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Path integral for diffusion equations

By Akihiko Inoue
(Received November 28, 1984, Revised July 15, 1985)

Introduction

The purpose of this paper is to consider the path integral for the diffusion
equation defined on a Riemannian manifold, which is compared to
Feynman’s path integral for the Schr\"odinger equations.

For a certain Lagrangian function of the form L(x, v)=2^{-1}|v|^{2}-V(x)

on the Euclidean (d-) space R^{d}, Ito [10-11] defined a generalized uniform
measure on the Hilbert space of paths on R^{d} . By using this measure, he
proposed the concept of the path integral for the Schr\"odinger equation which
corresponds to this Lagrangian function. It seems to be natural to extend
his idea to the general Lagrangian function L(x, v) on the Riemannian
manifold M . Though, by following [10-11], we can define the Hilbert
space \Omega(t, x, M) of paths on M (cf. \S 1, (1. 1)), there may be a slight
difficulty to give a “ uniform measure ” on \Omega(t, x, M) rigorously.

Our main aim is to give a meaning of the path integral for diffusion
epuations on the Riemannian manifold by using the Lebesgue measure on the
space \Omega^{\Delta}(t, x, M) of the polygon paths on M with the mesh |\Delta| (See \S 1,
(1. 2) ) . This idea is similarly discussed by Elworthy-Truman [3] for a heat
equation on a Riemannian manifold. We generalize this idea to non-
-degenerate diffusion equations on R^{d} (or on a compact manifold). Namely,
using the Lebesgue measure on \Omega^{\Delta}(t, x, M) , we consider the (approximate)

functional integration u_{\Delta} which corresponds to the given Lagrangian
function. Then, we obtain the convergence of u_{\Delta} by tending the limit |\Delta| -arrow

0 and show that it gives the solution of a diffusion equation. As a result, it
can be defined the path integral for the diffusion equation and also, the rate
of their convergence is given explicitly.

Lastly, we note that these analogies of Feynman’s path integral on
curved space are based on the stochastic development which was studied by
Gangoli [6], Eells-Elworthy [1] and so on (See also [2], p. 157). Also,
we refer that other than these probabilistic approach, there are analytic ones
by Inoue-Maeda [7] and Fujiwara [4-5].
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\S 1. Statement of the result

Let (M, g) be a d-dimensional Riemannian manifold, x a point of M
and t a positive number. We denote by C_{b}^{r}(R^{d}) the set of C^{r}(R^{d}) class
functions whose i-th derivatives (i=0, \ldots rr) are all bounded. We consider
the path space on M as follows:

(1. 1) \Omega(t, x, M)= { c:[0, t]arrow M : absolutely continuous,

c(0)=x and \int_{0}^{t}g_{c(\tau)}(\dot{c}(\tau),\dot{c}(\tau))d\tau\langle\infty\} .

In \S 2, we shall introduce a Hilbert space structure into \Omega(t, x, M) (See
Theorem 2. 4). Next let T>0 and

\Delta:0=t<t_{1}<\ldots<t_{L}=T

be an arbitrary subdivision of the interval [0, T] . We put

| \Delta|=\max_{1\leqq k\leqq L}|t_{k}-t_{k-1}| .

We also put, for any t(0\leqq t\leqq T) ,

(1.2) \Omega^{\Delta}(t, x, M)

= { c\in\Omega(t, x, M) ; For eack k=1 , \ldots , t(\Delta) , c|[s_{k-1}, s_{k}] is smooth
and satisfies (D_{C(\tau)}.’\dot{c})(\tau)=0(\tau\in(s_{k-1}, s_{k})).\} .

Here D is the covariant derivative. As for the definitions of s_{k} and t(\Delta) , see
(2. 2) and (2. 3).

It will be shown in Theorem 2.5 that \Omega^{\Delta}(t, x, M) is a dt(\Delta) -dimensional
linear subspace of \Omega(t, x, M) . Using the inner product of \Omega(t, x, M) , we
will give a uniform measure F_{t}^{\Delta}

, x(dc) to \Omega^{\Delta}(t, x, M) at the end of \S 2.
To show our result, we need some preliminaries. Throughout this

section we shall assume that (M, g) is of the type QA) or (B):
(A) M is compact
(B) M=R^{d} and if we write g using the global coordinates as

g= \sum_{i,j=1}^{d}g_{ij}(x)dx_{i}\otimes dx_{j} ,

then we have

(1) g_{ij}(x)\in C_{b}^{3}(R^{d})(i. j=1, \ldots, d)
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(2) there exists a positive constant K_{1} such that

\sum_{i,j=1}^{d}g_{ij}(x)\xi^{i}\xi^{i}\geqq K_{1}|\xi|2(\xi\in R^{d}) .

We note that in both cases (M, g) is complete.
Now let b be a C^{2} vector field on M and V a C^{2} function on M with

compact support. In case of (B), we further assume that b^{i}(x)\in C_{b}^{3}(R^{d})

(i=1, \ldots , d) , where

b(x)= \sum_{i=1}^{d}b^{i}(x)\frac{\partial}{\partial x^{i}} .

We consider the diffusion equation on M :

(1.3) \{

\frac{\partial u}{\partial t}(t, x)=(\frac{1}{2}\Delta_{g}+b+V)u(t, x)

u(+0, x)=\phi(x) ,

were \phi\in C_{0}^{\infty}(M) ( C^{\infty} function with compact support) and \Delta_{g} is the Laplace-
-Beltrami operator of (M, g) . We note that general non-degenrate
diffusion equation of second order on R^{d} is rewritten as (1.3) (See

Ikeda-Watanabe [9], p. 274). It is known that bounded C^{1,2}([0. \infty)\cross M)

class solution of (1. 1) uniquely exists. We denote it as u(t, x) . We put,
for t\in[0, T] ,

(1.4) u_{\Delta}(t, x)= \int_{\Omega^{\Delta}(t,x,M)} exp \{ \int_{0}^{t}L(c(\tau),\dot{c}(\tau))d\tau\}\phi(c(t))F_{t,x}^{\Delta}(dc) ,

where L:TMarrow R is defined by

(1.5) L(x, v)=- \frac{1}{2}|v-b(x)|_{x}^{2}-\frac{1}{2}divb (x)+V(x) , |\cdot|_{x}=g_{x}(\cdot, \cdot)^{1/2}

((x, v)\in TM) .

Now let us show our main theorem in the present paper.

THEOREM 1. 1. Assume (A) or (B) and that \phi\in C_{0}^{\infty}(R^{d}) . Then
there exists a positive comtant K_{2}=K_{2}(T) such that, for any t\in[0, T] , x\in

M and \Delta , we have

(1.6) |u(t, x)-u_{\Delta}(t, x)|\leqq K_{2}|\Delta|^{1/2} .

Here, the constant K_{2} is independent of t, x and \Delta . In particular, u_{\Delta}(t, x)

convereges to u(t, x) uniformly in (t, x)\in[0, T]\cross R^{d} as |\Delta|arrow 0 .

The proof of Theorem 1. 1 will be found in \S 4. In \S 2, we will study path
space on a Riemannian manifold. \S 3 is devoted to prove some facts which
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will be used in the proof of Theorem 1. 1.

\S 2. A path space on a Riemannian manifold

Let (M, g) be a d -dimensional C^{3} -Riemannian manifold, TM_{x} the
tangent space of M at x\in M and TM the tangent bundle of M. We often
regard TM_{x} as an affine space. The metric g_{x}( ) of TM_{x} is often written
simply as ( )_{x} . Let O(M) be the set of (d+1)- tuples (x, e_{1}, \ldots e_{d}) ,

where x\in M and \{ e_{1}, ..1 e_{d}\} is an orthonormal basis of TM_{x} . Let \pi :
O(M)arrow M be given by \pi(x, e_{1}, \ldots.e_{d})=x. Now we have the bundle of
orthonormal flames (O(M), \pi, M) with the strucure group O(d) . We will
denote the bundle by O(M) alone. If we take local coordinates (x^{1}, \ldots , x^{d})

in a coordinate neighborhood U of M, every orthonormal frame r\in\pi^{-1}(U)

may be expressed in the form

r= (x, e_{1}, , . 1 . e_{d}) and e_{i}= \sum_{k=l}^{d}e_{i}^{k_{\frac{\partial}{\partial x^{k}}}}(i=1, \ldots ,d) ,

where we have

\sum_{k,l=1}^{d}e_{l}^{k}.e_{j}^{l}g_{kl}=\delta_{lj}.(i, j=1, \ldots,d)

and

g_{x}= \sum_{i,j=1}^{d}g_{ij}(x)dx^{i}\otimes dx^{j} .

Let \Gamma_{pq}^{i} be the coefficients of the Riemannian connection associated
with the Riemannian metric g :

\Gamma_{pq}^{i}=\frac{1}{2}\sum_{k=1}^{d}(\frac{\partial}{\partial x^{p}}g_{kq}+\frac{\partial}{\partial x^{q}}g_{pk}-\frac{\partial}{\partial x^{k}}g_{pq})g^{ki}(i, p, q=1, \ldots,d) ,

where

(g^{i_{J}})=(g_{ij})^{-1} .

We introduce a path space on M.

DEFINITION 2. 1. For x\in M and t>0 , \Omega(t, x, M) is defifined by
(2. 1) \Omega(t, x, M)

=\{c:[0, t]arrow M : absolutely continuous, c(O)=x

and \int_{0}^{t}(\dot{c}(\tau),\dot{c}(\tau))_{c(\tau)}d\tau<\infty\} .

Let T>0 and
\Delta : 0=t_{0}<t_{1}<\ldots<t_{L}=T
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be an arbitrary subdivision of the interval [0, T] .
We put

(2.2) [\tau]^{+}(\Delta)=t_{k} , [\tau]^{-}(\Delta)=t_{k-1} and \tau(\Delta)=k if t_{k-1}\leq\tau<t_{k} .

Also put, for any t\in[0, T] ,

(2.3) s_{0}=k , S_{1}=t_{1} , \ldots . s_{t(\Delta)-1}=t_{t(\Delta)-1} and s_{l(\Delta)}=t.

DEFINITION 2.2. For x\in M, t\in[0, T] and a subdivision \Delta of [0, T] ,

\Omega^{\Delta}(t, x, M) is defifined by

(2.4) \Omega^{\Delta}(t, x, M)

=\{c\in\Omega(t, x, M) ; For each k=1 , \ldots
t(\Delta) , c|[s_{k-1}, s_{k}] is smooth

and satisfifies (D_{\dot{c}(\tau)}\dot{c})(\tau)=0(\tau\in(s_{k-1}, s_{k})).\} .

