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Decomposition of convolution semigroups
on Polish groups and zero-one laws

Eberhard SIEBERT
(Received July 22, 1986)

ZerO-0ne laws for infinitely divisible probability measures on a
topological group G have quite a long history. (For a recent survey see the
article [9] of A. Janssen.) Given a continuous convolution semigroup (\mu_{t})_{t\geq 0}

of probability measures on G and a measurable subgroup H of G, one looks
for conditions on (\mu_{t})_{t\geq 0} which yield \mu_{t}(H)=0 for all t>0 or \mu_{t}(H)=1 for
all t>0 . There are two classes of groups to which special attention has been
given in this context: Locally compact groups; and topological vector
spaces, in particular Banach spaces. But for technical reasons, on non-
commutative groups mainly normal subgroups and normal convolution semi-
groups have been considered (for example see [8, 9, 12]).

In 1983 a new idea was introduced in this field by T. Byczkowski and A.
Hulanicki [4]. In order to obtain a zer0-0ne law for Gaussian semigroups
(\mu_{t})_{t\geq 0} on a Polish group G, they defined the resolvent measure \mu=

\int_{0}^{\infty}e^{-t}\mu_{t}dt and dealt with the space L^{1}(\mu) (instead of a space of continuous

functions on G). But this is quite natural since the indicator function of H
is \mu -integrable but not continuous (unless H is op.en). A further step along
these lines was taken by T. Byczkowski and T Zak [5]. If \mu_{t}(H)>0 for
all t>0 , then there exist a continuous convolution semigroup (\lambda_{t})_{t\geq 0} on G

supported by H and a bounded measure \rho on G supported by G H such that
the infinitesimal generator of (\mu_{t})_{t\geq 0} is the sum of the infinitesimal genera-
tors of (\lambda_{t})_{t\geq 0} and of the Poisson semigroup (e(t\rho))_{t\geq 0} with exponent \rho

(decomposition theorem). An unsatisfactory aspect of [5] is that (for

technical reasons) only Polish groups of the type G=F^{\infty} are admitted
(where F is a second countable locally compact group).

Although only normal subgroups H have been considered in [4] and
[5], it is possible to get rid of this restriction by application of the following
results: 1. An estimation of the growth of \mu_{t}(H) as t tends to 0 ([10], cf.
Lemma 1. 6. below). 2. Every continuous convolution semigroup (\mu_{t})_{t\geq 0}

admits a L\’evy measure ([13], cf. 1. 3. below). Indeed, the r\^ole played by
the L\’evy measure in the context of zer0-0ne laws, is well known (cf. [8, 9]).
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3. The expansion of a convolution semigroup into a perturbation series (cf.
Section 2). This powerful technique already has been applied in various
investigations (cf. [6, 7, 8, 10, 13]). Combining now the method of resolvent
measures with 1., 2., 3. we obtain the decomposition theorem of Byczkowski
and Zak in full generality (Theorem 4. 6) i . e . for all Polish groups and for
arbitrary measurable subgroups. Moreover, the uniqueness of the decomp0-
sition is established. As corollaries we obtain new zer0-0ne laws, in particu-
lar for Gaussian semigroups and for semistable convolution semigroups: and
a characterization of convolution semigroups with discrete part (Section 5).

Preliminaries

Let Z, Q , R denote the sets of integers, rational numbers, and real
numbers, respectively. Moreover, let Z_{+}: =\{n\in Z:n\geq 0\} , N:=\{n\in Z :
n>0\} , R_{+}: =\{r\in R:r\geq 0\} , R_{+}^{*}: =\{r\in R:r>0\} . If E is a vector lattice
then E_{+} denotes its positive cone.

By G we always denote aPolish group i . e . G is a topological group that
admits a countable basis for its system \mathscr{O}(G) of open subsets and a com-
plete metric inducing \mathscr{O}(G) . By d we denote a left invariant metric on G
inducing \mathscr{O}(G) . (Observe that d need not necessarily be complete; cf.
Remark 1. 3. below.) If B is a subset of G then \partial B denotes its boundary, \overline{B}

its closure, and 1_{B} its indicator function. A one-parameter group in G is a
family (x_{t})_{t\in R} in G such that x_{s}x_{t}=x_{s+t} for all s, t\in R and such that

\lim_{tarrow 0}x_{t}=e .

By \mathscr{B}(G) we denote the \sigma-field of Borel subsets of G. Moreover, \mathscr{V} (e)
denotes the system of neighbourhoods of the identity e of G which are in
\mathscr{B}(G) . We put G^{*}: =G\backslash \{e\} . By \mathscr{C}(G) we denote the vector space of real
valued bounded continuous functions on G furnished with the supremum
norm ||.|| . Moreover, let \mathscr{U}(G) denote the subspace of left uniformly (or
d-uniformly) continuous functions in \mathscr{C}(G) . For every real valued function
f on G we denote by supp (f) its support, and by f_{X} its right translate defined
by f_{x}(y) : =f(yx) (all x, y\in G).

