r_{i}J^{k+1}=0 for
i=2,3, \cdots . Hence we can take t_{i}\in J such that X_{i}r_{i}t_{i}J^{k}=0 but X_{i-1}r_{i}t_{i}J^{k}\neq 0

for i=2,3, \cdots . This shows that Ann_{r}(\overline{X}_{1})\subseteqq Ann_{r}(\overline{X}_{2})\subseteqq\cdots , a contradiction.
Thus \overline{\overline{eR}} must satisfy (F).

PROPOSITION 2. 10. If R is a right perfect ring with {ICC), then the
following hold:

1) R is a semiprimary QF-3 ring.
2) Every indecomposable injective R-module is a cyclic hollow module.

More precisely, if E is an indecomposable injective R-module, then there
exists a primitive idempotent e in R and an integer k\geq 0 such that E is
isomorphic to eR/eAnn_{l} (Jk), where J=J(R) .

3) Every cyclic hollow non-small R-module is injective.
PROOF. 1) This follows from Theorem D.
2) Let E be an indecomposable injective R-module. Consider a pr0-

jective cover: Parrow Earrow 0\phi
, and express P as P= \sum_{I}\oplus e_{\alpha}R , where each e_{\alpha} is a

primitive idempotent of R. Now, (ICC) says that P is injective; so is each
e_{\alpha}R . Assume that E is not cyclic hollow. Then, ker \phi contains S_{1}(P)=

\sum_{I}\oplus e_{\alpha}S_{1}(R) by Lemma 2. 8. So, \phi induces an epimorphism \phi_{1} : P/S_{1}(P)=

\sum_{I}\oplus e_{\alpha}R/e_{\alpha}S_{1}(R)arrow E. Then, ker \phi_{1} is small in P/S_{1}(P) . Therefore, again

(ICC) shows that P/S_{1}(P) and each e_{\alpha}R/e_{\alpha}S_{1}(R) are injective. Then, again,
by Lemma 2. 8, ker \phi_{1} contains S_{2}(P)/S_{1}(P) or, equivalently, ker \phi contains
S_{2}(P) . Hence \phi induces an epimorphism \phi_{2} : P/S_{2}(P)= \sum_{I}\oplus e_{\alpha}R/e_{\alpha}S_{2}(R)arrow E.

Thus, the same argument inductively works and we see that ker \phi contains
S_{\tau}(P) for all ordinal \tau . However, as R is a left perfect ring, this implies
that ker \phi=P, a contradiction. Therefore E must be a cyclic hollow module.
Hence we can take e\in\{e_{a}\}_{I} such that \phi(eR)=E. Put \psi=\phi|eR . Since R is
a semiprimary ring by 1), we can take an integer t such that S_{t}(R)=R ;
so there must exist k such that ker \psi\supseteq eS_{k}(R) but ker \psi\sum eS_{k+1}(R) . Then,
\psi induces an isomorphism: eR/S_{k}(R)-\sim E. Since Sk\{R) =Ann_{l} (Jk), the proof
of 2) is completed.

3) Let M be a cyclic hollow non-small R-module, and put E=E(M) .
Since R is a left perfect ring, Soc (E)\subseteq_{e}E. Let us express Soc (E) as Soc (E)
= \sum_{I}\oplus S_{\alpha} , where each S_{\alpha} is a simple module. Then, by Theorem A, Lemma

2. 9 and 2), we see that E(S_{\alpha}) is a cyclic hollow \Sigma-injective module. Hence,
E= \sum_{I}\oplus E(S_{a}) and I is a finite set. Put I=\{1, \cdots, n\} , and let \pi_{i} : E=E(S_{1})
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\oplus\cdots\oplus E(S_{n})arrow E(S_{i}) be the projection. Since M is a non-small module, there
must exist i such that \pi_{i}(M)=E(S_{i}) . Thus M is injective by (ICC).

We have now our first main theorem.

THEOREM 2. 11. The following conditions are equivalent for a given
ring R :

1) R satisfifies (\#) .
2) R is a right artinian ring with (^{*}) .
3) R is a right perfect ring with (ICC).
4) R satisfifies (ISD).
5) R is a right and left perfect ring with the condition: For any

primitive idempotent e in R with eR non-small, there exists an integer t

satisfying
a) eR/eS_{k}(R) is injective for all 0\leq k\leq t , and
b) eR/eS_{t+1}(R) is a small module.

When this is so, R is then a semiprimary QF-3 ring.

PROOF. For a ring with (^{*}) , we know from Harada [13] and [15] that
the following conditions are equivalent:

i) R is right artinian.
ii) R is right noetherian.

iii) R is right and left perfect.
Now, 2) \Leftrightarrow 5) is due to Harada [15, Theorem 2. 3]. 1) \Leftrightarrow 2) follows from
Propositions 2. 1 and 2. 6. 2) \Rightarrow 1 ) follows from Proposition 2. 7. 1) \Leftrightarrow 4) is
just Proposition 2. 3. 1 ) \Rightarrow 3) follows from Propositions 2. 1 and 2. 2. The
proof is completed if we prove 3) \Rightarrow 5). Assume that 3) holds. By 1) of
Proposition 2. 10, R is right and left perfect. Using 3) of Proposition 2. 10,
we can easily show that a) and b) in 5) hold.

DEFINITION. In honor of Harada [13] and [15], we call that a ring R
is a right H-ring if it satisfies one of the equivalent conditions in Theorem
2. 11. Left H-rings are symmetrically defined and right and left //-rings
are simply called //-rings.

REMARK. Let R be a right artinian ring whose indecomposable injective
R-modules are finitely generated modules. Then, in view of the proofs of
all results in this section, we see that the following conditions are equivalent:

1) R is a right H-ring.
2) Every finitely generated injective R-module is a lifting module.
3) Every finitely generated non-small R-module contains a non-zero

injective submodule.
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4) The family of all finitely generated injective R-modules is closed
under taking small covers.

5) Every finitely generated R-module is expressed as a direct sum of
an injective module and a small module.

3. Co-H-ring

This section is concerned with Theorem II mentioned in introduction.
Therefore, the following conditions are studied:

(\#)^{\#} Every projective R-module is an extending module.
(*)^{*} Every non-cosmall R-module contains non-zero projective direct

summand.
(PEC) The family of all projective R-modules is closed under taking

essential extensions.
(PSD) Every R-module is expressed as a direct sum of a projective

module and a singular module.

The condition(*)*is due to Harada and semiperfect rings with this con-
dition has been setteled in terms of ideal theoretic properties ([14], [15]).

PROPOSITION 3. 1. (\#)^{u} implies (PSD).

PROOF. Let M be an R-module. Consider an exact sequence : Parrow\phi

Marrow 0 , where P is a free R module. By (\#)^{t} , there exists a decomposition
P=P_{1}\oplus P_{2} with ker \phi\subseteq {}_{e}P_{1} . Then M=\phi(P_{1})\oplus\phi(P_{2}) , P_{2}-\sim\phi(P_{2}) and P_{1}/ker

\phi_{-}^{\sim}\phi(P_{1}) . As a result, \phi(P_{2}) is projective and \phi(P_{1}) is a singular module.

Lemma 3. 2. ([15], [24]). The following statements hold about non-
cosmall modules :

1) An R module M is non-cosmall iff it does not coincide with its
singular module,

2) If an R module M contains a non-zero projective submodule, then
it is non-cosmall.

PROPOSITION 3. 3. (PSD) implies (PEC).