We want to regard \Omega(t, x, M) as a Hilbert space and \Omega^{\Delta}(t, x, M) as its
finite dimensional linear subspace. For that purpose, some notions which
are usually defined for smooth curves need to be generalized to the elements
of \Omega(t, x, M) . Let c be an element of \Omega(t, x, M) and v(\tau)(0\leq\tau\leq t) an
adsolutely continuous vector field along c. Then v is said to be parallely
transported along c if the equality

(2. 5) (D_{c(\tau)}.v)(\tau)=0(a.e. \tau\in[0, t])

is satisfied, where the left hand side of (2. 5) is expressed in local
coordinates as

(2.6) (D_{\dot{c}(\tau)}v)( \tau)=\sum_{a=1}^{d}\{\frac{d}{d\tau}v^{\alpha}(\tau)+\sum_{p,q=1}^{d}\Gamma_{t\eta}^{a}(c(\tau))\frac{dc^{p}}{d\tau}(\tau)v^{q}(\tau)\}\frac{\partial}{\partial l} .

For any c\in\Omega(t, x, M) and v\in TM_{x}, there exists a unique absolutely

continuous curve (c(\tau),v(\tau))(0\leqq\tau\leqq t) in TM which satisfies equation
(2. 5) with the initial condition v(0)=v. In fact, if there exists a local
coordinate neighborhood U such that c(\tau)\in U for \tau\in[0, t] , then equation
(2. 5) is written as

\frac{d}{d\tau}\nu^{\chi}(\tau)=-\sum_{p,q=1}^{d}\Gamma_{pq}^{a}(c(\tau))\frac{dc^{p}}{d\tau}(\tau)v^{p}(\tau)(\alpha=1, \ldots, d, a.e. \tau\in[0, t])

and the solution (v^{1}(\tau), \ldots v^{d}(\tau)) is expressed as

{}^{t}(v^{1}(\tau), \ldots.v^{d}(\tau))

= \{I+\sum_{i=1}^{\infty}\int_{0\leqq\lambda_{1}\leqq} _{\leqq\lambda,\leqq\tau}A(\lambda_{i})\ldots A(\lambda_{1})d\lambda_{1}\ldots d\lambda_{i}\}

\cross{}^{t}(v^{1}(0), \ldots, v^{d}(0)) ,
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where A(\lambda) is a d\cross d matrix defined by

A( \lambda)_{aq}=-\sum_{p=1}^{d}\Gamma_{t\eta}^{a}(c(\lambda))\frac{dc^{p}}{d\tau}(\lambda)(\alpha=1, \ldots.d, q=1, \ldots, d) .

We note that the above series is convergent since \dot{c}(\tau) is square integrable.
Even if c is not contained in a single coordinate neighborhood, we can reduce
it to the above case by deviding the interval [0, t] as usual. Thus given a
curve c\in\Omega(t, x, M) , we obtain a unique vector at c(s’)(0\leqq s’\leqq t) by
parallely transporting any given vector from c(s)(0\leqq s\leqq t) along c. This
parallel transfer from c(s) to c(s’) is a linear isomorphism from TM_{c(s)} to
TM_{c(s’)} which preserves all scalar products. This linear isomorphism is
denoted by c_{s’}^{s} .

If we rtansport an orthonormal basis of TM_{x} along a given curve c\in

\Omega(t, x, M) parallely, then we obtain an absolutely continuous curve \tilde{c}=

(c(\tau), e(\tau))(0\leqq\tau\leqq t) in O(M) . We call it the horizontal lift of c.
Namely, \tilde{c}(\tau)=(c(\tau), e(\tau)) is the horizontal lift of c\in\Omega(t, x, M) , iff

(2.7) (D_{c(\tau)}.e_{a})(\tau)=0(a.e. \tau\in[0, t], \alpha=1, \ldots d) .

Next we shall prove the existence and uniqueness theorem for solutions
of ordinary differential equations in the form needed here.

Let D_{0} be a domain in R^{n}, a a point in D_{0} and f_{j}^{i}(y)(i=1 , \ldots , n, j=1 ,
... ’ m ) continuous functions on D_{0} . Furthermore let \gamma(\tau) (-\delta\leqq\tau\leqq\delta)

(\delta>0) be an absolutely continuous curve in R^{m} such that

\gamma(0)=0 and \int_{-\delta}^{8}|\dot{\gamma}(\tau)|^{2}d\tau<\infty .

Now we consider the equation

(2.8)

’

\frac{d}{d\tau}x^{i}(\tau)=\sum_{j=1}^{m}f_{j}^{i}(x(\tau))\frac{d\gamma j}{d\tau}(\tau)(i=1, \ldots, n)

\backslash x(0)=(x^{1}(0), \ldots, x^{n}(0))=a .

THEOREM 2. 1. Suppose that f_{j}^{i}(y)(i=1, \ldots.n, j=1, \ldots.m) belongs
to C^{1}(D_{0}) . Then, for any point a in D_{0} , there exists a unique family of n

functions x(\tau)=(x^{1}(\tau), \ldots-x^{n}(\tau)) defifined on [-\delta’. \delta’](0<\delta’<\delta) such
that

(1) x(\tau) is absolutely continuous

and

(2) x(\tau) satisfifies equation (2. 8) for 0.0. \tau\in[-\delta’. \delta’] .
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PROOF. Let C_{1} be a positive constant such that the set { y\in R^{n} ;
|y-a|\leqq c_{1}\} is contained in D_{0} . For a positive number \delta’. we put F=\{x\in

C ([-\delta’. \delta’]-arrow R^{n})j|x(\tau)-a|\leqq c_{1} (-\delta’\leqq\tau\leqq\delta’)\} . Then F becomes a

Banach space with the norm |x|_{\infty}= \sup_{-\delta’\leqq\tau\leqq\delta’}|x(\tau)|

Now we put

(Tx) ( \tau)=a+\sum_{j=1}^{m}\int_{0}^{\tau}f_{j}(x(s))\dot{\gamma}^{J}(s)ds(-\delta’\leqq\tau\leqq\delta’x\in F) ,

where f_{j}=\zeta f_{j}^{1} , \ldots . f_{j}^{n}) (j=1, \ldots, m) . For any x\in F, it holds that

|Tx-a|_{\infty} \leqq c_{2}(\int_{-\delta’}^{8’}|\dot{\gamma}(s)|^{2}ds)^{1/2} ,

where c_{2} is a positive constant which does not depend on x nor \delta’(<\delta) .
Therefore, by choosing \delta’ small enough, we may assume that T maps F into
F. Furthermore, for any x any y\in F, it holds that

|Tx-Ty|_{\infty} \leqq c_{3}(\int_{-8’}^{8’}|\gamma(Zs)|2ds)^{1/2}|x-y|_{\infty} ,

where c_{3} is a positive constant which depends on neither x, y nor \delta’ Thus,
again, by choosing \delta’ small enough, we may assume that T is a contraction
map from F to F. Then the theorem follows from the usual iteration
technique. This completes the proof.

Let c_{0}^{\tau} : TM_{c(\tau)}arrow TM_{x} be the parallel displacement along c\in\Omega(t, x, M)

from c(\tau) to c(0)=x. Since it holds that

\int_{0}^{t}(c_{0}^{\tau}(\dot{c}(\tau)),c_{0}^{\tau}(\dot{c}(\tau)))_{x}d\tau=\int_{0}^{t}(\dot{c}(\tau),\dot{c}(\tau))_{c(\tau)}d\tau<\infty ,

we have the next definition

DEFINITION 2. 3. We defifine a map \Phi from \Omega(t, x, M) to \Omega(t, 0, TM_{x})

by

(2.9) \Phi(c)(\tau)=\int_{0}^{\tau}c_{0}^{s}(\dot{c}(s))ds(0\leqq\tau\leqq t, c\in\Omega(t, x, M))

and call it the development of c into the affine tangent space TM_{x} .

Next we shall construct the inverse map of \Phi when M is complete. This
is carried out by “ rolling ” M along a curve \overline{\gamma}\in\Omega(t, 0, R^{d}) . To be precise,
let \overline{\gamma}\in\Omega(t, 0, R^{d}) and (x, e)\in O(M) and define an absolutely continuous
curve \tilde{c}(\tau)=(c(\tau),e(\tau)) in O(M) by
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(2. 10)
\{

( \frac{d}{d\tau}c(\tau)=\sum_{a=1}^{d}\frac{d}{d\tau}Y(\tau)e_{a}(\tau)

(D_{\dot{c}(\tau)}e)(\tau)=0

c(0)=x
e(0)=e.

(a.e. \tau\in[0, t])

Or in local coordinates,

(2. 11)

/ \frac{d}{d\tau}c^{i}(\tau)=\sum_{a=1}^{d}\frac{d}{d\tau}\gamma(\tau)e_{a}^{i}(\tau)

e_{a}^{i}( \tau)=-\sum_{m,l=1}^{d}\Gamma_{ml}^{i}(c(\tau))e_{a}^{l}(\tau)\frac{d}{d\tau}c^{m}(\tau)

c^{i}(0)=x^{i}

( e_{a}^{i}(0)=e_{a}^{i}(i, \alpha=1, \ldots, d, a.e. \tau\in[0, t]) .

By the next theorem we know that \tilde{c} is well defined if M is complete.

THEOREM 2. 2. Suppose that M is complete. Then, for any
\overline{\gamma}\in\Omega (t, 0, R^{d}) and (x, e)\in O(M) , there exists a unique absolutely
continuous curve \tilde{c}(\tau)=(c(\tau), e(\tau))(0\leqq\tau\leqq t) in O(M) which satisfies
equation (2. 10).

PROOF. The proof is in two steps.
(1) Suppose that there are two such curves \tilde{c}(\tau)=(c(\tau), e(\tau)) and \tilde{c}’(\tau)=

(c’(\tau), e’(\tau)) . We put

t_{1}= \inf\{\tau\in[0, t] ; \tilde{c}(\tau)=\tilde{c}’(\tau)\} .