\mathscr{M}(G) denotes the vector space of real valued (signed) measures on
\mathscr{B}(G) . As is well known \mathscr{M}(G) is a Banach algebra with repect to convolu-
tion * and the norm ||.|| of total variation. If \mu , \nu\in \mathscr{M}_{+}(G) have the same
zero sets we write \mu\approx\nu . The weak topology on \mathscr{M}_{+}(G) is generated by the
seminorms \nuarrow\int fd\nu , where f runs through \mathscr{C}_{+}(G) or \mathscr{U}_{+}(G) respec-
tively. As usual \mathscr{M}^{1}(G):=\{\nu\in \mathscr{M}_{+}(G):\nu(G)=1\} is the set of probability
measures on \mathscr{B}(G) . For every x\in G the unit mass \epsilon_{x} in x\in G belongs to

\mathscr{M}^{1}(G) . Moreover, if \gamma\in \mathscr{M}_{+}(G) the Poisson measure with exponent \gamma is
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defined by e( \gamma)=e^{-\gamma(G)}\Sigma_{n\geq 0}\frac{1}{n!}\gamma^{n} (where \gamma^{0} :=\epsilon_{e} and \gamma^{n} :=\gamma*\gamma^{n-1} for all

n\in N) . Obviously e(\gamma)\in \mathscr{M}^{1}(G) .
Let \lambda be a \sigma-finite positive measure on \mathscr{B}(G) . Moreover, let f : G

– R_{+} be a Borel measurable and bounded function, and \delta:Garrow G a
Borel measurable mapping. Then by \tilde{\lambda}(B) :=\lambda(B^{-1}) , (f. \lambda)(B):=

\int 1_{B} . fd\lambda and \delta(\lambda)(B):=\lambda(\delta^{-1}(B)) (all B\in \mathscr{B}(G) ) there are defined
\sigma- fifinite positive measures \tilde{\lambda} , f . \lambda and \delta(\lambda) respectively. \lambda is said to be
symmetric if \lambda=\tilde{\lambda} , and normal if \lambda*\tilde{\lambda}=\tilde{\lambda}*\lambda .

Let J be an interval on the real line and t– \sigma_{t} a mapping of J into
\mathscr{M}(G) such that tarrow\sigma_{t}^{+}(B) and tarrow\sigma_{t}^{-}(B) are Lebesgue integrable over
J for every B\in \mathscr{B}(G) (where \sigma_{t}^{+} and \sigma_{t}^{-} denote the positive and negative

part of \sigma_{t} respectively). Then by \sigma(B) := \int_{J}\sigma_{t}(B)dt, B\in \mathscr{B}(G) , there is

defined a measure \sigma in \mathscr{M}(G) . We write \int_{J}\sigma_{t}dt:=\sigma .

1. Preparations on convolution semigroups

1. 1. By xarrow f_{\chi} there is given a continuous representation of G by

isometries on \mathscr{U}(G) . By T_{\nu}f := \int f_{x}\nu(dx) (Bochner integral) this extends

to an isometric representation \nuarrow T_{1J} of the convolution algebra \mathscr{M}(G) by
bounded operators on \mathscr{U}(G) .

A \underline{convolution}semigroup is a family (\mu_{t})_{t\geq 0} in \mathscr{M}(G) such that \mu_{0}=\epsilon_{e}

and \mu_{s}*\mu_{t}=\mu_{s+t} for all s, t\geq 0 . We speak of a convolution semigroup in
\mathscr{M}^{1}(G) if \mu_{t}\in \mathscr{M}^{1}(G) for all t\geq 0 . If all the measures \mu_{t} have a certain
property then we shall briefly say that (\mu_{t})_{t\geq 0} has this property.

1. 2. With a convolution semigroup (\mu_{t})_{t\geq 0} in \mathscr{M}(G) there is associated the
operator semigroup (T_{\mu t})_{t\geq 0} on \mathscr{U}(G) ; and T_{\mu 0} is the identity operator I on
\mathscr{U}(G) . Then (\mu_{t})_{t\geq 0} is said to be continuous if ( T_{\mu t})_{t\geq 0} is (strongly) con-
tinuous (i . e . if \lim_{t\downarrow 0}||T_{\mu t}f-f||=0 for all f\in \mathscr{U}(G) ). If (\mu_{t})_{t\geq 0} is positive
this is equivalent with the weak continuity of the mapping tarrow\mu_{t} .

By the infinitesimal generator of a continuous convolution semigroup
(\mu_{t})_{t\geq 0} we understand the infinitesimal generator (N, D(N)) of the opera-
tor semigroup ( T_{\mu t})_{t\geq 0} .

1. 3. A continuous convolution semigroup (\mu_{t})_{t\geq 0} in \mathscr{M}^{1}(G) admits a \underline{L\acute{e}vy}

\underline{measure}\eta i . e . \eta is a \sigma-finite positive measure on \mathscr{B}(G) such that \eta(\{e\})=0

and such that \int fd\eta=\lim_{t\downarrow 0}\frac{1}{t}\int fd\mu_{t} for all f\in \mathscr{C}(G) with e\not\in supp(f) (cf.
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[13] ) .
If \gamma\in \mathscr{M}_{+}(G) then by (e(t\gamma))_{t\geq 0} there is given a continuous convolution

semigroup in \mathscr{M}^{1}(G) with infinitesimal generator ( T_{\gamma}-\gamma(G). I, \mathscr{U}(G))

and L\’evy measure 1_{c*} . \gamma ; the \underline{Poisson}semigroup with exponent \gamma .

REMARK: In [13] we have considered a slightly smaller class of Polish
groups (though still including second countable locally compact groups and
separable Frech\’et spaces) : There should exist a complete left invariant
metric d on G inducing the topology. In fact, if G is a Polish group as
defined in the Preliminaries, there need not exist aleft invariant metric that

–

is complete. Nevertheless the results of [13] remain true in this more
general situation: The stochastic process (X_{t})_{t\geq 0} with independent left
increments associated with the continuous convolution semigroup (\mu_{t})_{t\geq 0} in

\mathscr{M}^{1}(G) can always be chosen to have right continuous paths that admit
left-hand limits ([3], Theorem 3). In fact this is the only place in our paper
where we need that G is completely metrizable. Otherwise it always suffices
that G is metrizable and separable (i. e . that \mathscr{O}(G) admits a countable
basis).