PROOF. Let P be a non-zero projective R-module, and consider an R-
module M with P\subseteq_{e}\cdot M. By (PSD), M is written as M=Q\oplus Z, where Q is
projective and Z singular. Let \pi:M=Q\oplus Zarrow Q be the projection. By
(PSD), \pi(P) is expressed as \pi(P)=T\oplus V, where T is projective and V sin-
gular. Let \omega:\pi(P)=T\oplus Varrow T be the projection. Since T is projective, we
have a decomposition P=P_{1}\oplus P_{2} such that P_{1}-\sim T by \omega\pi and \omega\pi(P_{2})=0 .
Then P_{2\sim}\subset V\oplus Z. Since V\oplus Z is a singular module, we see P_{2}=0 by Lemma
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3. 2. Thus P_{-}^{\sim}T by \omega\pi . Since P\underline{\subset}_{e}M, this easily shows that Z=0 and
hence M=Q ; so M is projective.

LEMMA3.4 . Assume that R satisfifies (PEC). Then, every projective
injective R-module contains an indecomposable cyclic \Sigma-injective module.
So, in particular, every indecomposable projective injective R-module is cyclic
\Sigma -injective.

PROOF. Let P be a projective and injective R-module. We take a
cardinal number \tau such that \tau>\max\{\chi_{0}, |R|\} , and consider the injective hull
E=E(\tau P) . Then, we see from Theorem B that E is written as a direct
sum cyclic submodules, say E= \sum_{I}\oplus x_{\alpha}R . Then, clearly, |I|\geq\tau . As a result,

there must exist a subset J of I such that |J|\geq\chi_{0} and x_{\alpha}R_{-}^{\sim}x_{\beta}R for any \alpha,

\beta\in J . So, according to Theorem A, x_{\alpha}R is \Sigma -injective for every \alpha\in J and
is expressed as a direct sum of indecomposable cyclic modules. Thus, at

any rate, we can take a uniform submodule X of E such that E(X) is
indecomposable cyclic \Sigma -injective. Clearly, E(X)\underline{=}\tau P and hence we see that
E(X)_{\overline{\sim}}’P by Theorem B.

Lemma 3. 5. Assume that R satisfifies (PEC), and let \{P_{\alpha}\}_{K} be a family

of indecomposable projective injective R modules. Then, P= \sum_{K}\oplus P_{a} is \Sigma
-

injective.

PROOF. We can assume that P_{\alpha}\neq P_{\beta} for any \alpha\neq\beta . We take a cardinal
\tau with \tau>\max\{\chi_{0}, |R|\} , and consider E=E(\tau P) . Then, as in the proof of
Lemma 3. 4, E is written as

E= \sum_{I}\oplus x_{\alpha}R

where |I|\geq\tau and we see that there exists an infinite subset J of I such
that x_{\alpha}R_{-}^{\sim}x_{\beta}R for any \alpha , \beta\in J. We note that each x_{\alpha}R contains an inde-
composable injective module isomorphic to some P_{\beta} in \{P_{\beta}\}_{K} by Lemma 3. 4
and Theorem B.

Here, we consider the partitions I= \bigcup_{\Gamma}I_{\gamma} and \Gamma=\Gamma_{1}\cup I_{2}^{7} such that, for

any \alpha\in I_{\gamma} and \beta\in I_{\sigma} ,

x_{\alpha}R-\sim x_{\beta}R if \gamma=\sigma ,

x_{\alpha}R\neq x_{\beta}R if \gamma\neq\sigma ,

|I_{\gamma}|\geq\chi_{0} if \gamma\in\Gamma_{1}

|I_{\gamma}|<\infty if \gamma\in\Gamma_{2} .
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Then, we see that |\Gamma_{2}|\leq|R| . Put
I_{i}= \bigcup_{\alpha\in\Gamma_{i}}I_{\alpha}

, i=1,2. By Theorem A, for

any \alpha\in I_{1} , x_{\alpha}R is expressed as a direct sum of indecomposable \Sigma-injective
modules. Therefore, we can assume that, for any \alpha\in I_{1} , x_{\alpha}R is an inde-
composable \Sigma-injective module isomorphic to some member in \{P_{\beta}\}_{K} .

We put E_{i}= \sum_{I_{i}}\oplus x_{a}R, i=1,2. Then,

\chi_{0}E_{1}=\sum_{\Gamma_{1}}\chi_{0}(\sum_{I_{\gamma}}\oplus x_{\alpha}R)-\sim\sum_{\Gamma_{1}}(\sum_{\tau_{\gamma}}\oplus x_{a}R)=E_{1}

Hence, E_{1} is \Sigma-injective by Theorem A. From this fact, we can assume
that, for any \beta\in I_{2} , x_{\beta}R does not contain any direct summand isomorphic
to some member in \{x_{\alpha}R\}_{I_{1}} . Here, consider

K_{1}=\{\beta\in K|P_{\beta} is isomorphic to some member in \{x_{\alpha}R\}_{I_{1}}\}

We claim that K=K_{1} . Assume K_{2}=K-K_{1}\neq\phi and put Q= \sum_{R_{2}^{-}}\oplus P_{\delta} . By

Theorem B, we see that any indecomposable direct summand of E_{i} is is0-
morphic to some member in \{P_{\beta}\}_{K_{i}} for i=1,2. From this fact we conclude
that \tau Q\cap E_{1}=0 ; whence \tau Q\subset E_{2}\sim=\sum_{\Gamma_{2}}\sum_{I_{\gamma}}\oplus x_{\beta}R . However, this shows that
|\Gamma_{2}|\geq\tau , a contradiction. Consequently K=K_{1} and hence P is isomorphic to

a direct summand of E_{1} . Thus, P is \Sigma -injective.

By Lemmas 3. 4 and 3. 5, we have

PROPOSITION 3. 6. Assume that R satisfifies (PEC). Then, for any prO-
jective R module P, E(P) is projective \Sigma-injective and, moreover, P is ex-
pressed as a direct sum of indecomposable cyclic modules.

REMARK. From the above proposition, we see that if R satisfies (PEC)
then the identity of R is written as a sum of primitive orthogonal idempotents.

Lemma 3.7. Assume that R satisfifies (PEC) and let \{f_{j}\} a complete
set of primitive idempotents. Then, each f_{j}R is \Sigma-quasi-injective and Z(f_{j}R)

=Z(E(f_{j}R)) . More precisely, there exist a subset \{e_{i}\}\underline{\subset}\{f_{j}\} and integers
\{n_{i}\} such that

1) each e_{i}R is injective,
2) e_{i}J^{t} is cyclic projective for t\leq n_{i} and e_{i}J^{n_{i}\dagger 1}=Z(e_{i}R) ,

3) for any f\in\{f_{j}\} , there exists e\in\{e_{i}\} such that E(fR)-\sim eR,

where J=J(R) .
PROOF. Let.f\in\{f_{j}\} . By Proposition 3. 6, E(/R) is written as a direct

sum of indecomposable \Sigma-injective cyclic projective modules, say E(fR)=
p_{1}R\oplus\cdots\oplus p_{m}R . We show m=1. Consider the projection \pi_{i} : E(fR)=\sum_{i=1}^{n}\oplus



322 K. Oshiro

p_{i}Rarrow p_{i}R , i=1 , \cdots , n Then fR \underline{\subset}_{e}\sum_{i=1}^{n}\oplus\pi_{i}(fR) . Hence, by (PEC), each \pi_{i}(fR)

is projective. Therefore, fR_{-}^{\sim}\pi_{1}(fR) , whence we see that fR \cap\sum_{i=2}^{n}\oplus p_{i}R=0 .