Then \tilde{c}(\tau)=?(\tau) for any \tau\in[0, t_{1}) . While, since both \tilde{c} and \check{c} are
continuous, we have \tilde{c}(t_{1})=\check{c}(t_{1}) . If t_{1}<t, in view of Theorem 2. 1 there
exists a positive number \delta such that \tilde{c}(\tau)=\tilde{c}’(\tau)(t_{1}\leqq\tau\leqq t_{1}+\delta) . This is a
contradiction. Therefore, t_{1} must coincide with t.
(2) In view of Theorem 2. 1, we have an absolutely continuous curve \tilde{c}(\tau)

which is defined on [0, \delta] for some \delta(>0) and satisfies equation (2. 10).

Let t_{2} be the supremum of those \delta’s . Then, with the aid of (1), we have a
curve \tilde{c}(\tau)(0\leqq\tau<t_{2}) which is absolutely continuous on each [0, s] (0\leqq

s<t_{2}) and satisfies equation (2. 10). Now we shall show that \tilde{c} can be
extended up to t_{2} as an absolutely continuous curve. For a sequence \{\tau_{k}\}_{k=1}^{\infty}

such that \tau_{k}\uparrow t_{2} , \{ c(\tau_{k})\}_{k=1}^{\infty} forms a Cauchy sequence in M. In fact, in view
of equation (2. 10) it holds that

dis(c(\tau_{k}), c(\tau_{l}))

\leqq\int_{\tau_{l}}^{\tau_{k}}gc(\tau)(\dot{c}(\tau),\dot{c}(\tau))^{1/2}d\tau
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= \int_{\tau_{l}}^{\tau_{k}}(\dot{\gamma}(\tau),\dot{\gamma}(\tau))^{1/2}d\tauarrow 0(k, larrow\infty) .

Therefore, since M is complete, \{ c(\tau_{k})\}_{k-1}^{\infty} converges to some point p\in M.
As \{ c(\tau_{k})\}_{k=1}^{\infty} is arbitrary, we know that c(\tau) convereges to p as \tau\uparrow t_{2} .
Now we put c(t_{2})=p. We wish to show that c(\tau)(0\leqq\tau\leqq t_{2}) is absolutely
continuous. Take a local coordinate neighborhood U in M such that the
closure \overline{U} of U is compact and c(t_{2}) is in U. Then c(\tau)(s\leqq\tau\leqq t_{2}) is
contained in U for some s(<t_{2}) . Since \pi^{-1}( \overline{U}) is compact, e_{a}^{i}(\tau)(\tau\in[s, t_{2}) ,

i, \alpha=1 , \ldots , d ) are all bounded. Therefore, it follows that

\int_{0}^{t}|\sum_{a=1}^{d}\frac{d\overline{\gamma}a}{d\tau}(\tau)e_{a}^{i}(\tau)|d\tau<\infty(i=1, \ldots.d) .

Hence, by the dominated convergence theorem, if we let \tau\uparrow t_{2} in

c^{i}( \tau)=c^{i}(s)+\int_{0}^{\tau}\sum_{a=1}^{d}\frac{d\overline{\gamma}a}{d\tau}(\tau)d\tau(i=1, \ldots, d)

,

we obtain

c^{i}(t_{2})=c^{i}(s)+ \int_{0}^{t}\sum_{a=1}^{d}\frac{d\overline{\gamma}a}{d\tau}(\tau)e_{a}^{i}(\tau)d\tau(i=1, \ldots, d) .

This shows that c(\tau)(0\leqq\tau\leqq t_{2}) is absolutely continuous. Now let \tilde{c}’(\tau)=

(c(\tau), e’(\tau)) be the horizontal lift of c(\tau)(0\leqq\tau\leqq t_{2}) . Then, by the
definition, we have the equality

(D_{\dot{c}(\tau)}e’)(\tau)=0(a.e. \tau\in[0, t_{2}]) .

Since the solution of equation (2. 5) is unique, it follows that e(\tau)=e’(\tau)

(0\leqq\tau<t_{2}) . This shows that \check{c} is the absolutely continuous extension of \tilde{c}

(\tau)(0\leqq\tau<t_{2}) to [0, t_{2}] as desired. We write this \tilde{c}’ as \tilde{c} again. Now
suppose that t_{2}<t. Then, in view of Theorem 2. 1, \tilde{c} is extended up to t_{2}+

\delta for some \delta>0 . But this contradicts the definition of t_{2} . Hence t_{2} must
coincide with t. This completes the proof of the theorem.

Let M be a complete Riemannian manifold and (x, e)\in O(M) . We
denote by \Psi the following map from \Omega(t, 0, TM_{x}) to \Omega(t, x, M)

(2. 12) \Psi(\gamma)(\tau)=\pi(\tilde{c}(\tau))(\gamma\in\Omega(t, 0, TM_{x}), 0\leqq\tau\leqq t) ,

where \tilde{c}(\tau)=(c(\tau),e(\tau)) is the solution of equation (2. 10) with

(2. 13) \overline{\gamma}(\tau)=((\gamma(\tau), e_{1})_{x}, .. ’
(\gamma(\tau), e_{d})_{x}) .

By the next theorem, we know that \Psi does not depend on the choice of
orthonormal basis of TM_{x} . Furthermore, this theorem will be used to
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regard \Omega(t, x, M) as a Hilbert space.

THEORM 2. 3. If M is complete, \Phi is bijective and \Phi^{-1} is given by \Psi .

REMARK 2. 1. We can also show the converse: if \Phi is bijective, M is
complete.

PROOF. In view of Theorem 2. 2, we have a map \Psi defined by equation
(2. 12) when M is complete, where the orthonormal basis e of TX_{x} is chosen
arbitrarily. Take an element \gamma of \Omega(t, 0, TM_{x}) and let \tilde{c}(\tau)=(c(\tau), e(\tau))

be the solution of equation (2. 10) with (2. 13). Then, by the definition,
c=\Psi(\gamma) . In view of (2. 10) and (2. 13), we derive

c_{0}^{\tau}( \dot{c}(\tau))=c_{0}^{\tau}(\sum_{a=1}^{d}\overline{\gamma}.(a\tau)e_{a}(\tau))

= \sum_{a=1}^{d}\overline{\gamma}.(a\tau)c_{0}^{\tau}(e_{a}(\tau))

= \sum_{a=1}^{d}(\dot{\gamma}(\tau), e_{a})_{x}e_{a}

=\dot{\gamma}(\tau) .

Therefore, we obtain

\int_{0}^{\tau}c_{0}^{s}(\dot{c}(s))ds=\gamma(\tau)(0\leqq\tau\leqq t) ,

which shows that \Phi\circ\Psi=the identity.
Conversely, let c be an arbitrary element of \Omega(t, x, M) and \tilde{c}(\tau)=

(c(\tau), e(\tau)) be its horizontal lift with \tilde{c}(0)=(x, e) . We put \gamma=\Phi(c) .
Then, in view of (2. 9), we obtain

(\dot{\gamma}(\tau), e_{a})_{x}=(c_{0}^{\tau}(\dot{c}(\tau)), c_{0}^{\tau}(e_{a}(\tau)))_{x}

=(\dot{c}(\tau), e_{a}(\tau))_{c(\tau)}

and from this and (2. 5) we see that \tilde{c}is the solution of equation (2. 10) with
(2. 13). This implies

c=\Phi(\gamma)=\Psi\circ\Phi(c)

and therefore \Psi\circ\Phi=the identity. Now the proof of the theorem is complete.
Now let us introduce a Hilbert space structure into \Omega(t, x, M) . At first,

we note that \Omega(t, 0, TM_{x}) is regarded as a Hilbert space in a natural way,
because TM_{x} is a finite dimensional vector space with an inner product. In
particular, the inner product < > of \Omega(t, 0, TM_{x}) is defined by

<\gamma_{1} , \gamma_{2}>=\int_{0}^{t}(\dot{\gamma}_{1}(\tau),\dot{\gamma}_{2}(\tau))_{x}d\tau(\gamma_{1\prime}\gamma_{2}\in\Omega(t, 0, TM_{x})) .

In view of Theorem 2. 3, we have a bijection \Phi from \Omega(t, x, M) to
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\Omega(t, 0, TM_{x}) when M is a complete Riemannian manifold. Therefore, we
can regard \Omega(t, x, M) as a Hilbert space through \Phi . To be precise, we
define linear combination and inner product of \Omega(t, x, M) as

(1) linear combination

(2. 14) \alpha_{1}c+\alpha_{2}c’=\Phi^{-1}(\alpha_{1}\Phi(c)+\alpha_{2}\Phi(c0)

(2) inner product

(2.15) <c, c’>=<\Phi(c) , \Phi(c\gamma> . (\alpha_{1}, \alpha_{2}\in R_{ C}’,.

It is easy to see that the Hilbert space structure induced from
\Omega(t, 0, TM_{x}) into \Omega(t, x, M) through \Phi is characterized as follows.

THEOREM 2. 4. Suppose that M is complete and let x\in M. Then,
(1) for any \alpha_{1} , \alpha_{2}\in R and any c, c’\in\Omega(t, x, M) , there exists a unique

element c’\in\Omega(t, x, M) such that

(2. 16) c_{0}^{r;\tau}(\dot{c}\prime\prime(\tau))=\alpha_{1}c_{0}^{\tau}(\dot{c}(\tau))+\alpha_{2}c_{0}^{r\tau}(\dot{c}’(\tau))(a.e. \tau\in[0, t]) and if we
write c^{rr} as \alpha_{1}c+\alpha_{2}c_{r}’ then \Omega(t, x, M) becomes a vector space.
Furthermore,

(2) if we defifine an inner product of \Omega(t, x, M) as

(2. 17) <c, c’>= \int_{0}^{t}(c_{0}^{\tau}(\dot{c}(\tau)), c_{0}^{;\tau}(\dot{c}’(\tau)))_{x}d\tau,

then \Omega(t, x, M) becomes a Hilbert space.

REMARK 2. 2. As mentioned before, c_{0}^{\tau} denotes the parallel displace-
ment along c from c(\tau) to c(0) . Therefore, the both sides of (2. 16)

should be regarded as elements of TM_{x} .
Now let \Delta be the subdivision of the interval [0, T] as before. Since

geodesies in TM_{x} are nothing but line segments, \Omega^{\Delta}(t, 0, TM_{x}) introduced in
(2. 4) consists of piecewise linear curves with respect to \Delta . If we put (x, e)
\in O(M) and

(2. 18) \gamma_{\Delta k}^{a}(\tau)=\{

\frac{\tau-s_{k-1}}{(s_{k}-s_{k-1})^{1/2}}e_{a}(\tau\in[s_{k-1}, s_{k}])

0 (\tau\in[0, t]-[s_{k-1;}s_{k}])

(\alpha=1, \ldots.d, k=1, \ldots.t(\Delta)) .

then \{\gamma_{\Delta k}^{a} ; \alpha=1, \ldots , d, k=1, \ldots , t(\Delta)\} forms a basis of \Omega^{\Delta}(t, 0, TM_{x}) .
Here we have used the notations in (2.2) and (2. 3). In particular,
\Omega^{\Delta}(t, 0, TM_{x}) is a dt(\Delta) -dimensional linear subspace of \Omega(t, 0, TM_{x}) .