1. 4. A crucial part in our investigations is played by the following idea due
to T. Byczkowski and A. Hulanicki [4] : If (\mu_{t})_{t\geq 0} is a continuous convolu-

tion semigroup in \mathscr{M}^{1}(G) then by \mu
:= \int_{0}^{\infty}e^{-}{}^{t}\mu_{t}dt there is defined a measure

in \mathscr{M}^{1}(G) . By \mathscr{L}^{1}(\mu) we denote the vector space of all Borel measurable
real valued functions on G that are \mu -integrable. Convergence in \mathscr{L}^{1}(\mu)

means convergence in the mean. Thus \mathscr{U}(G)\subset \mathscr{L}^{1}(\mu) , norm convergence
implies convergence in the mean, und \mathscr{U}(G) is dense in \mathscr{L}^{1}(\mu) . The equiva-
dense class { g\in \mathscr{L}^{1}(\mu) : g=f\mu -almost everywhere} of f\in \mathscr{L}^{1}(\mu) is denoted
by [f] . The space L^{1}(\mu) of all [f] , f\in \mathscr{L}^{1}(\mu) , furnished with the norm
||[f]||_{1} := \int\psi|d\mu , becomes a separable Banach space. If f\in \mathscr{U}(G) then
||[f]||_{1}\leq|\psi|| .

Let \nu\in \mathscr{M}_{+}(G) . If there exists some c\in R_{+} such that
\int(\int f(xy)\nu(dy))\mu(dx)\leq c\int fd\mu for all f\in \mathscr{L}_{+}^{1}(\mu) then T_{\nu} extends uniquely
ly to a bounded operator \overline{T}_{\mu} on L^{1}(\mu) with norm ||\overline{T}_{\nu}||_{1}\leq c ; in fact, \overline{T}_{y}[f] :=
[ \int f_{y}\nu(dy)] for all f\in \mathscr{L}^{1}(\mu) .

1. 5. Now let (\lambda_{t})_{t\geq 0} be a continuous convolution semigroup in \mathscr{M}^{1}(G) with
infinitesimal generator (L, D(L)) . We assume that every T_{\lambda c} admits a
bounded extension \overline{T}_{\lambda_{t}} onto L^{1}(\mu) (in the sense of 1. 4.) such that sup { ||\overline{T}_{\lambda_{t}}||_{1} :
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0\leq t\leq 1\} is finite. Then (\overline{T}_{\lambda_{t}})_{t\geq 0} is a (strongly) continuous operator semi-
group on L^{1}(\mu) (with \overline{T}_{\lambda_{0}}=\overline{I} ) whose infinitesimal generator (\overline{L}, D(\overline{L})) is
an extension of (L, D(L))i . e . [f]\in D(\overline{L}) and \overline{L}[f]=[Lf] for all f\in

D(L) . In particular, ( T_{\mu t})_{t\geq 0} admits an extension ( \overline{T}_{\mu t})_{t\geq 0} onto L^{1}(\mu) such
that ||\overline{T}_{\mu t}||_{1}=e^{t} for all t\in R_{+} (cf. [4], proof of Proposition 1).

1. 6. A further decisive result for our investigations is prepared by the
following general facts:

LEMMA. Let f be a mapping of R_{+}^{*} into [0, 1] such that
0\leq f(s+t)-f(s)f(t)\leq(1-f(s))(1-f(t)) for all s, t\in R_{+}^{*}

and such that \lim_{t\downarrow 0}f(t)=1 . Then the following assertions are valid:

(i) f is uniformly continuous.

(ii) b : =- \inf_{t>0}\frac{1}{t} ln f(t) is fifinite.
(iii) f(t)\geq e^{-bt} for all t>0 .
(iv) b is the least real number c such that f(t)\geq e^{-ct} for all t>0 .

(v) b=- \lim_{t\downarrow 0}\frac{1}{t} ln f(t) .

(vi) b= \lim_{t\downarrow 0}\frac{1}{t}(1-f(t)) .

PROOF. First of all ( i) follows from |f(t+s)-f(t)|\leq 2(1-f(|s|))

for all t\in R_{+}^{*} and s\in R such that 0<|s|<t and from \lim_{t\downarrow 0}f(t)=1 . Moreover

there exists some c\in R_{+} such that f(t)\geq e^{-ct} for all t>0([10] , Lemma 3

and its proof). Hence \frac{1}{t} ln f(t)\geq-c for all t>0 . This shows c\geq b\geq 0 :

Hence ( ii) , (iii) and (iv).

For the proof of ( v) one may proceed similarly as in [14], p. 232
(proof of the Proposition).

Finally the series expansion of the logarithm yields ln f(t)=
-(1-f(t))+(1-f(t))^{2}r(t) with |r(t)|\leq 1/f(t) (all t>0). But 0\leq 1-f(t)

\leq bt in view of (iii). Hence (vi) follows from ( v) .

1. 7. PROPOSITION. Let (\mu_{t})_{t\geq 0} be a continuous convolution semigroup in
\mathscr{M}^{1}(G) , and let H be a measurable subgroup of G. Then the following
assertions are equivalent :

(i) The subset \{t\in R_{+} : \mu_{t}(H)>0\} of R has positive Lebesgue mea-
sure.

(ii) \lim_{t\downarrow 0}\mu_{t}(H)=1 .
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(iii) b:= \lim_{t\downarrow 0}\frac{1}{t}\mu_{t}(GH) exists and is fifinite and \mu_{t}(H)\geq e^{-bt} for all t

\in R_{+} .

PROOF. “
(iii)\Rightarrow(i )

” is obvious; “ ( i)\Rightarrow(ii) ” cf. [4], Proposi-
tion 1.