Thus, E(fR) is indecomposable \Sigma -injective and cyclic projective. So, in
particular, fR is uniform. Moreover, using Theorem B, we see that there

exist e\in\{f_{j}\} and an isomorphism: E(fR)\underline{\phi} eR.
Now, assume that \phi(fR)\approx\subset eR . Then \phi(fR)\underline{\subset}_{e}eJ^{*}; whence eJ is inde-

composable \Sigma -quasi-injective projective by (PEC) and Lemma 3. 4. Again,
by Theoren B, eJ is isomorphic to some.f_{i}R . Then eJ^{2} is a unique
maximal submodule of eJ and hence it is \Sigma -quasi-injective (cf. Theorem A).
If eJ\neq\phi(fR) then \phi(fR)\subseteq_{e}eJ^{2} and we see, as above, that eJ^{2} is \Sigma quasi-
injective cyclic projective and is isomorphic to some f_{j}R . This procedure
terminates. For, if otherwise then eJ^{t} is \Sigma-quasi-injective projective and
isomorphic to some f_{j}R for t=0,1 , \cdots . Then there must exist distinct t_{1} ,
t_{2} such that eJ^{t_{1}}-\sim eJ^{t_{2}} . However, then, by the fully invarientness of eJ^{t_{1}} and
eJ^{t_{2}} we see eJ^{t_{l}}=eJ^{t_{2}} , a contradiction. Thus there exists an integer n such
that eJ^{t} is indecomposable \Sigma-quasi-injective and isomorphic to some f_{j}R for
t\leq n and eJ^{n}=\phi(fR) ; so fR is \Sigma -quasi-injective.

We further observe eJ^{n+i} . Since eJ^{n} is \Sigma -quasi-injective and is isomor-
phic to some f_{j}R , we also see that eJ^{n+1} is also \Sigma -quasi-injective. If eJ^{n+1} is
projective then eJ^{n+1} is \Sigma-quasi-injective and isomorphic to some f_{j}R by the
same arqument above. If eJ^{n+2} \’is projective, similarly eJ^{n+2} is \Sigma -quasi-injec-
tive and isomorphic to some f_{j}R . This procedure also terminates by the
same reason above. Hence there must exists s such that eJ^{n+i} is \Sigma^{\alpha}- quas1 -

injective cyclic projective for 1\leq i\leq s and eJ^{n+s+1} is not projective.
Put k=n+s. In view above, we see Z(eR)=Z(eJ^{n})=Z(eJ^{k})\subseteq eJ^{k+1} . It

remains only to prove Z(eR)=eJ^{k+1} . Assuming Z(eR)\neq eJ^{k\dagger 1} we take x\in eJ^{k+1}

such that xR is not singular, i . e. , Ann_{r}(x) is not essential in R. Then,
noting that each f_{j}R is uniform, there exists f_{j}R such that Ann_{r}(x)\cap f_{j}R=0 .
But this implies f_{j}R\subset\sim xR\overline{=}eJ^{k+1} and hence eJ^{k+1} is projective by (PEC),
a contradiction. Thus Z(eR)=eJ^{k+1} .

THEOREM 3. 8. If R satisfifies [PEC) then R is a semiprimary ring
satisfying (^{*})^{*} and the ACC on right annihilator ideals.

PROOF. Note that uniform quasi-injective R-modules are completely
indecomposable. From this fact, Lemma 3. 7, [15, Theorem 3. 6], Proposition

*) For a primitive idempotent e, eR is completely indecomposable iff eJ(R) is a unique
maximal submodule of eR ([27]).
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3. 6 and Theorem A we conclude that R is a semiperfect ring satisfying
(^{*})^{*} and the ACC on right annihilator ideals. Now, to prove the remainder,
it suffices to show that R is right perfect (cf. [1, Proposition 29. 1]). By
Lemma 3. 7, every projective R-module is written as a finite direct sum of
quasi-injective modules. Therefore, every projective R-module satisfies the
exchange property (Theorem B). So, R is a right perfect ring by [16] or
[28].

PROPOSITION 3. 9. The condition (^{*})^{*} is equivalent to the condition:
For any projective R-module P and any submodule A of P, if A is not
essential in P then there exists a proper direct summand B\langle\oplus P with A\subseteq B .

PROOF. Assume that (^{*})^{*} holds and let P be a projective R-module
and A a submodule of P which is not essential in P. Then, P/A is non-
cosmall and hence P/A is written as P/A=X\oplus Y, where X is non-zero
projective. Since the canonical epimorphism \phi:Parrow Xarrow 0 splits, we get
P=ker\phi\oplus Q for some submodule Q. Then ker \phi\supseteq A and Q\neq 0 .

Conversely, let M be a non-cosmall R-module and consider a sequence
Farrow Marrow 0\phi where F is afree R-module. Then ker \phi is not essential in F
and hence we have a decomposition F=F_{1}\oplus F_{2} such that ker \phi\subseteq F_{1} and
F_{2}\neq 0 . Then we see that M=\phi(F_{1})\oplus\phi(F_{2}) and F_{2-}-\phi(F_{2}) by \phi .

COROLLARY 3. 10. If (^{*})^{*} holds then every indecomposable projective
R-module is uniform.

PROPOSITION 3. 11. Assume that R satisfifies (^{*})^{*} and the identity of R
is a sum of primitive orthogonal idempotents \{f_{j}\} . Then each f_{j}R is quasi-
injective and moreover there exist a subset \{e_{i}\}\subseteq\{f_{j}\} and integers \{n_{i}\}

satisfying
1) each e_{i}R is injective,
2) e_{i}J^{t} is cyclic projective for t\leq n_{i} and e_{i}J^{n_{i}\dagger 1}=Z(e_{i}R) ,
3) for any f\in\{f_{j}\} there exists e\in\{e_{i}\} such that E(fR)-\sim eR; so Z(fR)

=Z(E(fR)) , where J=J(R) .

PROOF. By Corollary 3. 10 each f_{j}R is uniform. Let f\in\{f_{j}\} . Then
E(fR) is indecomposable projective by Lemma 3. 2. Hence using the ex-
change property of E(fR) (Theorem B) we see that there exists e\in\{f_{j}\}

and an isomorphism E(fR)-\sim eR .
Assume \phi(fR)\subseteqq eR . Then Z{et}= Z(eJ)\subseteq eJ and hence, again, by

Lemma 3. 2 and Theorem B, we see that eJ is quasi-injective and projective,
and is isomorphic to some f_{j}R . Similarly if \phi(fRl\subseteqq eJ then eJ^{2} is quasi-
injective and projective, and is isomorphic to some f_{j}R . This procedure
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terminates as in the proof of Lemma 3. 7. Therefore there exists n such

that eJ^{t} is projective and quasi-injective for any t\leq n , e\mathcal{J}^{n_{=q\acute{)}}}(fR)-\sim fR and
eJ^{n+1}=Z (eR)=Z (\phi(fR)) .

THEOREM 3. 12. If R satisfifies (^{*})^{*} and the ACC on right annihilator

ideals then R is a semiprimary ring with \Sigma -quasi-injective singular sub-

module Z(R) ; so Z(P) is quasi-injective for every projective R-module P.

PROOF. Since R satisfies the ACC on right annihilator ideals, the identity

of R is written as a sum of orthogonal primitive idempotents \{f_{j}\} . According

to Proposition 3. 11 each f_{j}R is uniform and quasi-injective; so is completely
indecomposable. Thus R is a semi-perfect ring. Furthermore, each f_{j}R is
\Sigma -quasi-injective by Theorem A. Hence, by the same proof as in the proof

of Theorem 3. 8we see that R is a semiprimary ring. The remainder is

clear from Proposition 3. 11 and Theorem A.