THEOREM 2. 5. Suppose that M is complete. Then \Phi(\Omega^{\Delta}(t, x, M))=
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\Omega^{\Delta}(t, 0, TM_{x}) . In particular, \Omega^{\Delta}(t, x, M) is a dt(\Delta) -dimensional linear
subspace of \Omega(t, x, M) .

PROOF. Let \gamma\in\Omega^{\Delta}(t, 0, TM_{x}) . Then, (\dot{\gamma}(\tau), e_{a})_{x}=constant for any \tau

\in(s_{k-1r}s_{k})(k=1, \ldots.t(\Delta), \alpha=1, \ldots , d) . Now we put c=\Psi(\gamma) . In view of
equation (2. 10) with (2. 13), we have

(D_{\dot{c}(\tau)} \dot{c})(\tau)=(D_{c(\tau)}.(\sum_{a=1}^{d}\overline{\gamma}.e_{a})a)(\tau)

= \sum_{a=1}^{d}\overline{\gamma}(a\tau)(D_{\dot{c}(\tau)}e_{a})(\tau)-

=0 (s_{k-1}<\tau<s_{k}, k=1, , .. _{\wedge}t(\Delta)) .

Thus we have proved that

\Phi^{-1}(\Omega^{\Delta}(t, 0, TM_{x}))\subset\Omega_{\Delta}(t, x, M) .

Since \Phi is bijective, this shows that

\Omega^{\Delta}(t, 0, TM_{x})\subset\Phi(\Omega^{\Delta}(t, x, M)) .

Conversely, if c\in\Omega^{\Delta}(t, x, M) , then c_{0}^{\tau}(\dot{c}(\tau)) is the same element of
TM_{x} for any \tau\in(s_{k-1}, s_{k}) . Hence \Phi(c)\in\Omega^{\Delta}(t, 0, TM_{x}) and this shows that

\Phi(\Omega^{\Delta}(t, x, M))\subset\Omega^{\Delta}(t, 0, TM_{x}) .

This completes the proof of the theorem.
Now let us introduce a uniform measure into \Omega^{\Delta}(t, x, M) . Let \{\gamma j\}_{j=1}^{dt(\Delta)}

be an arbitrary orthonormal basis of \Omega^{\Delta}(t, x, M,) and define a linear
isomorphism T : \Omega^{\Delta}(t, x, M)arrow R^{dt(\Delta)} by

(2. 19) T(c)=(<c, c_{1}>, \ldots J <c, c_{dt(\Delta)}>)(c\in\Omega^{\Delta}(t, x, M)) .

DEFINITION 2. 4. We defifine fe uiform measure F_{t,x}^{\Delta}(dc) of
\Omega^{\Delta}(t, x, M) by

(2.20) F_{l.x}^{\Delta}=F\circ T,

where F is defifined by

(2.21) F=(2\pi)^{-dt(\Delta)/2} . (Lebesgue measure of R^{dt(\Delta)} ).

We note that F_{t,x}^{\Delta} does not depend on the choice of orthonormal basis of
\Omega^{\Delta}(t, x, M) .

\S 3. Approximation theorems and some related estimates.

In this section, we shall prove two approximation theorems and some
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estimates related to stochastic integrals and stochastic differential equations.
They will be used in \S 4.

We first introduce some notations. Fix an arbitrary positive number T
Let ( W_{\acute{0}}^{r}T \mathscr{F}P) be the r -dimensional Wiener space with the usual
reference family (\mathscr{F}_{t})_{0\leqq t\leqq T} . That is, W_{0}^{r,T}=\{w\in C([0, T]arrow R^{r});w(0)=0^{\iota}, ,
\mathscr{F}_{t} and \mathscr{F} denote the smallest \sigma -field with respect to which w(\tau) are
measurable for 0\leqq\tau\leqq t and for 0\leqq\tau\leqq T respectively and P is the Wiener
measure on ( W_{0}^{r}, T\mathscr{F}) .

Let
\Delta : 0=t_{0}<t_{1}<\ldots<t_{L}=T

be an arbitrary subdivision of the interval [0, T] . We put as in \S 2 that

[\tau]^{+}(\Delta)=t_{k} , [\tau]^{-}(\Delta)=t_{k-1} and \tau(\Delta)=k

if t_{k-1}\leqq\tau<t_{k} .

DEFINITION 3. 1. By piecewise linear approximation of Wiener process,
we mcan family \{ w_{\Delta}(\tau)=(w_{\Delta}^{1}(\tau), - w_{\Delta}^{r}(\tau))\} of r-dimensional
continuous processes defifined over the Wiener space such that

(3. 1) w_{\Delta}^{i}( \tau)=w^{i}(t_{k-1})+\frac{\tau-t_{k-1}}{t_{k}-t_{k-1}}\{w^{i}(t_{k})-w^{i}(t_{k-1})\} ,

(t_{k-1}\leqq\tau<t_{k}, k=1, \ldots, L, i=1, \ldots.r) .

Let \sigma_{j}^{i} (i=1, \ldots , d, j=1, \ldots r) be real valued functions on R^{d} such that
\sigma_{j}^{i}\in C_{b}^{2}(R^{d}) . Consider the system of ordinary differential equations

(3. 2) \frac{d}{d\tau}X_{\Delta}^{i}(\tau, w)=\sum_{j=1}^{r}\sigma_{j}^{i}(X_{\Delta}(\tau, w))\frac{d}{d\tau}w_{\Delta}^{i}(\tau) , X_{\Delta}^{i}(0, w)=x^{i}

(i=1, \ldots.d) .

We also cosider the system of stochastic differential equations

(3.3) dX^{i}( \tau, w)=\sum_{j=1}^{r}\sigma_{j}^{i}(X(\tau, w))\circ dw^{j}(\tau) , X^{i}(0, w)=x^{i}(i=1 , .. ( ^{d}) .

Here x= (x^{1}. \ldots 2 x^{d})\in R^{d} . For any x\in R^{d}, the solutions of equations (3. 2)

and (3. 3) exist uniquely, which we shall denote by X_{\Delta}(\tau, x, w)=

(X_{\Delta}^{1}(\tau, x, w), \ldots. X_{\Delta}^{d}(\tau, x, w)) and X(\tau, x, w)=(X^{1}(\tau, x, w) , \ldots

X^{d}(\tau, x, w)) respectively. For simplicity, we shall often suppress w.
First, we shall prove two approximation theorems in the form needed in

\S 4.

THEOREM 3. 1. Let T>0 be fifixed. Then, there exists positive
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constant K_{3}=K_{3} ( T) such that

(3.4) E[|X(t, x, w)-X_{\Delta}(t, x, w)|]^{2}]\leqq K_{3}|\Delta|

for any t\in[0, T] and x\in R^{d} . The constant K_{3} is independent of \Delta , t and
x.

THEOREM 3. 2. Let T>0 be fifixed and assume that u\in C_{b}^{2}(R^{d}) . Then,
there exists a positive constant K_{4}=K_{4} ( T) such that

(3.5) E[| \int_{0}^{t}u(X_{\Delta}(\tau, x, w))\dot{w}_{\Delta}^{J}(\tau)d\tau-\int_{0}^{t}u(X(\tau, x, w))\circ dw^{j}(\tau)|^{2}]

\leqq K_{4}|\Delta|

for any t\in[0, T] , x\in R^{d} and j=1 , \ldots , d . The constant K_{4} is independent of
\Delta , t and x.

These are slight modifications of approximation theorems in Ikeda-
NakaO-Yamato [8] and in the following proof we will follow their idea.

First, we shall prepare some lemmas.

LEMMA 3. 1.

(3.6) E[_{\backslash }’ \int_{t_{k-1}}^{t_{k}}\dot{u}\prime_{\Delta}(\tau)(w_{\Delta}^{i}(t_{k})-w_{\Delta}^{j}(\tau))d\tau\}^{2}|\mathscr{F}_{t_{k}},]

=( \frac{1}{4}+\frac{1}{2}\delta_{\dot{\iota}j})(t_{k}-t_{k-1})^{2}

and

(3.7) E [ \int_{t_{k-1}}^{t_{k}}\dot{u}\prime_{\Delta}(\tau)(w_{\Delta}^{j}(t_{k-1})-w_{\Delta}^{j}(\tau))d\tau|\mathscr{F}_{t_{kI}}]=\frac{1}{2}\delta_{\dot{r}j}(t_{k}-t_{k-1}) .

PROOF. Both are proved by direct calculations.

LEMMA 3. 2. Let Z_{1}(\tau, w) be a bounded (\mathscr{F}_{\tau}) -adapted process defifined
on (’W_{\dot{0}}^{r}T \mathscr{F}, P) with piecewise continuous sample paths. Then,

(3.8) E[ \{\int_{0}^{[t]^{-}(\Delta)}Z_{1}([\tau]^{-}(\Delta)) [ ^{\dot{u}f_{\Delta}}( \tau)(w_{\Delta}^{i}([\tau]^{+}(\Delta))-w_{\Delta}^{i}(\tau))-\frac{1}{2}\delta_{ij}]

d\tau\}^{2}]

\leqq\frac{i}{2}(K_{5}.)^{2}T|\Delta|(i, j=1, \ldots r. r) ,

where K_{5}.= \sup_{0\leqq\tau\leqq T.w}|Z_{1}(\tau, w)| .

PROOF. In view of (3. 7), we have
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E[ \int_{t_{k-1}}^{t_{k}}\{id_{\Delta}(\tau)(w_{\Delta}^{j}(t_{k})-w_{\Delta}^{j}(\tau))-\frac{1}{2}\delta_{ij/}^{\iota}d\tau|\mathscr{F}_{t_{k1}}]=0

and therefore it follows that

(3.9) E[_{\iota}’ \int_{0}^{1tl^{-}(\Delta)} Z_{1}([ \tau]^{-}(\Delta))[\dot{w}_{\Delta}^{i}(\tau)(w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau))-\frac{1}{2}\delta_{7}j]

d\tau^{\mathfrak{l}2},]

=E [ \sum_{k=1}^{t(\Delta)-1}Z_{1}(t_{k-1})^{2}\{\int_{t_{k- 1}}^{t_{k}}[\dot{u}i_{\Delta}(\tau)(w_{\Delta}^{j}(t_{k-1})-w_{\Delta}^{j}(\tau))-\frac{1}{2}\delta_{?j}.]d\tau\}^{2}] .