“
( ii)\Rightarrow(iii)

” We put f(t):=\mu_{t}(H) for all t>0 . Then f(s+t)=
\mu_{s+t}(H)=\mu_{S}*\mu_{t}(HH)\geq\mu_{s}(H)\mu_{t}(H)=f(s)f(t) ; and f(s+t)-f(s)f(t)=
\int\mu_{t}(x^{-1}H)\mu_{S}(dx)-\int 1_{H}(x)\mu_{t}(x^{-1}H)\mu_{s}(dx)=\int 1_{GH}(x)\mu_{t}(x^{-1}H)\mu_{S}(dx)\leq

\int 1_{GH}(x)\mu_{t}(GH)\mu_{s}(dx)=\mu_{S}(GH)\mu_{t}(GH)=(1-\mu_{s}(H))(1-\mu_{t}(H))=

(1-/(5)) (1-/(5)) (all s, t>0). Thus f fulfills the assumptions of Lemma
1. 6. Hence (iii).

1. 8. REMARK. Let G:=R, H :=Q , and \mu_{t} :=\epsilon_{t} for all t\in R_{+} . Then
\mu_{t}(H)=1 if t is rational and \mu_{t}(H)=0 if t is irrational. Hence the density
of \{t\in R_{+} : \mu_{t}(H)>0\} in R_{+} is not sufficient for Proposition 1. 7. to hold.

1. 9. COROLLARY. Let \mu_{t_{0}}(H)>0 for a certain h>0 . Then the assertions
of Proposition 1. 7. are valid in each of the following three situations:

(i) The semigroup (\mu_{t})_{t\geq 0} is symmetric.
(ii) \lim_{t\downarrow t_{1}}||\mu_{t}-\mu_{t_{1}}||=0 for a certain t_{1}>0 .

(iii) \mu_{t_{1}} is (left) absolutely continuous for a certain t_{1}>0(i. e. xarrow
\mu_{t_{1}}(xB) is continuous at e for every B\in \mathscr{B}(G)) .

PROOF. For ( i) cf. [4], Proposition 2. For ( ii) we first observe
that ||\mu_{t_{1}+t}-\mu_{t_{1}+s}||\leq||\mu_{t_{1}+|t-s|}-\mu_{t_{1}}|| for all s , t\in R_{+}; hence the mapping tarrow

\mu_{t} is norm continuous on [ t_{1} , \infty [. Now we can choose some n\in N such that
nt_{0}>t_{1} . Then \mu_{nt_{0}}(H)\geq(\mu_{to}(H))^{n}>0 and hence \mu_{t}(H)>0 for all t>0 in
some neighbourhood of nt_{0} . Finally, (Hi) is a special case of ( ii) .

2. Perturbations of convolution semigroups

2. 1. LEMMA. Let (\alpha_{t})_{t\geq 0} be a continuous convolution semigroup in \mathscr{M}(G)

with infifinitesimat generator (A, D(A)) : and let ||\alpha_{t}||\leq ce^{at} for certain a, c
\in R_{+} and for all t\in R_{+} . Moreover, let \pi\in \mathscr{M}(G) . We defifine Bf :=Af+
(T_{\pi}f-\pi(G)f) for all f\in D(A) . Then the following assertions are valid:

(i) There exists a (unique) continuous convolulion semigroup (\beta_{t})_{t\geq 0}

in \mathscr{M}(G) with infifinitesimat generator (B, D(A))-. and ||\beta_{t}||\leq ce^{(a+c||\pi||-\pi(G))t}

for all t\in R_{+} .
(ii) For every t\geq 0 we defifine by induction: \pi_{0}(t):=\alpha_{t} , and
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\pi_{k}(t) := \int_{0}^{t}\alpha_{r}*\pi*\pi_{k-1}(t-r)dr for all k\in N. Then \pi_{k}(t)\in \mathscr{M}(G) such that

||\pi_{k}(t)||\leq ce^{at}(c||\pi||t)^{k}/k.
; (all t\in R_{+} , k\in Z_{+}).

(iii) The series e^{-t\pi(G)} \sum_{k\geq 0}\pi_{k}(t) converges to \beta_{t} with respect to the
norm of \mathscr{M}(G) (all t\in R_{+}).

PROOF. First of all T_{\pi} is a bounded operator on \mathscr{U}(G) . Now for every
t\in R_{+} we define by induction bounded operators on \mathscr{U}(G) : S_{0}(t) :=T_{at} , and

S_{k}(t):= \int_{0}^{t}S(r)T_{\pi}S_{k-1}(t-r)dr for all k\in N (where the integrals are
taken with respect to the strong operator topology). Moreover let Cf :=
Af+T_{\pi}f for all f\in D(A) . Then (C, D(A)) is the infinitesimal generator
of a continuous operator semigroup (R_{t})_{t\geq 0} on \mathscr{U}(G),\cdot and the series
\sum_{k\geq 0}S_{k}(t) converges to R_{t} with respect to the operator norm ([6], p. 11,
Hilfssatz 11).

By induction we conclude ||\pi_{k}(t)||\leq ce^{at}(c||\pi||t)^{k}/k ! and S_{k}(t)=T_{\pi_{k}(t)} for
all t\in R_{+} and k\in Z_{+} . Consequently, the series \sum_{k\geq 0}\pi_{k}(t) converges to
some measure \gamma_{t}\in \mathscr{M}(G) with respect to the norm; hence R_{t}=T_{\gamma t} (all t\in

R_{+}) . Thus (\gamma_{t})_{t\geq 0} is a continuous convolution semigroup in \mathscr{M}(G) with
infinitesimal generator (C, D(A)) . Finally, we define \beta_{t} :=e^{-t\pi(G)}\gamma_{t} for all
t\in R_{+} . Since B=C-\pi(G)I , the assertions now follow.