LEMMA 3. 13. Assume that R satisfifies (^{*})^{*} and the ACC on right

annihilator ideals. Let P be a projective R-module and let P_{-}^{-} \sum_{I}\oplus P_{\alpha} be

an indecomposable decomposition. {Such a decomposition exists by Theorem

3. 12.) Then any uniform submodule of P is fifinitely contained with respect

to P= \sum_{I}\oplus P_{\alpha} , i . e. , for any uniform submodule A of P there exists a fifinite
subset F of I with A \subseteq\sum_{F}\oplus P_{\alpha} .

PROOF. By Proposition 3. 11 and Theorem A we see that each P_{\alpha} is
uniform, each E(P_{\alpha}) is cyclic and E(P)=\sum_{I}\oplus E(P_{\alpha}) . Let A be a uniform

submodule of P. Then we can take \alpha\in I such that A \oplus\sum_{I-\{\alpha\}}\oplus P_{\beta}\underline{\subset}{}_{e}P. Put

Q= \sum_{I-\{\alpha\}}\oplus P_{\beta} , and denote, by \pi_{\alpha} and \pi_{Q} , the projections : P=P_{\alpha}\oplus Qarrow P_{\alpha} and

P=P_{\alpha}\oplus Qarrow Q , respectively. Then the mapping \psi : \pi_{\alpha}(A)- Q given by
\psi(\pi_{\alpha}(a))=\pi_{Q}(a) is a homomorphism and A=\{x+\psi(x)|x\in\pi_{\alpha}.(A)\} . \psi is then

extended to a homomorphism \psi:E(P_{\alpha})arrow E(\sum_{I-\{\alpha}\bigoplus_{I}P_{\beta})=\sum_{I-1\alpha}\bigoplus_{\}}E(P_{9}.) . Since E(P_{\alpha})

is cyclic there exists afinite subset F\subseteq I satisfying \psi(E(P_{\alpha}))\subseteq\sum_{F}\oplus E(P_{\beta}) .

This shows \psi(A)\subseteq\sum_{F}\oplus P_{\alpha} and hence A \subseteq P_{\alpha}\oplus\sum_{f},\oplus P_{\beta} .

Lemma 3. 14. Assume that R satisfifies (^{*})^{*} and the identity of R is a

sum of orthogonal primitive idempotents. Then every projective R-module
has the extending property of fifinitely contained uniform modules with
respect to any indecomposable decomposition of P.

PROOF. By Proposition 3. 11 we see that R is a semiperfect ring. Let

P be a projective module. Since R is semiperfect, P has an indecomposable
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decomposition P= \sum_{I}\oplus P_{\alpha} (cf. [1, 27. 1]). Our statement is the following :

For any uniform submodule A of P such that A \underline{\subset}\sum_{F}\oplus P_{r} for some finite
subset F\underline{\subset}I, there exists a direct summand A^{*} of P with A\subseteq_{e}A^{*} . How-
ever, in view of [17, Theorem 10], it suffices to show the following condi-
tion: Let f and g be primitive idempotents of R, and let A a submodule
of fR and \phi:Aarrow gR a homomorphism. Then, if \phi is a monomorphism then
there exists either \psi:fRarrow gR or gRarrow fR with \psi|A=\phi or \psi|\phi(A)=\phi^{-1} . If
\phi is a non-monomorphism, then \phi is extended to a homomorphism: fRarrow gR.

This condition is verified by Proposition 3. 11. Actually, \phi is extended
to a homomorphism \psi:E(fR)arrow E(gR) . If \phi is a monomorphism then \psi

is an isomorphism and, by Proposition 3. 11, \psi(fR)\subseteq gR or \psi^{-1}(gR)\subseteq fR .
On the other hand, if \phi is a non-monomorphism then, so is \psi and, again
by Proposition 3. 11, \psi(E(.fR)\subseteq Z(E(gR))=Z(gR)\subseteq gR ; whence \psi(fR)\subseteq gR .
Thus the proof is completed.

By Lemmas 3. 13 and 3. 14, we have the following result.

THEOREM 3. 15. Assume that R satisfifies (^{*})^{*} and the ACC on right
annihilator ideals. Then every projective R-module has the extending
property of uniform modules.

Lemma 3. 16. We assume that R is a right perfect ring with (^{*})^{*} . Let
P be a projective R-module and A a submodule of P. Then there exist
decompositions P=P^{*}\oplus Q and A=A^{*}\oplus Z such that A^{*} is projective with
A^{*}\subseteq {}_{e}P^{*} and Z a singular module with Z\underline{\subset}Q .

PROOF. Let \{f_{1}, \cdots,f_{m}\} be a complete set of orthogonal primitive idem-
potents of R. By Proposition 3. 11 or [15, Theorem 3. 1], there exists a
subset \{e_{1}, \cdots, e_{s}\}\subseteq\{f_{i}\} and integers \{n_{1}, \cdots, n_{s}\} such that

1) each e_{i}R is injective,
2) e_{i}J^{t} is cyclic uniform projective for all t\leq n_{i} and e_{i}J^{n_{i}+1}=Z(e_{i}R) ,
3) every indecomposable projective R-module is isomorphic to some

e_{i}J^{t} , where J=J(R) .
We can assume that \{e_{1}, \cdots, e_{s}\} is the representative set of indecomposable

projective injective R modules, i . e. , e_{i}R\not\simeq e_{j}R for any i\neq j . Then \{e_{i}J^{t}|t\leq n_{i} ,
i\leq s\} is the representative set of indecomposable projective R modules. For
convinience’s sake of the proof, we say that an indecomposable projective
R-module is type (e_{i}, t) if it is isomorphic to e_{i}J^{t} .

Now, let A be a submodule of P. If A=Z(A), then there is nothing
to prove; so assume A\neq Z(A) . Then, by [15, Proposition 3. 2], A contains
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a non-zero projective direct summand. In particular, A contains a non-zero
indecomposable projective summand.

We can take e_{i_{1}}\in\{e_{i}\} and t_{1^{1}}^{\dot{t}}\leq n_{i_{1}} such that
1) A contains a direct summand of type (e_{i_{1}}, t_{1^{1}}^{i}) , but
2) A does not contain any direct summand of type (e_{k}, t) for k<i_{1} and

t\leq n_{k} and any direct summand of type (e_{i_{1}}, t) for t<t_{1^{1}}^{i} .
Using Zorn’s lemma and Theorem 3. 15, we can take a maximal independent
family \{P_{\alpha}\}_{I(e_{i_{1}},t_{1}^{i_{1}})} of indecomposable direct summands of P such that

3)
I(e_{i} \sum_{\iota_{1}^{i_{1}},1)},\oplus P_{\alpha}

is alocally direct summand of P, and

4) A_{\alpha}=P_{\alpha}\cap A is a projective direct summand of A of type (e_{i_{1}}, t_{1^{1}}^{i})

such that A_{\alpha}\subseteq {}_{e}P_{\alpha} for all \alpha\in I(e_{i_{1}}, t_{1}^{i_{1}}) .
We put I=I(e_{i_{1}}, t_{1}^{i_{1}}) , P^{(e_{i_{1}}},t_{1}^{i_{1}})= \sum_{I}\oplus P_{\alpha} and A^{(ei_{1’}t_{1}^{i_{1}})}= \sum_{I}\oplus A_{\alpha} . Then,

P^{(e_{i_{1’}}t_{1}^{i_{1}})}\langle\oplus P by Theorem 3. 12 and [22, Proposition 3. 2]. We also show
A^{(ei_{1’}t_{1}^{i_{1}})}\langle\oplus A . For this purpose, let Q be a submodule of P such that

P=P^{(ei_{1},t_{1}^{i_{1}})}\oplus Q .