While, using Lemma 3. 1, we have

(3. 10) E[ \{\int_{t_{k- 1}}^{t_{k}}[\dot{u}_{\Delta}^{j}(\tau)(w_{\Delta}^{j}(t_{k})-w_{\Delta}^{j}(\tau))-\frac{1}{2}\delta_{\tau j}]d\tau\}^{2}|\mathscr{F}_{t_{k1}}]

=E[ \{\int_{t_{k-1}}^{t_{k}}\dot{u}f_{\Delta}(\tau)(w_{\Delta}^{i}(t_{k})-w_{\Delta}^{i}(\tau))d\tau\}^{2}|\mathscr{F}_{t_{k1}}]-(\frac{1}{2}\delta_{ij})^{2}(t_{k}-t_{k-1})^{2}

\leqq\frac{1}{2}(t_{k}-t_{k-1})^{2} .

Combining (3. 9) and (3. 10), we derive

E[ \{\int_{0}^{1tl^{-}(\Delta)} Z_{1}([\tau]^{-}(\Delta))[\dot{M}_{\Delta}(\tau)(w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau)

- \frac{1}{2}\delta_{ij}]d\tau\}^{2}]

\leqq\frac{1}{2}(K_{5})^{2}\sum_{k=1}^{L}(t_{k}-t_{k-1})^{2}

\leqq\frac{1}{2}(K_{5})^{2}|\Delta|T

This completes the proof of the lemma.

LEMMA 3. 3. Let K_{6} be a positive constant and Z_{2}(\tau, w) a stochastic
process defifined on ( W_{0}^{r}, TJ^{}, P) with piecewise continuous sample paths
satisfying the condition

(3. 11) | Z(t)|\leqq K_{6}\sum_{m=1}^{r} \int_{[t]^{-}(\Delta)}^{[t]}+(\Delta)|\dot{w}_{\Delta}^{m}(\tau)|d\tau(0\leqq t\leqq T) .

Then, there exists a positive constant K_{7}=K_{7} ( T) such that, for any t\in[0, T] ,

we have

(3. 12) E[_{1}^{j} \int_{0}^{[t]^{-}(\Delta)} _{Z(\tau)\dot{w}_{\Delta}^{i}(\tau)(w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau))d\tau\}^{2}]}

\leqq K_{7}|\Delta|(i, j=1, \ldots-r) .

Here, the constant K_{7} is independent of t and \Delta .
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PROOF. Using (3. 11), we obtain

| \int_{0}^{1tl^{-}(\Delta)} Z(\tau)\dot{u}P_{\Delta}(\tau)\{w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau)(/d\tau|^{2}

\leqq T\int_{0}^{1tl^{-}(\Delta)}|Z(\tau)|^{2}|w_{\Delta}^{i}.(\tau)|^{2}\{w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau)_{/}^{(2}d\tau

\leqq T(K_{6})^{2}\sum_{k=1}^{L}\{ \sum_{m=1}^{r}\int_{t_{k-1}}^{t_{k}}|\dot{w}_{\Delta}^{m}(\tau)|d\tau\}^{2}\{\int_{t_{k-1}}^{t_{k}}|iv_{\Delta}^{i}(\tau)|^{2}d\tau^{1},

\cross\{\int_{t_{k-1}}^{t_{k}}|\dot{u}_{\Delta}^{j}(\tau)|d\tau_{/}^{12}

=T(K_{6})^{2} \sum_{k=1}^{L}(t_{k}-t_{k-1})^{-1}\{\sum_{m.l=1}^{r}|w^{m}(t_{k})-w^{m}(t_{k-1})|

\cross|w^{t}(t_{k})-w^{l}(t_{k-1})||w^{i}(t_{k})-w^{i}(t_{k-1})|^{2}|w^{j}(t_{k})-w^{j}(t_{k-1})|_{/}^{2\mathfrak{l}} .

Hence, the left hand side of (3. 12) is bounded by

T(K_{6})^{2} \sum_{k=1}^{L}(t_{k}-t_{k-1})_{1}^{-1j}\sum_{m=1}^{r}\sum_{l=1}^{r}E[|w^{m}(t_{k})-w^{m}(t_{k-1})|

\cross|w_{\Delta}^{l}(t_{k})-w_{\Delta}^{l}(t_{k-1})||w_{\Delta}^{i}(t_{k})-w_{\Delta}^{i}(t_{k-1})|^{2}|w_{\Delta}^{j}(t_{k})-w_{\Delta}^{j}(t_{k-1})|^{2}]|/

\leqq T(K_{6})^{2}\sum_{k=1}^{L}(t_{k}-t_{k-1})^{-1}\{ \sum_{m=1}^{r}\sum_{l=1}^{r}E[|w^{m}(t_{k})-w^{m}(t_{k-1})|^{4}]^{1/4}

\cross E[|w^{l}(t_{k})-w^{l}(t_{k-1})|^{4}]^{1/4}E[|w^{i}(t_{k})-w^{i}(t_{k-1})|^{8}]^{1/4}

\cross E[|w^{j}(t_{k})-w^{j}(t_{k-1})|^{8}]^{1/4}\}

=T(K_{6})^{2}315^{1/2}r^{2} \sum_{k=1}^{r}(t_{k}-t_{k-1})^{2}

\leqq 315^{1/2}(K_{6}Tr)^{2}|\Delta|

This completes the proof.

PROPOSITION 3. 1. Assume that u\in C_{b}^{2}(R^{d}) . Then, there exists a
positive constant K_{8}=K_{8}( T) such that, for any t\in[0, T] and j=1 , .. r,

we have

(3. 13) E[| \int_{0}^{t}u(X_{\Delta}(\tau, x, w))\dot{M}_{\Delta}(\tau)d\tau-\int_{0}^{t}u(X(\tau, x, w))\circ dw^{j}(\tau)|^{2}]

\leqq K_{8}\{|\Delta|+\int_{0}^{t}E[|X_{\Delta}(\tau, x, w))-X(\tau, x, w))|^{2}]d\tau\} .

Here, the constant K_{8} is independent of t, x, j and \Delta .

PROOF To begin with, we note that, for every \Delta and \tau\in[0, T] , it
holds that

(3. 14) |X_{\Delta}( \tau, x)-X_{\Delta}([\tau]^{-}(\Delta), x)|\leqq c_{1}\sum_{m=1}^{r}\int_{l\tau 1^{-}(\triangle)}^{l\tau J^{+}(\Delta)} |\dot{w}_{\Delta}^{m}(s)|ds,

where c_{1} is a positive constant determined by \sigma_{j}^{i} (i=1, \ldots. d, j=1, \ldots , r) .
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Integration by parts yields

(3. 15) \int_{t_{k-1}}^{t_{k}}u(X_{\Delta}(\tau, x))\dot{u}i_{\Delta}(\tau)d\tau

=- \int_{t_{k-1}}^{t_{k}}u(X_{\Delta}(\tau, x))\frac{d}{d\tau}\{w_{\Delta}^{j}(t_{k})-w_{\Delta}^{j}(\tau)/d(\tau

=u(X_{\Delta}(t_{k-1}, x))\{w^{j}(t_{k})-w^{j}(t_{k-1})/(

+ \sum_{m=1}^{d}\sum_{i=1}^{r}\int_{t_{k- 1}}^{t_{k}}(\frac{\partial u}{\partial x^{m}}\sigma_{i}^{m})(X_{\Delta}(\tau, x))\dot{w}_{\Delta}^{i}(\tau)\{w_{\Delta}^{j}(t_{k})-w_{\Delta}^{j}(\tau)/d(\tau .

In view of (3. 3), we have

(3. 16) \int_{0}^{t}u(X(\tau, x))\circ dw^{j}(\tau)

= \int_{0}^{t}u(X(\tau, x))dw^{j}(\tau)+\frac{1}{2}\sum_{m=1}^{d}\int_{0}^{t}(\frac{\partial u}{\partial x^{m}}\sigma_{j}^{m})(X(\tau, x))d\tau.

It follows from (3. 15) and (3. 16) that

\int_{0}^{t}u(X_{\Delta}(\tau, x))u.j_{\Delta}(\tau)d\tau-\int_{0}^{t}u(X(\tau, x))\circ dw^{j}(\tau)=\sum_{i=1}^{5}L(\Delta, t, x) ,

where

I_{1}( \Delta, t, x)=\int_{[t]-(\Delta)}^{t}u(X(\tau, x))\ddot{M}_{\Delta}(\tau)d\tau-\int_{[t]-(\Delta)}^{t}u(X(\tau, x))dw^{j}(\tau)

- \frac{1}{2}\sum_{m=1}^{d} \int_{[t]-(\Delta)}^{t}(\frac{\partial u}{\partial x^{m}}\sigma_{j}^{m})(X(\tau, x))d\tau .

I_{2}( \Delta, t, x)=\int_{0}^{[t]^{-}(\Delta)} j\backslash u(X_{\Delta}([\tau]^{-}(\Delta), x)-u(X(\tau, x))(,dw^{j}(\tau) ,

I_{3}( \Delta, t, x)=\sum_{m=1}^{d}\sum_{i=1}^{r}\int_{0}^{[t]^{-}(\Delta)} ( \frac{\partial u}{\partial x^{m}}\sigma_{i}^{m})(X_{\Delta}([\tau]^{-}(\Delta), x))

\cross[.\dot{M}_{\Delta}(\tau)\{w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau)(/-\frac{1}{2}\delta_{ij}]d\tau.

I_{4}( \Delta, t, x)=\sum_{m=1}^{d}\sum_{i=1}^{d} \int_{0}^{[t]^{-}(\Delta)}\{(\frac{\partial u}{\partial x^{m}}\sigma_{i}^{m})(X_{\Delta}(\tau, x))

-( \frac{\partial u}{\partial x^{m}}\sigma_{\dot{\iota}}^{m})(X_{\Delta}([\tau]^{-}(\Delta), x))/\{

\cross\iota\dot{\theta}_{\Delta}(\tau)\{w_{\Delta}^{j}([\tau]^{+}(\Delta))-w_{\Delta}^{j}(\tau)(d/\tau .