2. 2. COROLLARY. In the situation of Lemma 2. 1. the following assertions
are valid :

(i) \lim_{t\downarrow 0}\frac{1}{t}\int fd\pi_{1}(t)=\int fd\pi for all f\in \mathscr{U}(G) .

(ii) ||\Sigma_{k\geq 2}\pi_{k}(t)||\leq(c||\pi||t)^{2}ce^{(a+c||\pi||)t} for all t\in R_{+} .

PROOF. The continuity of the operator semigroup ( T_{at})_{t\geq 0} yields ( i) ;
and ( ii) is obvious.

2. 3. DEFINITION. The convolution semigroup (\beta_{t})_{t\geq 0} obtained in Lemma
2. 1. is said to be a \underline{perturbation} of the convolution semigroup (\alpha_{t})_{t\geq 0} by
means of the measure \pi . We apply the notation (\beta_{t})_{t\geq 0}=p((\alpha_{t})_{t\geq 0} ; \pi) .

2. 4. COROLLARY. Let (\alpha_{t})_{t\geq 0} be a continuous convolution semigroup as in
Lemma 2. 1. and let \pi_{y}\rho\in \mathscr{M}(G) . Then we have p(p ((\alpha_{t})_{t\geq 0} ; \pi) ; \rho)=

p ((\alpha_{t})_{t\geq 0} : \pi+\rho) : and in particular p(p((\alpha_{t})_{t\geq 0} ; \pi) ; -\pi)=(\alpha_{t})_{t\geq 0} .

PROOF. Follows immediately from Lemma 2. 1.

2. 5. PROPOSITION. Let (\alpha_{t})_{t\geq 0} be a continuous convolution semigroup in
\mathscr{M}^{1}(G) wilh infifinitesimat generator (A, D(A)) and L\’evy measure \omega .
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Moreover, for some measure \pi\in \mathscr{M}(G) we defifine (\beta_{t})_{t\geq 0}=p((\alpha_{t})_{t\geq 0};\pi) .
Then the following assertions are equivalent:

(i) \omega+\pi\geq 0 .
(ii) \beta_{t}\in \mathscr{M}^{1}(G) for all t\in R_{+} .

In the affirmative case, \omega+\pi is the L\’evy measure of (\beta_{t})_{t\geq 0} .

PROOF. We keep the notations of Lemma 2. 1.
“ (i)\Rightarrow(ii) ” In view of B1_{G}=0 it suffices to show: T_{\beta}J\geq 0 for all f\in

\mathscr{U}_{+}(G) and t\in R_{+} . But this is equivalent with the following condition ([1],
Corollary 5. 2) : (P) For every positive linear functional \phi on \mathscr{U}(G) and for
every f\in D(B) such that f\geq 0 and \phi(f)=0 it holds \phi(Bf)\geq 0 .

Hence let \phi and f as in (P). We put g(y):=\phi(f_{y}) for all y\in G .
Then g\in \mathscr{C}_{+}(G) such that g(e)=0 . Since

Bf= \lim_{t\downarrow 0}\frac{1}{t}\int[f_{y}-f]\alpha_{t}(dy)+\int[f_{y}-f]\pi(dy)

and since \phi is continuous we conclude:

\phi(Bf)=\lim_{t\downarrow 0}\frac{1}{t}\int gd\alpha_{t}+\int gd\pi.

(Observe [14], V. 5; in particular Corollary V. 5. 2.) There exists a se-
quence ( V_{n})_{n\geq 1} in \mathscr{V}(e) descending to \{e\} such that \omega(\partial V_{n})=0 for all n\in N .
Thus

\phi(Bf)\geq\lim_{t\downarrow 0}\frac{1}{t}\int 1_{\iota Vn}gd\alpha_{t}+\int gd\pi

= \int 1_{GVn}gd\omega+\int gd\pi.

Since the sequence (1 _{GV_{ng}})_{n\geq 1} ascends to g we conclude \phi(Bf)\geq\int gd\omega+

\int gd\pi\geq 0 . Thus (P) is fulfilled.
“

( ii)\Rightarrow(i )
” In view of Lemma 2. 1. ( ii) we have \beta_{t}=e^{-t\pi(G)}(\alpha_{t}+

\pi_{1}(t)+\Sigma_{k\geq 2}\pi_{k}(t)) for all t\geq 0 . Let \xi denote the L\’evy measure of
(\beta_{t})_{t\geq 0} . If f\in \mathscr{U}(G) such that e\oplus supp(f) then Corollary 2. 2. yields \int fd\xi

= \int fd\omega+\int fd\pi . Hence \xi=\omega+\pi . Since \xi is positive this proves ( i) and

the supplement.

2. 6. REMARKS. 1. If there exists a L\’evy-Khintchine formula for the con-
tinuous convolution semigroups in \mathscr{M}^{1}(G)(e. g. if G is a second countable
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locally compact group or a separable Frech\’et space) then Proposition 2. 5.
can also be derived from this very formula.

2. Let (\lambda_{t})_{t\geq 0} be a continuous convolution semigroup in \mathscr{M}^{1}(G) with
L\’evy measure \xi . Moreover, let V\in \mathscr{V}(e) . Then there exists a continuous
convolution semigroup (\lambda_{t}^{V})_{t\geq 0} in \mathscr{M}^{1}(G) with L\^evy measure 1 V\cdot\xi such that
(\lambda_{t})_{t\geq 0}=p((\lambda_{t}\mathfrak{h}_{t\geq 0} ; 1_{GV}. \xi) .
[Define (\lambda_{t}^{v})_{t\geq 0} : =p((\lambda_{t})_{t\geq 0},\cdot-1_{GV}. \xi) . Since 1 G V. \xi\leq\xi , we have \lambda_{t}^{V}\in

\mathscr{M}^{1}(G) for all t\in R_{+} , and \xi-1_{GV} . \xi=1_{V} . \xi is the L\’evy measure of
(\lambda_{t}^{r})_{t\geq 0} (Proposition 2. 5.). The last assertion follows from Corollary 2. 4.]
For locally compact groups this result has been observed by W. Hazod ([6],
p. 34, Korollar zu Satz 2. 2.).