By \pi_{\alpha} , we denote the projection: P=P^{(e_{i_{1}}},t_{1}^{i_{1}}) \oplus Qarrow P_{\alpha} for all \alpha\in I. Since
P_{\alpha}\cap A=A_{\alpha} and A does not contain any direct summand of type (e_{i_{1}}, t) for
t<t_{1}^{i_{1}} , we can verify \pi_{a}(A)=A_{\alpha} for all \alpha\in I (cf. Proposition 3. 11). As a
result, we get

A=( \sum_{I}\oplus A_{\alpha})\oplus(Q\cap A)

as desired.
We put B=Q\cap A . Then B has no direct summand of type (e_{i_{1}}, t_{1}^{i_{1}}) by

the maximality of \{P_{\alpha}\}_{I} and Theorem 3. 15. If Z(B)=B the proof is com-
pleted. If Z(B)\neq B, then the same argument above works on B\subseteq Q instead
of A\subseteq P. In this case, the following two cases are considered.

The first case is that there exist t_{2^{1}}^{\dot{\tau}}>t_{1^{1}}^{i} and B has a direct summand
of type (e_{i_{1}}, t_{2^{1}}^{i}) but does not contain any direct summand of type (e_{i_{1}}, t) for
t<t_{2^{1}}^{i} . Then we can obtain decompositions

Q= \sum_{I(e_{i_{1}},\iota_{2^{1}}^{r})}\oplus P_{\alpha}\oplus S
,

B= \sum_{I(e_{i_{1}},l_{2^{1}}^{i}}\bigoplus_{)}(P_{\alpha}\cap B)\oplus C

such that C\subseteq S, each P_{\alpha} is indecomposable with A_{\alpha}=P_{\alpha}\cap B\subseteq {}_{e}P_{\alpha} , each A_{\alpha}

is projective and C does not contain a direct summand of type (e_{i_{1}}, t) for any
t<t_{2^{1}}^{i} . Then we put

P^{(e_{i_{1}},t_{2^{1}})}?.= \sum_{I(e_{i_{1}},t_{2^{1}}^{i}}\bigoplus_{)}P_{\alpha}
and A^{(e_{i_{1}},t}\dot{9}^{1} )

= \sum_{I(e_{i_{1}},t_{2^{1}}^{\dot{r}}}\bigoplus_{)}A_{\alpha}
.
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The secound case is that B does not contain any direct summand of
type (e_{i_{1}}, t) . In this case we have i_{2}>i_{1} and t_{1^{2}}^{i}<n_{i_{2}} such that B contains
a direct summand of type (e_{i_{2}}, t_{1}^{i_{2}}) but not contain a direct summand of type
(e_{k}, t) for k<i_{2} and of type (e_{i_{2}}, t) for t<t_{1^{2}}^{i} . Then we also obtain decomp0-
sitions

Q= \sum_{I(e_{i_{2}},c_{1}^{i_{2}})}\oplus P_{\alpha}\oplus S_{j}

B= \sum_{I(e_{i_{2}},\iota_{1}^{i_{2}}}\bigoplus_{)}(P_{\alpha}\cap B)\oplus C

such that S\supseteq C, each P_{\alpha} is indecomposable with P_{\alpha e}\supseteq A_{\alpha}=P_{\alpha}\cap B, each A_{\alpha}

is projective and C has no direct summand of type (e_{i_{2}}, t_{1}^{i_{2}}) . Then we. put
P^{(e_{i_{2’}}t_{1^{2}}^{i})}= \sum_{I(e_{i_{2}},t_{1}^{i_{2}}}\bigoplus_{)}P_{\alpha}

and
A^{(e_{i_{2}},t_{1}^{i_{2}})}= \sum_{I(e_{i_{2}},\iota_{1^{2}}^{i}}\bigoplus_{)}A_{\alpha}

.

Continuing this procedure we get

1\leq i_{1}<i_{2}<\cdots<i_{k}\leq s

0\leq t_{1}^{i_{j}}<t_{2^{j}}^{i}<\cdots<t_{\iota_{i_{j}}^{j}}^{i} , j=1, \cdots , k ,

and

P= \sum_{j=1}^{\iota_{i_{1}}}\oplus P_{j}^{(i_{1\prime}t^{i}’)}\oplus\sum_{j=1}^{l_{i_{2}}}\oplus P^{(i_{2},t^{i}}j^{2)}\oplus\cdots\oplus\sum_{j=1}^{\iota_{i_{k}}}\oplus P^{(i_{k},t^{i_{k)}}}j\oplus W,\cdot

A= \sum_{j=1}^{\iota_{i_{1}}}\oplus A_{j^{1}}^{(i_{1\prime}t^{i})}\oplus\sum_{j=1}^{\iota_{i_{2}}}\oplus P^{(i_{2},\iota_{j^{2}})}i\oplus\cdots\oplus\sum_{j=1}^{\iota_{i_{k}}}\oplus P^{(i_{k},t^{i_{k)}}}j\oplus V

such that each A^{(iu},\iota^{i}ju ) is projective and of type (e_{i_{u}}, t_{j^{u}}^{i}) , P(i_{u\prime}\iota^{i}j_{e}^{u}\supseteq)A^{(iu},t^{i}j^{u}’

for each (i_{u}, t_{j^{u}}^{i}) and V=Z(V)\subseteq W. This completes the proof.

THEOREM 3. 17. If R satisfifies (^{*})^{*} and the ACC on right annihilator
ideals then R satisfifies (\#)^{f} .

PROOF. Let P be a projective R-module and A a submodule of P. For
our assertion we can assume A\subseteq Z(P) by Lemma 3. 16. Theorem 3. 12 says
that Z(P) is quasi-injective. This fact enable us to further assume that
A\langle\oplus Z(P) . By Proposition 3. 11 and Theorem 3. 12 we infer that Z(P) is
written as a direct sum of completely indecomposable uniform modules. As
a result, any non-zero direct summand of A has a non-zero completely
indecomposable uniform direct summand (cf. Theorem B).

By Zorn’s lemma we can take maximal independent families \{P_{\alpha}\}_{I} of
indecomposable direct summands of P and \{A_{\alpha}\}_{I} of indecomposable direct
summands of A such that P_{\alpha e}\supseteq A_{\alpha} for all \alpha\in I and both \sum_{I}\oplus P_{\alpha} and \sum_{I}\oplus A_{\alpha}

are locally direct summands of P and A, respectively. Then we conclude
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\sum_{I}\oplus P_{\alpha}\langle\oplus P by Theorem 3. 12 and [22, Proposition 3. 2] and \sum_{I}\oplus A_{\alpha}\langle\oplus A

by Theorem C ; put

P= \sum_{I}\oplus P_{\alpha}\oplus Q’.
A= \sum_{I}\oplus A_{\alpha}\oplus B .

Our proof is established by showing B=0. Assume B\neq 0 and take a non-
zero uniform direct summand C\langle\oplus B . Let us consider an indecomposable
decomposition Q= \sum_{J}\oplus P_{\beta} and let \pi_{\gamma} : P= \sum_{K}\oplus P_{\gamma}arrow P_{\gamma} be the projection for

all \gamma\in K=I\cup J. According to Lemma 3. 13 we can take a finite subset
F=\{\gamma_{1}, \cdots, \gamma_{n}\}\subseteq K such that C\underline{\subset}P_{\gamma_{1}}\oplus\cdots\oplus P_{r_{n}} . Put J^{*}=F\cap J.SinceC is
uniform and C \cap\sum_{I}\oplus P_{\alpha}=0 we see that there exists \beta_{0}\in J^{*} such that \pi_{\beta_{0}}|C

is monomorphic. Here consider the mapping \psi:\pi_{\beta_{0}}(C)arrow\sum_{J-f\beta_{0}\}}\oplus\pi_{\beta}(C) given

by \pi_{\beta_{0}}(c)arrow\sum_{J-|\beta_{0}|}\pi_{\beta}(c) and put X=\{x+\psi(x)|x\in\pi_{\beta_{0}}(C)\} . Then X is uniform

and \sum_{I}\oplus A_{\beta}\oplus C\subseteq_{e}\sum_{I}\oplus P_{\beta}\oplus C=\sum_{I}\oplus P_{\beta}\oplus X. Now using Theorem 3. 15 we

get a uniform direct summand Y \langle\oplus\sum_{J}\oplus P_{\beta} with X\subseteq_{e}Y. Thus we have

a situation that

\sum_{I}\oplus A_{a}\oplus C\langle\oplus A ,

\sum_{I}\oplus A_{\alpha}\oplus C\subseteq_{e}\sum_{I}\oplus P_{\alpha}\oplus Y\langle\oplus P .