I_{5}( \Delta, t, x)=\frac{1}{2}\sum_{m=1}^{d}\int_{0}^{[t]^{-}(\Delta)}\{(\frac{\partial u}{\partial x^{m}}\sigma_{j}^{m})(X_{\Delta}([\tau]^{-}(\Delta), x))

-( \frac{\partial u}{\partial x^{m}}\sigma_{j}^{m})(X(\tau, x))\{/d\tau.

Now, we easily obtain
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E[|I_{1}(\Delta, t, x)|^{2}]

\leqq c_{2}\{E[|w^{j}([t]^{+}(\Delta))-w^{j}([t]^{-}(\Delta))|^{2}]

+ \int_{1tJ^{-}(\Delta)}^{t}E[u^{2}(X(\tau, x))]d\tau+|\Delta|^{2}\}\leqq c_{3}|\Delta| .

Next, by (3. 14), we have

E[|I_{2}(\Delta, t, x)|^{2}]

= \int_{0}^{[t]^{-}(\Delta)}\overline{.}E[\{u(X_{\Delta}([\tau]^{-}(\Delta), x))-u(X_{\Delta}(\tau, x))\}^{2}]d\tau

\leqq c_{4}\int_{0}^{[t]^{-}(\Delta)}E[|X_{\Delta}([\tau]^{-}(\Delta), x)-X(\tau, x)|^{2}]d\tau

\leqq 2c_{4}\{\int_{0}^{t}E[|X_{\Delta}([\tau]^{-}(\Delta), x)-X_{\Delta}(\tau, x)|^{2}]d\tau

+ \int_{0}^{t}E[|X_{\Delta}(\tau, x)-X(\tau, x)|^{2}]d\tau\}

\leqq c_{5}\{\sum_{k=1}^{L}(t_{k}-t_{k-1})E[\{\sum_{m=1}^{r}\int_{t_{k- 1}}^{t_{k}}|\dot{u}r_{\Delta}(\tau)|d\tau\}^{2}]

+ E[|X_{\Delta}(\tau, x)-X(\tau, x)|^{2}]d\tau^{t},

\leqq c_{6}\{|\Delta|+\int_{0}^{t}E[|X_{\Delta}(\tau, x)-X(\tau, x)|^{2}]/d(\tau.

If we fix j and put

Z_{1}( \tau, x, w)=\sum_{m=1}^{d}(\frac{\partial u}{\partial x^{m}}\sigma_{j}^{m})(X_{\Delta}([\tau]^{-}(\Delta), x)) ,

then Z_{1}(\tau, x, w) satisfies the conditions of Lemma 3. 2. Therefore, by
(3. 8), we have

E[|I_{3}(\Delta, t, x)|^{2}]\leqq c_{7}|\Delta|(

Next, we put

Z_{2}( \tau, x, w)=\sum_{m=1}^{d}\{(\frac{\partial u}{\partial x^{m}}\sigma_{i}^{m})(X_{\Delta}(\tau, x))-(\frac{\partial u}{\partial x^{m}}\sigma_{i}^{m})(X_{\Delta}([\tau]^{-}(\Delta), x))/( .

Then (3. 14) shows that Z_{2}(\tau, x, w) satisfies (3. 11) in Lemma 3. 3 for each
x\in R^{d} . Therefore (3. 12) yields

E[|I_{4}(\Delta, x)|^{2}]\leqq c_{8}|\Delta|

Finally, as in the case of I_{2}(\Delta, t, x) , we have

E[|I_{4}(\Delta, t, x)|^{2}]
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\leqq c_{9}\int_{0}^{t}E[|X_{\Delta}([\tau]^{-}(\Delta), x)-X(\tau, x)|^{2}]d\tau

\leqq c_{101}’|\Delta|+\int_{0}^{t}E[|X_{\Delta}(\tau, x)-X(\tau, x)|^{2}]d\tau_{1}^{1} .

This completes the proof of the proposition.

PROOF OF THEOREM 3. 1. Using Propos\dot{r}tim 3.1^{-}, we have

E[|X(t, x, w)-X_{\Delta}(t, x, w)|^{2}]

\leqq c_{1\mathfrak{l}}’\sum_{i=1j}^{d}\sum_{=1}^{r}E[|\int_{0}^{t}\sigma_{j}^{i}(X(\tau, x, w))\circ dw^{j}(\tau)-\int_{0}^{t}\sigma_{j}^{i}(X_{\Delta}(\tau, x, w))

\cross w_{\Delta}^{j}(\tau)d\tau|^{2(},
\leqq c_{2}\{|\Delta|+\int_{0}^{t}E[|X_{\Delta}(\tau, x, w)-X(\tau, x, w)|^{2}]d\tau_{/}^{(} .

Then, by Gronwall’s inequality, we obtain

E[|X(t, x, w)-X(t, x, w)|^{2}]\leqq c_{2}|\Delta|e^{tc_{2}} ,

which completes the proof.

PROOF OF THEOREM 3. 2. This follows easily from Theorem 3. 1 and
Proposition 3. 1.

The following two propositions will be used in \S 4 to prove Theorem 1.
1, too.

PROPOSITION 3. 2. Let u\in C_{b}^{1}(R^{d}) and T>0 . Then, there exists
positive constant K_{9}=K_{9} ( T) such that, for any t\in[0, T] , we have

(3. 17) E [exp \backslash / | \int_{0}^{t}u(X ( \tau, x, w ) )\circ dw^{j}(\tau)|_{/}( ] <K_{9}(j=1, , . 1 . r) .

Here, the constant K_{9} is independent of t, x and j.

PROOF. In view of the property of exponential martingales, we have

(3. 18) E [exp \backslash ^{\epsilon}/\int_{0}^{t}u(X ( \tau, x) )dw^{j}( \tau)-\frac{1}{2}\int_{0}^{t}u(X(\tau, x))^{2}d\tau^{(}, ] =1

(\epsilon=1, -1) .

Since u is bounded, there exists a positive constant c_{1} such that

(3. 19) \exp\{-\frac{1}{2}\int_{0}^{t}u(X(\tau, x))^{2}d\tau\}>c_{1} .

(3. 18) and (3. 19) show that
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(3.20) E[ \exp\{\epsilon\int_{0}^{t}u(X(\tau, x))dw^{j}(\tau)\}]<c_{1}^{-1} .

From (3. 16) and (3. 20), we derive

E[ \exp|\int_{0}^{t}u(X(\tau, x))\circ dw^{j}(\tau)|]

\leqq c_{2}E[\exp|\int_{0}^{t}u(X(\tau, x))dw^{j}(\tau)|]

\leqq c_{2} { E [exp ( \int_{0}^{t}u(X(\tau, x))dw^{j}(\tau))+\exp(-\int_{0}^{t}u(X(\tau, x))

dw^{j}(\tau))]\}

\leqq 2c_{2}c_{1}^{-1} .

This completes the proof.

PROPOSITION 3. 3. Let u\in C_{b}^{1}(R^{d}) and T>0 . Then, there exists a
positive constant K_{10}=K_{10}( T) such that, for any t\in[0, T] and x\in R^{d} . we
have

(3.21) E[ \exp|\int_{0}^{t}u(X_{\Delta}(\tau, x, w))u_{\Delta}^{j}.(\tau)d\tau|]<K_{10} ,

where the constant K_{10} is independent of \Delta , t, x and j.

PROOF. In this proof, c_{i} (i=1, \ldots , 8) denotes positive constant which
is independent of \Delta , t, j and x . The proof is in six steps.

(1) First, we shall introduce some notations. We put

f_{i}(x)= \sum_{m=1}^{d}(\frac{\partial u}{\partial x^{m}}\sigma_{i}^{m})(x)(i=1, \ldots.r)

and

c_{1}= \max_{1\leqq i\leqq r}|f_{i}|_{\infty} .

We shall prove the proposition in the case of c_{1}>0 only. If c_{1}=C , the
inequality (3. 21) is proved in the same way and more easily.

Let \Delta be a subdivision of [0, T] . If we devide the set A=\{1 , \ldots ,
t(\Delta)-1\} into two subsets

A_{1}=\{k\in A;|t_{k}-t_{k-1}|>6^{-1}(r+1)^{-1}c_{1}^{-1}\}

and

A_{2}=\{k\in Aj|t_{k}-t_{k-1}|\leqq 6^{-1}(r+1)^{-1}c_{1}^{-1}\} ,

then we have
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(3.22) E[ \exp|\int_{0}^{t}u(X_{\Delta}(\tau, x))\dot{w}_{\Delta}^{j}(\tau)d\tau|]

\leqq\{E[\exp|\sum_{k\in A}, \int_{t_{k-1}}^{t_{k}}3u(X_{\Delta}(\tau, x))\dot{u}_{\Delta}j(\tau)d\tau|]\}^{1/3}

\cross\{E[\exp|\sum_{k\in A_{2}}\int_{t_{k-1}}^{t_{k}}3u(X_{\Delta}(\tau, x))\dot{u}_{\Delta}j(\tau)d\tau|]\}^{1/3}

\cross\{E[\exp|\int_{lt1^{-}(\Delta)}^{t} 3u(X_{\Delta}(\tau, x))\dot{u}_{\Delta}y(\tau)d\tau|]\}^{1/3} .

(2) We note that IA_{1}<6(r+1)tc_{1} . Then, putting

x_{k}=w^{j}(t_{k})-w^{j}(t_{k-1})(k\in A_{1}) ,

we obtain

(3.23) E[ \exp|\sum_{k\in A}, \int_{t_{k-1}}^{t_{k}}3u(X_{\Delta}(\tau, x))\dot{u}J_{\Delta}^{j}(\tau)d\tau|]

\leqq E[\exp\{c_{2}\sum_{k\in A_{1}}|w^{j}(t_{k})-w^{j}(t_{k-1})|\}]

= \prod_{k\in A_{1}}\int_{R^{1}}j2\pi(t_{k}-t_{k-1})\}^{-1/2}\exp\{c_{2}|x_{k}|-\frac{1}{2(t_{k}-t_{k-1})}|x_{k}|^{2}\}dx_{k}

\leqq\prod_{k\in A_{1}}2\exp\{2^{-1}(c_{2})^{2}(t_{k}-t_{k-1})\}\leqq 2^{6(r+1)tc_{1}}\exp\{2^{-1}(c_{2})^{2}t\} .