3. Let \varphi : Garrow R_{+}^{*} be a continuous function that is submultiplicative
i . e . \varphi(xy)\leq\varphi(x)\varphi(y) for all x, y\in G . Then for every continuous
convolution semigroup (\lambda_{t})_{t\geq 0} in \mathscr{M}^{1}(G) , with L\’evy measure \xi , are equiva-

lent: ( i)\int\varphi d\lambda_{to}<\infty for a certain h\in R_{+}; ( ii)\int 1_{GV} . \varphi d\xi<\infty for all V
\in \mathscr{V}(e)

[For second countable locally compact groups and separable Frech\’et spaces
this is Theorem 5 in [13]. The crucial step in its proof has been the inequa-

lity \lambda_{t}\geq e^{-t\xi(GV)}\int_{0}^{t}\lambda_{r}^{V}*(1_{GV}. \xi)*\lambda_{t-r}^{V} dr. But in view of Remark 2 this

inequality is now available for every Polish group.]

3. Construction of a measure
3. 1. At first let us recall that a vector sublattice \mathscr{F} of \mathscr{C}(G) is said to be
\underline{Stonian} if \min(f, 1_{G})\in \mathscr{F} for every f\in \mathscr{F}. Moreover, a subset O of G is said
to be \mathscr{F}-0pen if there exists a sequence y_{n})_{n\geq 1} in \mathscr{F}_{+} ascending to 1_{0} . By
\mathscr{O}(\mathscr{F}) we denote the system of all \mathscr{F}-0pen subsets of G . Obviously we
have \mathscr{O}(\mathscr{F})\subset \mathscr{O}(G) .

Finally, for every n\in N , we put V_{n} : = \{x\in G:d(x, e)<\frac{1}{n}\} ; hence
(V_{n})_{n\geq 1} is a countable basis for \mathscr{V}(e) .

3. 2. LEMMA. There exists a separable closed subalgebra \mathscr{F} of \mathscr{U}(G)

containing 1_{G} which enjoys the following additional properties:
a) There exists a sequence (f_{n})_{n\geq 1} in \mathscr{P}^{-}such that 1 G Vn\leq f_{n}\leq 1cVn+1 for

all n\in N.
b) \mathscr{F}_{00} : =\{f\in \mathscr{F}:e\not\in supp(f)\} is a Stonian vector lattice.
c) J_{00}^{} generates \mathscr{B}(G) .
d) \mathscr{F}_{00} is lent in \mathscr{F}0 : =\{f\in \mathscr{F}:f(e)=0\} .
e) \mathscr{O}(\mathscr{F})=\mathscr{O}(G) .
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f) \mathscr{F} is dense in \mathscr{L}^{1}(\nu) for every \nu\in \mathscr{M}^{1}(G) .

PROOF. There exists a countable basis (O_{n})_{n\geq 1} for \mathscr{O}(G) , and for
every n\in N there exists a sequence (f_{nk})_{k\geq 1} in \mathscr{U}_{+}(G) ascending to 1_{o_{n}} .
Moreover there exists a sequence (f_{n})_{n\geq 1} in \mathscr{U}_{+}(G) such that 1 GVn\leq f_{n}\leq

1_{GV_{n+1}} for all n\in N . Now we successively define:

\mathscr{F}_{1} : =\{f_{nk} : n, k\in N\}\cup\{f_{n} : n\in N\}\cup\{1_{G}\} :
\mathscr{P}_{2}^{-} : =\{rf : f\in \mathscr{F}_{1} ; r\in Q\} ;
\mathscr{F}_{3} : =\{g_{1}\ldots g_{n} : g_{1}, \ldots.g_{n}\in \mathscr{P}_{2}^{-} : n\in N\} ;
\mathscr{F}_{4} : =\{h_{1}+\ldots+h_{n} : h_{1}, \ldots h_{n}\in J_{3}^{} ; n\in N\} .

Then \mathscr{F}_{4} is a countable algebra over Q such that 1_{G}\in \mathscr{F}_{4} . Let \mathscr{F}denote the
closure of \mathscr{F}_{4} in \mathscr{U}(G) . Then \mathscr{F} is a separable closed subalgebra of \mathscr{U}(G)

such that 1_{G}\in \mathscr{F} Hence \mathscr{F} is a vector lattice too. This yields property b) ;
whereas properties a) and c) follow by the choice of \mathscr{F}_{1} .

Let f\in \mathscr{F}_{0} . Then property a) yields ff_{n}\in J^{}o0 for all n\in N and
\lim_{n\geq 1}|\psi f_{n}-f||=0 . This proves property d). By definition we have O_{n}\in

\mathscr{O}(\mathscr{F}) for all n\in N : moreover \mathscr{O}(J^{}) is closed with respect to countable
unions. Hence property e). Finally, property f) follows by the Daniell-
Stone theorem ([2], Korollar 39.5), since J^{} is a Stonian lattice that gener-
ates \mathscr{B}(G) .

3. 3. COROLLARY. For every f\in \mathscr{C}(G) such that f(e)=0 there exists some g
\in \mathscr{F}_{0} such that |f|\leq g and g(x)>0 for all x\in G^{*} .