This contradicts the maximality of \{P_{\alpha}\}_{I} and \{A_{\alpha}\}_{I} . Thus we have B=0 as
desired.

We are now in a position to state our secound main theorem of this
paper, which is mentioned in introduction.

THEOREM 3. 18. The following conditions are equivalent for a given
ring R :

1) R satisfifies (\#)^{\#} .
2) R satisfifies (PSD).
3) R satisfifies (PEC).
4) R satisfifies (^{*})^{*} and the ACC on right annihilator ideals.

When this is so, then R is a semiprimary QF-3 ring.

PROOF. 11\Rightarrow 2) \Rightarrow 3) follows from Propositions 3. 1 and 3. 3. 3) \Rightarrow 4) \Rightarrow 1)
follows from Theorems 3. 8 and 3. 17. In view of Theorem D, the condition
3) implies that R is a semiprimary QF-3 ring.

REMARK. Let R be a semiperfect ring with a complete set \{e_{i}\}\cup\{q_{i}\}
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of primitive orthogonal idempotents such that each e_{i}R is non-small and each
g_{i}R is small. As used in Lemma 3. 16, Harada has shown in [15, Theorem
3. 6] that R satisfies (^{*})^{*} iff it satisfies the following conditions:

1) each e_{i}R is injective,
2) for any g_{f}, there exists e_{i} such that g,R_{\sim}\subset e_{i}R .
3) for each e_{i} , there exists n_{i} such that e_{i}J^{t} is projective for 0\leq t\leq n_{i}

and e_{i}J^{n_{i}+1} is a singular module, where J=J(R) .
Further, in this case, it is shown that every submodule e_{i}B in e_{i}R either
is contained in e_{i}J^{n_{i}\dagger 1} or equal to some e_{i}J^{t} , 0\leq t\leq n_{i}+1 .

It should be noted that we used the idea of this result in our Lemma
3. 7 and Proposition 3. 11.

As a dual of a right H-ring, we give

DEFINITION. We say that a ring R is a right c0-//-ring if it satisfies
one of the equivalent conditions in Theorem 3. 18. Left c0-//-rings are
symmetrically defined and right and left c0-//-rings are simply called c0-H-
rings

REMARK. Let R be a right noetherian ring whose indecomposable injec-
tive R-modules are finitely generated modules. Then, in view of the proof
of the results in this section, we see that the following conditions are equi-
valent :

1) R is a right c0-//-ring
2) Every finitely generated projective R-module is an extending module.
3) Every finitely generated non-cosmall R-module contains a non-zero

projective direct summand.
4) The family of all finitely generated projective R-modules is closed

under taking essential extensions (cf. [19]).
5) Every finitely generated R-module is expressed as a direct sum of

a projective module and a singular module.

4. Application

As a first application of H rings and c0-//-rings, we study quasi-FrO-
benius rings (abbreviated QF-rings).

A ring R is said to be QF if it satisfies one of the following equivalent
conditions :

1) R is a right self-injective ring and satisfies the ACC on right anni-
hilator ideals.

2) Every injective R-module is projective.
3) Every projective R-module is injective.
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As is well known, these conditions 1) \sim 3) are right-left symmetric.

Lemma 4. 1. ([22, Theorem 4. 11]). Let M be a quasi-semiperfect R-
module, and let \{A_{\alpha}\}_{I} be a faimly of indecomposable direct summands of
M with M= \sum_{I}A_{\alpha} . If M= \sum_{I}A_{\alpha} is an irredundant sum, then M= \sum_{I}\oplus A_{\alpha} .

THEOREM 4. 2. The following conditions are equivalent for a given
ring R :

1) R is QF.
2) Every injective R-module is semiperfect.
3) Every injective R-module is quasi-semiperfect.
4) Every projective R-module is continuous.
5) Every projective R-module is quasi-continuous.

PROOF. The implications 1) \Rightarrow 2) \Rightarrow 3) and 1) \Rightarrow 4) \Rightarrow 5) are clear.
3)\Rightarrow 1) By Proposition 2. 6, R is right artinian. Hence, combining

Lemma 4. 1 to [14, Proposition 3], we see that R is QF.
5)\Rightarrow 1) By [21, Proposition 1. 9], it follows from 5) that every projective

R-module is quasi-injective and hence injective. As a result, R is QF.
The theorem above suggests the following characterizations of QF-rings.

THEOREM 4. 3. The following conditions are equivalent for a given
ring R :

1) R is QF.
2) R is a right H-ring with Z(R)=J(R) .
3) R is a right H-ring with Z(R)=J(R) .

So, the conditions 2) and 3) are right-left symmetric.

PROOF. If R is QF, then the injectivity of R implies that Z(R)=J(R)
([35]) . Clearly QF-rings satisfies (\#) and (\#)^{f} (cf. [22, Theorem 2. 1]). Hence
1)\Rightarrow 2) and 1) \Rightarrow 3) follow.

2)\Rightarrow 1) . By Proposition 2. 6, R is right artinian. Let e be a primitive
idempotent of R. It is enough to show that eR is small in E(eR) by (ISD).
By Proposition 2. 6, E=E(eR) is expressed as E=E_{1}\oplus\cdots\oplus E_{n} with each
E_{i} cyclic hollow. By \pi_{i} , we denote the projection: E=E_{1}\oplus\cdots\oplus E_{n}arrow E_{i} ,
i=1 , \cdots , n . Since eR is small in E, clearly, \pi_{i}(eR)\neq E_{i} for all i. Noting that
each E_{i} is cyclic hollow, we see that there exists a primitive idempotent f_{i}

such that E_{i} is a homomorphic image of f_{i}R , i=1 , \cdots , n . Therefore, it
follows from Z(f_{i}R)=J(f_{i}R) that Z(E_{i})\supseteq J(E_{i}) , i=1 , \cdots , n . Hence eR\subseteq\pi_{1}

(eR)\oplus\cdots\oplus\pi_{n}(eR)\subseteq Z(E_{1})\oplus\cdots\oplus Z(E_{n}) ; so eR is a singular module, a con-
tradiction. Thus, eR must be an injective module.

3)\Rightarrow 1) . By Theorem 3. 18, R satisfies the ACC on right annihilator
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ideals. Hence we may show that eR is an injective module for every pri-
mitive idempotent e. Indeed, this fact is easily seen by Z(R)=J(R) and [15,
Theorem 3. 6] or 3) of Lemma 3. 7.

THEOREM 4. 4. If R is a commutative ring, then the following condi-
tions are equivalent :

1) R is QF.
2) R is a H-ring.
3) R is a cO-H-ring.

PROOF. 1) \Rightarrow 2) and 1) \Rightarrow 3) follow from Theorem 4. 3. 2) \Rightarrow 1) follows
from Proposition 2. 6 and [6, 25. 4. 18A] . 3) \Rightarrow 1) is clear from the proof of
Theorem 4. 3 and the fact that, for any primitive idempotent e and f,
fR\subseteq eR implies fR=eR.