Similarly we have

(3.24) E[ \exp|\int_{[t]-(\Delta)}^{t} 3u(X_{\Delta}(\tau, x))\dot{w}_{\Delta}^{j}(\tau)d\tau|]\leqq c_{3} .

(3) Integration by parts and (3. 3) yield

\sum_{k\in A_{2}}\int_{t_{k-1}}^{t_{k}}u(X_{\Delta}(\tau, x))\dot{w}_{\Delta}^{j}(\tau)d\tau

= \sum_{k\in A_{2}}u(X_{\Delta}(t_{k-1 }, x)) \{ w^{j}(t_{k})-w^{j}(t_{k-1})\}

+ \sum_{i=1k}^{r}\sum_{\in A_{2}}\int_{t_{k-1}}^{t_{k}}f_{i}(X_{\Delta}(\tau, x))\dot{w}_{\Delta}^{i}(\tau)\{w_{\Delta}^{j}(t_{k})-w_{\Delta}^{j}(\tau^{\backslash })\}d\tau

=M( \Delta, x)+\sum_{i=1}^{r}I_{i}(\Delta, x) .

Hence we have

(3.25) E[ \exp\{|\sum_{k\in A_{2}}\int_{t_{k-1}}^{t_{k}}3u(X_{\Delta}(\tau, x))\dot{u}\dot{J}_{\Delta}(\tau)d\tau|\}]

\leqq\{E[\exp|3(r+1)M(\Delta, x)|]\}^{1/r+1}

\cross\prod_{i=1}^{r}\{ ^{E[\exp}|3(r+1)I_{i}(\Delta, x)|]\}^{1/r+1} .
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(4) Since M(\Delta, x) is a stochastic integral with

<M( \Delta, x)>=\sum_{k\in A_{2}}u(X_{\Delta}(t_{k-1}))^{2}(t_{k}-t_{k-1})<c_{4} ,

as in the proof of Proposition 3. 2 we have
(3.26) E[\exp|3(r+1)M(\Delta, x)|]\leqq c_{5} .

(5) If we put

x_{k}^{i}=w^{i}(t_{k})-w^{i}(t_{k-1})(i=1, \ldots, r, k\in A_{2}) ,

then it follows that, for each i=1 , \ldots , r ,

(3.27) E[\exp|3(r+1)I_{i}(\Delta, x)|]

\leqq E[\exp\{3c_{1}(r+1)\sum_{k\in A_{2}}|w^{i}(t_{k})-w^{i}(t_{k-1})||w^{j}(t_{k})-w^{j}(t_{k-1})|\}]

= \prod_{k\in A_{2}}\int_{R^{2}}\exp\{3c_{1}(r+1)|x_{k}^{i}||x_{k}^{i}|-\frac{(x_{k}^{i})^{2}+(x_{k}^{i})^{2}}{2(t_{k}-t_{k-1})}\}

\cross\{2\pi(t_{k}-t_{k-1})\}dx_{k}^{i}dx_{k}^{i}

\leqq[\prod_{k\in A_{2}}\int_{R} exp \{\frac{3}{2}(r+1)c_{1}(x_{k})^{2}-\frac{(x_{k})^{2}}{2(t_{k}-t_{k-1})}\}

\cross\{2\pi(t_{k}-t_{k-1})\}^{-1/2}dx_{k}]^{2}

= \prod_{k\in A_{2}}\{1-3c_{1}(r+1)(t_{k}-t_{k-1})\}^{-1} .

Consider the function \log(1-x)^{-1}(0<x\leqq\frac{1}{2}) . By the mean value theorem,

we have

\log(1-x)^{-1}=x+\frac{1}{2(1-\theta)^{2}}x^{2}(0<\theta<x) .

Hence, noting 0<3c_{1}(r+1)(t_{k}-t_{k-1}) \leqq\frac{1}{2} , we obtain the estimate

log [ \prod_{k\in A_{2}}\{1-3c_{1}(r+1)(t_{k}-t_{k-1})\}^{-1}]

\leqq 3c_{1}(r-1)\sum_{k\in A_{2}}(t_{k}-t_{k-1})+18(c_{1})^{2}(r+1)^{2}\sum_{k\in A_{2}}(t_{k}-t_{k-1})^{2}

\leqq 3c_{1}(r+1)t+18(c_{1})^{2}(r+1)^{2}t^{2} .

This and (3. 27) show that

(3.28) E[\exp|3(r+1)I_{\iota}(\Delta, x)|]<c_{6}(i=1, \ldots.r) .
(6) Now we are ready to prove the proposition. (3. 25), (3. 26) and
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(3. 28) imply the inequality

(3.29) E[ \exp|\sum_{k\in A_{2}}\int_{t_{k-1}}^{t_{k}}3u(X_{\Delta}(\tau, x))\iota\dot{\theta}_{\Delta}(\tau)d\tau|]<c_{7} .

Then, by (3. 22), (3. 23), (3. 24) and (3. 29) we have

E[ \exp|\int_{0}^{t}u(X_{\Delta}(\tau, x))\dot{M}_{\Delta}(\tau)d\tau|]\leqq c_{8} .

This completes the proof of the proposition.

\S 4. Proof of Theoren 1. 1.

First we shall assume that M satisfies the assumption (B). The case of
the assumption (A) will be proved at the end of this section. Thus M=R^{d}

and if we write g and b as

g(x)= \sum_{i,j=1}^{d}g_{ij}(x)dx^{i}\otimes dx^{j} , b(x)= \sum_{i=1}^{d}b^{i}(x)\frac{\partial}{\partial x_{i}} ,

then it holds that g_{ij}(x)\in C_{b}^{3}(R^{d})(i, j=1, \ldots, d) and b^{i}(x)\in C_{b}^{2}(R^{d})(i=1 , \ldots r.
d) . We also assume that V is a compact support C^{2} function and \phi is a
compact support C^{\infty} function. Now we put

(4. 1) \overline{b}_{a}(r)=\sum_{j,k=1}^{d}g_{jk}(x)b^{k}(X)e_{a}^{j}

(\alpha=1, \ldots.d, r=(x, e)\in O(M)) .

We note that \overline{b}_{a} (\alpha=1, \ldots , d) can be extended to R^{d(d+1)} as a C_{b}^{2} class
function. Next we put

(4.2) f(x)=- \frac{1}{2}div(b)(x)-\frac{1}{2}|b|^{2}(x)+V(x) ,

where

|b|^{2}(x)= \sum_{i,j=1}g_{ij}(x)b^{i}(x)b^{j}(x) .

The horizontal Brownian motion \tilde{c}(\tau, r, w)=(c(\tau, r, w), e(\tau, r, w)) is
a diffusion on O(M) governed by the following stochastic differential
equation
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(4.3)

’

dc^{i}( \tau, r, w)=\sum_{a=1}^{d}e_{a}^{i}(\tau, r, w)\circ dW(\tau)(i=1, \ldots, d)

de_{a}^{i}( \tau, r, w)=-\sum_{k,m=1}^{d}\Gamma_{mk}^{i}(c(\tau, r, w))e_{a}^{k}(\tau, r, w)\circ dc^{m}(\tau, r, w)

c^{i}(0, r, w)=x^{i}(i, \alpha=1, \ldots.d)

\backslash e_{a}^{i}(0, r, w)=e_{a}^{i} .

where the initial point (x, e)=(x^{i}, e_{a}^{i}) is in O(M) . If we put

(4.4) u(x, t)=E[ \exp\{\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}(\tau, r))\circ d\iota ff(\tau)

+ \int_{0}^{t}f(c(\tau, r))d\tau\}\phi(c(t, r))]

for \phi\in C_{0}^{\infty}(M) , then we have the next theorem (cf. [10]).

THEOREM 4. 1. u(t, x) is the unique bounded C^{1,2}([0, \infty)\cross M) class
solution of equation (1. 1).

Now consider the following equation

(4.5) \{

\frac{d}{d\tau}c_{\Delta}^{i}(\tau, r, w)=\sum_{a=1}^{d}e_{\Delta a}^{i}(\tau, r, w)\frac{d}{d\tau}w_{\Delta}^{a}(\tau)(i=1, \ldots, d)

\frac{d}{d\tau}e_{\Delta a}^{i}(\tau, r, w)=-\sum_{k,m=1}^{d}\Gamma_{mk}^{i}(c_{\Delta}(\tau, r, w))e_{\Delta a}^{k}(\tau, r, w)\frac{d}{d\tau}c_{\Delta}^{m}(\tau, r, w)

(i, \alpha=1, \ldots, d)

c_{\Delta}(0, r, w)=x

e_{\Delta}(0, r, w)=e,

where r=(x, e)\in O(M) . We denote the solution of equation (4. 5) as \tilde{c}_{\Delta}(\tau,

r, w)=(c_{\Delta}(\tau, r, w), e_{\Delta}(\tau, r, w)) . We note that \tilde{c}_{\Delta} is in O(M) .

PROPOSITION 4. 1. For every r=(x, e)\in O(M) and t\in[0, T] , we
have

(4.6) \int_{\Omega^{\Delta}(t,X,M)}\exp\{\int_{0}^{t}L(c(\tau),\dot{c}(\tau))d\tau\}\phi(c(t))F_{t,x}^{\Delta}(dc)

=E[ \exp\{\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r))\dot{W}_{\Delta}(\tau)d\tau+\int_{0}^{t}f(c_{\Delta}(\tau, r))d\tau\}

\phi(c_{\Delta}(t, r))] .

PROOF. Put

c_{\Delta}=\Phi^{-1}(\gamma_{\Delta})(\gamma_{\Delta}\in\Omega^{\Delta}(t, 0, TM_{x})) .

Let \tilde{c}_{\Delta}(\tau, r)=(c_{\Delta}(\tau, r), e_{\Delta}(\tau, r)) be the horizontal lift of c_{\Delta}(\tau, r) .
Then it holds that
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(4.7) \{

\frac{d}{d\tau}c_{\Delta}(\tau, r)=\sum_{a=1}^{d}(\dot{\gamma}_{\Delta}(\tau), e_{a})_{x}e_{a}(\tau, r)

(D_{\dot{c}\Delta(\tau,r)}e)(\tau, r)=0(a.e. \tau\in[0, t])

\tilde{c}_{\Delta}(0, r)=r=(x, e) ,

where r=(x, e)\in O(M) . Hence we have

(4. . 8) \int_{0}^{i}L(c_{\Delta}(\tau, r),\dot{c}_{\Delta}(\tau, r))d\tau

=- \frac{1}{2}\int_{0}^{t}(\dot{\gamma}_{\Delta}(\tau),\dot{\gamma}_{\Delta}(\tau))_{x}d\tau+\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r))(\dot{\gamma}_{\Delta}(\tau), e_{a})_{x}d\tau

+ \int_{0}^{t}f(c_{\Delta}(\tau, r))d\tau) .