PROOF. By induction we obtain a strictly increasing sequence (k_{n})_{n\geq 1}

of positive integers such that |f(x)|<2^{-(n+1)} for all x\in V_{kn} . We define h:=
\Sigma_{n\geq 1}2^{-n}f_{kn} ; obviously, h\in ^{_{0}} .

Let x\in G^{*} . If x\in GV_{k_{1}} then f_{kn}(x)=1 for all n\in N , hence h(x)=1 .
Otherwise, there exists a certain m\in N\backslash \{1\} such that x\in V_{km-l}\backslash Vkn . Conse-
quently, |f(x)|<2^{-m} and f_{km}(x)=1 . Thus |f(x)|<2^{-m}f_{km}(x)<h(x) . Hence
g:=(1+|\psi||)h has the desired properties.

3. 4. CONVENTIONS. For the remainder of this section and for Section 4 let
(\mu_{t})_{t\geq 0} denote a fixed continuous convolution semigroup in \mathscr{M}^{1}(G) with
infinitesimal generator (N, D(N)) and L\’evy measure \eta . Moreover, let H
denote a Borel measurable subgroup of G such that \mu_{t}(H)>0 for all t>0 .

Let b:= \lim_{t\downarrow 0}\frac{1}{t}\mu_{t}(GH) so that \mu_{t}(H)\geq e^{-bt} for all t\in R_{+} (cf. Proposition

1. 7.).

Finally, we fix a subalgebra \mathscr{F} of \mathscr{U}(G) together with its subspaces
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\mathscr{F}_{0} and \mathscr{F}_{00} as in Lemma 3. 2.

3. 5. LEMMA. There exist a sequence (t(n))_{n\geq 1} in R_{+} descending to 0 and
a measure \sigma\in \mathscr{M}_{+}(G) with the following properties:

a) \int fd\sigma=\lim_{n\geq 1}\frac{1}{t(n)}\int 1_{GH}fd\mu_{t(n)} for all f\in \mathscr{F}_{0} .

b) \sigma\leq\eta and \sigma(G)\leq b .

PROOF. We have \frac{1}{t}\mu_{t} ( t H)\leq\frac{1}{t}(1-e^{-bt})\leq b for all t>0 . Consequent-

ly, | \frac{1}{t}\int 1_{GH}fd\mu_{t}|\leq b|\psi|| for all f\in \mathscr{C}(G) and t>0 . Together with \mathscr{F} also

J^{}o0 is separable. Applying a diagonal procedure, we obtain a sequence
(t(n))_{n\geq 1} in R_{+} descending to 0 such that for every f\in \mathscr{F}_{00} the following limit
exists:

\phi(f) : = \lim_{n\geq 1}\frac{1}{t(n)}\int 1_{GH}fd\mu_{t(n)} .

Obviously, \phi is a positive linear functional on \mathscr{F}_{00} such that |\phi(f)|\leq

b|\psi|| for all f\in \mathscr{F}_{00} . Moreover, for all f\in(\mathscr{F}_{00})_{+} we have (cf. 1. 3.):

(*) \phi(f)=\lim_{n\geq 1}\frac{1}{t(n)}\int 1GHfd\mu_{t(n)}

\leq\lim_{n\geq 1}\frac{1}{t(n)}\int fd\mu_{t(n)}=\int fd\eta<\infty .

Hence \phi is a \sigma-smooth (positive linear) functional on the Stonian vector
lattice \mathscr{F}o0 . By the Daniel-Stone theorem ([2], Satz 39.4) there exists a

positive measure \sigma’ on \mathscr{B}(G) such that \phi(f)=\int fd\sigma’ for all f\in \mathscr{F}o0 . Let

\sigma:=1_{G^{*}} . \sigma’ . Then we also have \phi(f)=\int fd\sigma for every f\in \mathscr{F}_{00} (since

f(e)=0) .
From (*) and \sigma(\{e\})=0 we conclude \sigma\leq\eta . Moreover, there exists a

sequence \varphi_{n})_{n\geq 1} in (\mathscr{F}_{00})_{+} ascending to 1_{c*} (cf. Lemma 3. 2.). Since

\int f_{n}d\sigma=\phi\zeta f_{n})\leq b|\psi_{n}||\leq b for all n\in N , we conclude \sigma(G)\leq b (observe

\sigma(\{e\})=0) . Hence b) is proved.
Now let f\in \mathscr{F}_{0} . Given \epsilon>0 there exists some g\in \mathscr{F}_{00} such that |\psi-g||

<\epsilon (Lemma 3. 2.). Since \lim_{n\geq 1}\frac{1}{t(n)}\int 1c_{H}g d \mu_{t(n)}=\int g d\sigma and since

\frac{1}{t(n)}\mu_{t(n)} ( G H)\leq b for all n\in N , it follows that \lim_{n\geq 1}\frac{1}{t(n)}\int 1_{GH}fd\mu_{t(n)}=\int fd\sigma .
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Hence a) is also proved.

3. 6. COROLLARY. In the situation of Lemma 3. 5. the following assertions
are valid :

(i) For every g\in(\mathscr{I}_{0}^{-})_{+}the sequence ( \frac{1}{t(n)}(1_{G_{H}}g)\cdot\mu_{t(n)})_{n\geq 1} converges
weakly to g.\sigma (in \mathscr{M}_{+}(G) ).

(ii) \int fd\sigma=\lim_{n\geq 1}\frac{1}{t(n)}\int 1GHfd\mu t(n) for all f\in \mathscr{C}(G) such that f(e)=0.