REMARK. As we saw above, QF rings are H rings and c0-H-ring.
In order to state more information about connection among right //-rings,
right c0-//-rings and classical artinian rings, we consider the following impli-
cations :

As is well known, R is QF\Leftrightarrow a) \Leftrightarrow a^{*}) ; R is uniserial\Leftrightarrow b) \Leftrightarrow b^{*}) ([2], [10]) . It
is shown in [23] that R is generalized uniserial.\Leftrightarrow c) \Leftrightarrow R is a right perfect ring
with c^{*}) \Leftrightarrow e) \Leftrightarrow e^{*}). Rings with \#) are just right H rings; while rings with
\#)^{\#} are just c0-H-rings.

From this remark, we have immediately

THEOREM 4. 5. If R is a generalized uniserial rings, then it is a H-
ring and also a cO-H-ring.

In the rest of this section, we study right non-singular right //-rings
and right non-singular right c0-//-rings.

Now, if R is a right c0-//-ring, we see from (PSD) that every non-
singular R-module is projective. We first note that the converse also holds
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when R is a right non-singular right c0-//-ring. For, in this case, a sub-
module A of a projective R-module P is a closed submodule of P iff P/A
is non-singular. Therefore, by the Goodearl’s work [11, Chapter 5] or [14,
Corollary 1] and Theorem 3. 18, a right non-singular right c0-H-ring is
completely determined as it is Morita equivalent to a finite direct sum of
upper triangular matrix rings over division rings.

Right non-singular right H-rings also have the same structure as the
following shows.

THEOREM 4. 6. If R is a right non-singular ring, then the following
conditions are equivalent :

1) R is a right H-ring.
2) R is a right cO-H-ring.
3) R is Morita equivalent to a fifinite direct sum of upper triangular

matrix rings over division rings.

PROOF. 2) \Leftrightarrow 3) holds as noted above. 3) \Rightarrow 1), 2) hollows from Theorem
4. 5. We shall show 1) \Rightarrow 3). Assume 1). By [4, Theorem 3. 2] together
with Theorem 2. 11, to show 3), we may show that R is a right hereditary
ring. Further, by [15, Propositions 2. 5 and 2.8] and Proposition 2. 10, it
suffices to show that, for a primitive idempotent e such that eR is injective,
every non-zero homomorphic image of eR is non-small. To prove this, let
A be a right ideal of R with eR/eA\neq 0 and assume that eR/eA is small in
E=E(eR/eA) . As in the proof of Proposition 2. 10, E is written as

E=e_{1}R/e_{1}A_{1}\oplus\cdots\oplus e_{n}R/e_{n}A_{n}

where all e_{i} are primitive idempotents and all A_{i} are right ideals. Put E_{i}=

e_{i}R/e_{i}A_{i} , i=1, \cdots , n . Here, consider the diagram:

eR/eAeR\downarrow\psi

\downarrow\ulcorner

P= \sum_{i=1}^{n}\oplus e_{i}R\underline{\eta}E-0

where \eta and \psi are the canonical homomorphisms. Since eR is projective,
we get a homomorphism \phi:eRarrow P with \eta\phi=\psi . We can assume that\pi_{1}\phi\neq 0 ,

where \pi_{1} is the projection: Parrow e_{1}R . Since both eR and e_{1}R are non-singular
and eR is injective we see that \pi_{1} is an isomorphism. As a result, we obtain

E=eR/eA+(E_{2}\oplus\cdots\oplus E_{n})
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from which we conclude E=E_{2}\oplus\cdots\oplus E_{n} , a contradiction. Thus eR/eA must
be a non-small module. The proof is completed.

5. Examples

The purpose of this section is to give two typical examples of H- and
c0-//-rings.

As we saw in Theorems 4. 4 and 4. 5, QF-rings and generaliged uniserial
rings are H- and c0-//-rings. From these facts and Figure mentioned in
section 4, the following problems arise:

1) Are right H rings left H rings ?
2) Are right c0-H-rings left c0-H-ring ?
3) Are right H rings right c0-H-ring ?
4) Are right c0-H-rings left H rings ?
In the case when R is an algebra over a field of finite dimension, these

problems are equivalent, as the following shows.
THEOREM 5. 1. Let R be an algebra over a fifield K offifinite dimension.

Then R is a right cO-H-ring iff it is a left H-ring.

PROOF. For an R-module M, we denote its dual by M^{*} , that is,

M^{*}=Hom_{K}(M, K)

For a homomorphism f from an R-module M to an R-module N, f^{*} denotes
the correponding homomorphism : N^{*}arrow M^{*} . The following facts are well
known :

1) Every indecomposable injective R-module is finitely generated.
2) A finitely generated R-module P is projective iff P^{*} is injective.
3) Let Oarrow Narrow M be an exact sequence of finitely generated R-modules.

Then, Im F is essential in M iff Ker f^{*} is small in M^{*} .
Using these facts, we can easily see that the family of all finitely gen-

erated right R-modules is closed under taking essential extensions iff the
family of all finitely generated injective left R-modules is taking small covers.
Therefore, our proof is established by the remarks after Theorems 2. 11
and 3. 18.

We use the following two lemmas.

Lemma 5. 2 ([9]). Let R be a one sided artinian ring, and let e and

f be primitive idempotents of R. If (eR, Rf) is an injective pair, that is.

Soc (eR_{R})-\sim fR/fJ and Soc (_{R}Rf)-\sim Re/Je

where J=J(R), then both eR_{R} and RRf are injective.
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Lemma 5. 3 ([24]). Let R be a right artinian ring, and let M be a
right R-module. Then, M is a small module iff MSoc (_{R}R)=0 .

From now on, in order to construct two examples of right H- and right
c0-//-rings, we consider a local QF-ring Q(\neq 0) . For the sake of con-
venience, we put J=J(Q), S=Soc(Q_{Q})(=Soc(_{Q}Q)),\overline{C_{-})}\sim=Q/S and \overline{a}=a+S for
any a in Q. Note that J canonically becomes a tw0-sided Q-module, since
SJ=SJ=0. Here, we define V(Q), W(Q) and T(Q) as follows:

V(Q)=(\begin{array}{ll}Q QJ Q\end{array}) =\{(\begin{array}{ll}a bd c\end{array}) |a, b, c\in Q, d\in J\}

W(Q)=(\begin{array}{ll}Q \subset)r\vee J \underline{\overline{O}}\end{array}) =\{(_{d}^{a} \overline{b\overline{c}})|a , b, c\in Q, d\in J\}

T(Q)=(\begin{array}{ll}Q ,O\vee J Q\end{array}) =\{(\begin{array}{ll}a \overline{b}d c\end{array}) |a , b, c\in Q, d\in J\}

Then, these become rings by usual addition and multiplication of matrices.
We put

1_{V}=(\begin{array}{ll}1 00 1\end{array}),\cdot e_{V}=(\begin{array}{ll}1 00 0\end{array}) , f_{V}=(\begin{array}{ll}0 00 1\end{array}) in V(Q)

1_{W}=(_{0}^{1} \overline{\frac{0}{1}}) i
e_{W}=(_{0}^{1} \overline{\frac{0}{0}}) , f_{W}=(_{0}^{0} \overline{\frac{0}{1}}) in W(Q)

1_{T}=(\begin{array}{ll}1 \overline{0}0 1\end{array})

r,
e_{T}=(\begin{array}{ll}1 \overline{0}0 0\end{array}) , f_{T}= (\begin{array}{ll}0 \overline{0}0 1\end{array}) in T(Q)

Then, 1_{V}, 1_{W} and 1_{T} are identity elements of V(Q), W(Q) and T(Q) , respec-
tively, and \{e_{V},f_{V}\} , \{e_{W},f_{W}\} and \{e_{T},f_{T}\} are sets of orthogonal primitive
idempotents and 1_{V}=e_{V}+f_{V}, 1_{W}=e_{W}+f_{W} and 1_{T}=e_{T}+f_{T} .