Let \{\gamma_{\Delta k}^{a}(\tau) ; \alpha=1, \ldots, d, k=1, \ldots rt(\Delta)\} be the orthonormal basis of
\Omega^{\Delta}(t, 0, TM_{x}) defined by (2. 18). We put, as in \S 2,

s_{0}=k , s_{1}=t_{1} , ... . s_{t(\Delta)-1}=t_{t(\Delta)-1} and s_{t(\Delta)}=t.

Then we have

<\gamma_{\Delta} , \gamma_{\Delta k}^{a}>=\frac{(\gamma_{\Delta}(s_{k}),e_{a})_{x}-(\gamma_{\Delta}(s_{k-1}),e_{a})_{x}}{(s_{k}-s_{k-1})^{12}},
(k=1, \ldots.t(\Delta), \alpha=1, \ldots, d) .

Now we put

x_{k}^{a}=(\gamma_{\Delta}(s_{k}), e_{a})_{x}(k=1, \ldots ; t(\Delta), \alpha=1, \ldots, d) .

Then, by this coordinate transformation of \Omega^{\Delta}(t, 0, TM_{x}) , F_{t,0}^{\Delta}(d\gamma_{\Delta})

changes into

(4.9) \prod_{k=1}^{t(\Delta)}\frac{dx_{k}^{1}\ldots dx_{k}^{d}}{\{2\pi(s_{k}-s_{k-1})\}^{d/2}} .

We note that

(4. 10) \frac{1}{2}\int_{0}^{t}(\dot{\gamma}_{\Delta}(\tau),\dot{\gamma}_{\Delta}(\tau))_{x}d\tau=\frac{1}{2}\sum_{k=1}^{t(\Delta)}\frac{|x_{k}-x_{k-1}|^{2}}{s_{k}-s_{k-1}}

and

(4. 11) ( \overline{\gamma}_{\Delta}(\tau), e_{a})_{x}=\frac{x_{k}^{a}-x_{k-1}^{a}}{s_{k}-s_{k-1}}

(x_{0}=0, s_{k-1}\leqq\tau<s_{k}, \alpha=1, \ldots.d, k=1, .. t(\Delta)) .

We define a curve \lambda_{\Delta}(\tau)=\lambda_{\Delta}(\tau|x_{1}, \ldots.x_{t(\Delta)}) in R^{d} by



96 A. Inoue

\lambda_{\Delta}(\tau)=x_{k-1}+\frac{\tau-s_{k-1}}{s_{k}-s_{k-1}}(x_{k}-x_{k-1})

(s_{k-1}\leqq\tau<s_{k}, k=1, \ldots.t(\Delta)) ,

where we put x_{k}= (x_{k}^{1} , , .. x_{k}^{d}) (k=1, \ldots , t(\Delta)) and x_{1}=0 . Let \tilde{\theta}_{\Delta}(\tau, r)

=\tilde{\theta}(\tau, r|x_{1}, , .. . x_{t(\Delta)})=(\theta_{\Delta}(\tau, r), \eta_{\Delta}(\tau, r)) be the solution of the following
equation on 0(M)

(4. 12) \{

\frac{d}{d\tau}\theta_{\Delta}(\tau, r)=\sum_{a=1}^{d}\frac{d}{d}\lambda_{\Delta}^{a}(\tau)\eta_{\Delta a}(\tau\tau’ r)

(D_{\dot{\theta}\Delta(\tau,r)}\eta_{\Delta})(\tau, r)=0(a. e. \tau\in[0, t])

\theta_{\Delta}(0, r)=r=(x, e) .

Then, by (4. 7)-(4.12) , we have

\int_{\Omega^{\Lambda}(t,x,M)}\exp\{\int_{0}^{t}L(c(\tau),\dot{c}(\tau))d\tau\}\phi(c(t))F_{t,x}^{\Delta}(dc)

= \int_{\Omega^{A}(t,0,TM_{X})}\exp\{\int_{0}^{t}L(c_{\Delta}(\tau),\dot{\overline{c}}_{\Delta}(\tau))d\tau\}\phi(c_{\Delta}(\tau))F_{t,0}^{\Delta}(d\gamma_{\Delta})

= \int_{R^{dt(\Delta)}}\exp\{\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{\theta}_{\Delta}(\tau))\dot{\lambda}_{\Delta}^{a}(\tau)d\tau+\int_{0}^{t}f(\theta_{\Delta}(\tau))d\tau\}

\cross\phi(\theta_{\Delta}(t))

\cross\prod_{k=1}^{t(\Delta)}\frac{1}{\{2\pi(s_{k}-s_{k-1})\}^{d/2}}\exp\{-\sum_{k=1}^{t(\Delta)}\frac{|x_{k}-x_{k-1}|^{2}}{2(s_{k}-s_{k-1})}\}\prod_{k=l}^{t(\Delta)}\prod_{a=1}^{d}dx_{k}^{a}

=E[ \exp\{\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r, w))\dot{W}_{\Delta}(\tau)d\tau

+ \int_{0}^{t}f(c_{\Delta}(\tau, r, w))d\tau\}\phi(c_{\Delta}(t, r, w))] .

This completes the proof of the proposition.

Now let us prove Theorem 1. 1 in the case of (5). We put

u_{\Delta}(t, x)=E[ \exp\{\sum_{i=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r, w))\dot{w}_{\Delta}^{a}(\tau)d\tau

+ \int_{0}^{t}f(c_{\Delta}(\tau, r, w))d\tau\}\phi(c_{\Delta}(t, r, w))] .

We note that

\sum_{i=1}^{d}e_{a}^{i}(\tau, r, w)^{2}\leqq\frac{1}{K^{1}}g(e_{a}(\tau, r, w), e_{a}(\tau, r, w))=\frac{1}{K^{1}}(\alpha=1, \ldots.d)

and

\sum_{i=1}^{d}e_{\Delta a}^{i}(\tau, r, w)^{2}\leqq\frac{1}{K^{1}}g(e_{\Delta a}(\tau, r, w), e_{\Delta a}(\tau, r, w))=\frac{1}{K^{1}}
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(\alpha=1, \ldots d) .

Hence we may regard the two families of coefficients of equations (4. 3) and
(4. 5) as the same bounded C^{2} class functions. We may also regard \overline{b}_{a} as
bounded C^{2} class functions. Therefore, we can apply the results of \S 3 to
them. Now we have

|u(t, x)-u_{\Delta}(t, x)|

\leqq E[|I_{1}(t, x)-I_{1}^{\Delta}(t, x)||I_{2}(t, x)||I_{3}(x)|]

+E[|I_{1}^{\Delta}(t, x)||I_{2}(t, x)-I_{2}^{\Delta}(t, x)||I_{3}(t, x)|]

+E[|I_{1}^{\Delta}(t, x)||I_{2}^{\Delta}(t, x)||I_{3}(t, x)-I_{3}^{\Delta}(t, x)|]

=J_{1}+J_{2}+J_{3} ,

where

I_{1}(t, x)= \exp\{\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}(\tau, r, w))\circ d\iota ff(T)\}

I_{2}(t, x)= \exp\{\int_{0}^{t}f(c(\tau, r, w))d\tau\}

I_{3}(t, x)=\phi(c(t, r, w))

and

I_{1}^{\Delta}(t, x)= \exp\{\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r, w)).W_{\Delta}(\tau)d\tau\}

I_{2}^{\Delta}(t, x)= \exp\{\int_{0}^{t}f(c_{\Delta}(\tau, r, w))d\tau\}

I_{3}^{\Delta}(t, x)=\phi(c_{\Delta}(t, r, w)) .

We note that

(4. 13) |e^{x}-e^{y}|\leqq|x-y|\exp(|x|+|y|)(x, y\in R^{d}) .

Then, from (3. 5), (3. 17), (3. 21) and (4. 13), we see that

J_{1} \leqq c_{1}E[|\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}(\tau, r))\circ dw^{a}(\tau)-\sum_{i=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r))\dot{W}_{\Delta}(\tau)d\tau|

\cross\exp\{|\sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}(\tau, r))\circ dfff(T)|

+| \sum_{a=1}^{d}\int_{0}^{t}\overline{b}_{a}(\tilde{c}_{\Delta}(\tau, r))\dot{w}_{\Delta}^{a}(\tau)d\tau|\}]

\leqq c_{2}\{ E[| \sum_{a=1}^{d}\int_{0}^{t}\overline{b}^{a}(\tilde{c}(\tau, r))\circ dW(\tau)

- \sum_{a=1}^{d}\int_{0}^{t}\overline{b}^{a}(\tilde{c}_{\Delta}(\tau, r))\dot{f}_{\Delta}ff(\tau)d\tau|^{2}]\}^{1/2}

\leqq c_{3}|\Delta|^{1/2} .
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Next, in view of (3. 5), (3, 21) and (4. 13), we have

J_{2} \leqq c_{4}\{E[|\int_{0}^{t}f(c(\tau, r, w))d\tau-\int_{0}^{t}f(c_{\Delta}(\tau, r, w))d\tau|^{2}]\}^{1/2}

\leqq c_{5}\{\int_{0}^{t}E[|c(\tau, r, w)-c_{\Delta}(\tau, r, w)|^{2}]d\tau\}^{1/2}

\leqq c_{6}|\Delta|1/2 .

Finally, (3. 4) and (3. 21) show that

J_{3}\leqq c_{7}\{E[|c(t, r, w)-c_{\Delta}(t, r, w)|^{2}]\}^{1/2}

\leqq c_{8}|\Delta|^{-/2} .

This completes the proof.
Finally, we shall prove Theorem 1. 1 with the assumption (A). We

note that Proposition 4. 1 also holds for compact manifold. Take an
embedding i:O(M)arrow R^{n} for some n. Since O(M) is compact, we can
extend the vector fields on O(M) which define holizontal Brownian motion
as well as \overline{b}, f, and \phi smoothly to R^{n}. Furthermore, we may assume that
they all have compact supports. Then, using Proposition 4. 1, the theorem
is proved in the same way with (5) (cf. [2], Theorem 4). This completes
the proof.
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