REMARK. Let R be a ring_{\succ} and let \{e_{1}, \cdots, e_{n}\} be a set of orthogonal
idempotents of R with 1=e_{1}+\cdots+e_{n} . Then, as is easily seen, R is left
artinian iff e_{i^{Re}i}e_{i}Re_{j} is artinian for all e_{i} and e_{j} . By this result, we see that
V(Q), W(Q) and T(Q) are right and left artinian.

THEOREM 5. 4. T(Q) is a QF-ring.

PROOF. Put T=T(Q), e=e_{T} and f=f_{T} . Note that

Soc (eT_{T})=(\begin{array}{ll}S 00 0\end{array}) = Soc (_{T}Te) and Soc (fT_{T})=(\begin{array}{ll}0 00 S\end{array}) = Soc (_{T}Tf)

So, it is easy to see that both (eT, Te) and (/T, Tf) are injective pairs.
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Hence eT_{T} and fT_{T} are injective by Lemma 5. 2. Hence T is QF.
T_{H}EOREM 5. 5. V(Q) is a H- and cO-H-ring.
PROOF. Put V=V(Q) , e=e_{V} and f=f_{V} . Since V is left-right symmetric,

we may show that V is left H and right co -H. Note that

Soc (V_{V})=(\begin{array}{ll}0 S0 S\end{array}) and Soc (_{V}V)=(\begin{array}{ll}S S0 0\end{array})

We put X=Soc(V_{V}) and Y=Soc(_{V}V) . Since fVY=0 and XVe=0, fV is
a small right V-module and Ve is a small left V-module by Lemma 5. 3.
Moreover, we see that (eV, Vf) is an injective pair; whence eV_{V} and VVf
are injective,. We can also easily see that

J_{1}(eV_{V})-\sim fV and J_{2}(eV_{V})=Z(eV_{V})

Therefore, V is a right c0-H-ring by Theorem 3. 18 and its remark. Next,
in order to show that V is a left H-ring, note that

S_{1}(_{V}Vf)=(\begin{array}{ll}0 S0 0\end{array}) and S_{2}(_{V}Vf)=(\begin{array}{ll}0 S0 S\end{array})

and

X(Vf/S_{1}(_{V}Vf))\neq 0 and X(Vf/S_{2}(_{V}Vf))=0 ‘

Hence, by Lemma 5. 3, Vf/S_{1}(_{V}Vf)) is a non-small left V-module and Vf/S_{2}

(_{V}Vf)) is a small left V-module. Therefore we may show that M=VF/S_{1}

(_{V}Vf) is an injective left V-module (cf. Theorem 2. 11). Since S_{1}(_{V}Vf)=

S_{1}(fV_{V}) , S_{1}(_{V}Vf) is a two sided ideal of V. Let us consider the factor ring
1^{\overline{\Gamma}}=V/S_{1}(_{V}Vf)

As \overline{V} is canonically isomorphic to the ring

T=T(Q)=(\begin{array}{ll}Q Q/SJ Q\end{array})

we can identify 1^{-_{\gamma}}, with T. Put f^{*}=f_{T} . By Theorem 5. 4, Tf^{*} is injective
as a left T-module. We want to see that Tf^{*} is injective as a left V-
module. (note Tf^{*}=M ). Let I be a left ideal of V with I\subseteq_{e}V, and let \phi

be a homomorphism from VI to VTf^{*} . Consider the diagram:

0-IV\underline{i}

\phi\downarrow

Tf^{*}
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where i is the inclusion map. Note that

S_{1}(_{V}Vf)= (\begin{array}{ll}0 S0 0\end{array}) and \phi(S_{1}(_{V}Vf))\underline{\subset} (\begin{array}{ll}0 Q/S0 0\end{array})

On the other hand, the socle of Tf^{*} is

(\begin{array}{ll}0 00 S\end{array})

As a result, we see \phi(S_{1}(_{V}Vf))=0 and hence \phi induces the canonical hom0-
morphism }):- \overline{I}=I/S_{1}(_{V}Vf))-\overline{V}=T Since Tf^{*} is injective as a left T-
module, we obtain a homomorphism \eta:\overline{V}=T- Tf^{*} satisfying \eta\overline{\iota}=\varphi^{\overline{r}} , where
\overline{\iota} is the inclusion map: \overline{I}arrow\overline{V}=T If we denote the canonical V-homomor-
phism: Varrow 1^{\overline{\gamma}}=T by \delta , then the diagram

0-IV\underline{i}

\phi\downarrow\nearrow\eta\delta

Tf*

is commutative. Thus M=Tf^{*} is injective as a left T-module,

THEOREM 5. 6. W(Q) is a left H- and right cO-H-ring.

PROOF. Put W=W(Q) , e=e_{W} and f=f_{W} . Noting Soc (eWw)=Soc(wWe)

=(\begin{array}{ll}S 00 0\end{array}) , we see that (eW, We) is an injective pair; whence eW_{W} and WWe

are injective. Further, we see eJ_{1}(W)--fW and eJ_{2}(W)=Z(eW_{W}) . Hence W
is a right c0-H-ring by Theorem 3. 18 and its remark.

Next, we put

X=Soc(W_{W})=(\begin{array}{ll}S 0S 0\end{array})

Since Wf=0 and X(We/Soc(_{W}We))=0 , by Lemma 5. 3, Wf and We/Soc
(_{W}We) are small left W-module. Thus W is a left H-ring by Theorem 2. 11.

REMARK. In general, W(Q) is neither a right H-ring nor a left c0-H-
ring. Therefore, the concepts of right H-rings and right c0-H-ring \cdot are
not right-left symmetric; in particular, the conditions (^{*}) and (^{*})^{*} are not
right-left symmetric (cf. [15]). Actually, assume that W(Q) is a left c0-H-
ring, and put W=W(Q), e=e_{W} and f=f_{W} . Then, W is an artinian QF-3
ring but not QF. As we saw in the proof of Theorem 5. 6, WWe is injec-
tive. Hence, by the assumption there must exist an isomorphism \phi from
Wf to JUWe). Then
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\phi ((\begin{array}{ll}0 00 Q\end{array}))=(\begin{array}{ll}0 0J 0\end{array})

This shows that J is a cyclic left ideal of Q. However, in general, J need
not be a cyclic left ideal. For example, consider the ring

Q=K[x, y]/(x^{2}, y^{2})

where K is a field. As is well known, Q is a local QF-algebra over K of
dimension 4. Put I=(.\mathfrak{x}^{2}, y^{2}) , \alpha=x+I, \beta=y+I and \gamma=xy+I. Clearly J(Q)=
Q\alpha+Q\beta and Soc (Q)=Q\gamma . Now, we can easily see that J(Q) is not a cyclic
ideal. Accordingly, W(Q) for this Q is not a left c0-//-ring, and at the same
time, it is not a right H-ring by Theorem 5. 1.

REMARK. Let Q be as in the above remark. Again, we put W=W(Q),

e=e_{W} and f=f_{W} . Assume that Soc (_{W}Wf) is a simple socle. Then, since
W is QF-3, WWf must be embedded in wWe. However, this implies that
J(Q) is a cyclic left ideal of Q, which is impossible as we noted above.
Thus Soc (_{W}Wf) is not a simple socle. As a result, this W also gives a
counter example of a ring which solves a problem raised by Fuller [8].
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