PROOF. ( ^{i}) For some fixed g\in(\mathscr{I}_{0}^{-})_{+} we put \lambda_{n} := \frac{1}{t(n)}(1GHg) . \mu_{t(n)} ,

n\in N , and \lambda

:=g\cdot\sigma . For every f\in \mathscr{F} we have fg\in \mathscr{F}_{0} ; hence we conclude
from property a) of Lemma 3. 5. that \int fd\lambda=\lim_{n\geq 1}\int fd\lambda_{n} . Thus \lambda(G)=

\varliminf_{n\geq 1}\lambda_{n}(G) , and in view of property e) of Lemma 3. 2., also \lambda(O)\leq

\lim_{n\geq 1}\lambda_{n}(O) for all O\in \mathscr{O}(G) . This proves ( i ) .
(ii) Now let f\in \mathscr{C}(G) such that f(e)=0. We choose some g\in \mathscr{F}_{0}

according to Corollary 3. 3. and define h(x):=f(x)/g(x) if x\in G^{*} andh(e):=0. Then h is a bounded function on G that is continuous on
G^{*} , hence is continuous \sigma-almost everywhere. Taking into account (i)
we conclude:

\int fd\sigma=\int hgd\sigma=\lim_{n\geq 1}\frac{1}{t(n)}\int 1_{GH}hgd\mu_{t(n)}

= \lim_{n\geq 1}\frac{1}{t(n)}\int 1GHfd\mu t(n) ;

Hence ( ii) .

4. Decomposition of a convolution semigroup
4. 1. We recall that the conventions 3. 4. are still in force. We put \mu :=
\int_{0}^{\infty}e^{-t}\mu_{t}dt (cf. 1. 4.). Moreover, let \sigma be a measure with the properties of
Lemma 3. 5. and Corollary 3.6.

We define \mu_{t}^{H}:=\frac{1}{\mu_{t}(H)}(1_{H}\cdot\mu_{t}) ;thus \mu_{t}^{H}\in \mathscr{M}^{1}(G) and \mu_{t}^{H}(H)=1 (all t>
0) . Finally, let N^{H}f :=Nf-(T_{\sigma}-\sigma(G)I)f for all f\in D(N) .
4. 2. LEMMA. For every f\in D(N) the following assertions are valid:

(i) N^{H}f(x)= \lim_{n\geq 1}\frac{1}{t(n)}\int[f(xy)-f(x)]\mu_{t(n)}^{H}(dy) (all x\in G).
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(ii) N^{H}f= \lim_{n\geq 1}\frac{1}{t(n)}[ T_{\mu_{tn}^{H}}f-f] in \mathscr{L}^{1}(\mu) .

PROOF. ( i) For all n\in N we have:

(*) \frac{1}{t(n)}\int[f(xy)-f(x)]\mu_{t(n)}(dy)

= \mu_{t(n)}(H)\frac{1}{t(n)}\int[f(xy)-f(x)]\mu_{t(n)}^{H}(dy)

+ \frac{1}{t(n)}\int 1_{GH}(y)[f(xy)-f(x)]\mu_{t(n)}(dy) .

In view of Corollary 3. 6. ( ii) we have:

(**) \lim_{n\geq 1}\frac{1}{t(n)}\int 1_{GH}(y)[f(xy)-f(x)]\mu_{t(n)}(dy)

= \int[f(xy)-f(x)]\sigma(dy)=T_{\sigma}f(x)-\sigma(G)f(x) .

Hence, letting n tend to infinity in (*) , we obtain assertion ( i) (observe
Proposition 1. 7.).

(ii) First of all we have Nf= \lim_{n\geq 1}\frac{1}{t(n)}\int[f_{y}-f]\mu_{t(n)}(dy) in \mathscr{U}(G)and

hence also in \mathscr{L}^{1}(\mu) . Moreover, for all x\in G and n\in N , we have:

| \frac{1}{t(n)}\int 1_{GH}(y)[f(xy)-f(x)]\mu_{t(n)}(dy)|\leq 2|\psi||\frac{1}{t(n)}\mu t(n)(GH)\leq 2|\psi||b .

Hence, taking into account (**) , the theorem of majorized convergence
yields:

\lim_{n\geq 1}\frac{1}{t(n)}\int 1_{GH}(y)[f_{y}-f]\mu_{t(n)}(dy)=(T_{\sigma}-\sigma(G)I)f

in \mathscr{L}^{1}(\mu) . Together with (*) , this yields assertion ( ii) .

4. 3. LEMMA. The convolution semigroup (\nu_{t})_{t\geq 0} : =p((\mu_{t})_{t\geq 0} ; -\sigma) pos-
sesses the following properties :

a) \nu_{t}\in \mathscr{M}^{1}(G) for all t\in R_{+} .
b) (\nu_{t})_{t\geq 0} has the L\’evy measure \eta-\sigma and the infifinitesimat generator

(N^{H}. D(N)) .
c) \nu_{t}\leq e^{bt}\mu_{t} for all t\in R_{+} .
d) \nu_{t}(H)=1 for all t\in R_{+} .

PROOF. 1. In view of Lemma 3. 5. we have \sigma\leq\eta . Hence property a)
and the first part of b) by taking into account Proposition 2. 5. The second
part of b) follows from Lemma 2. 1. ( i ) . Since (\mu_{t})_{t\geq 0}=p((\nu_{t})_{t\geq 0} ; \sigma)
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(Corollary 2. 4.) and since \sigma is positive, property c) follows from Lemma
3. 5. and Lemma 2. 1. (Hi).

2. For the proof of d) we define first of all \pi 1^{n)} :=e( \frac{t}{t(n)}\mu_{t(n)}^{H}) for all
t\geq 0 and n\in N . Now simple calculations show that for every f\in \mathscr{L}_{+}^{1}(\mu) we
have:

\iint f(xy)\mu_{t}^{H}(dy)\mu(dx)\leq e^{(b+1)t}\int fd\mu and

\iint f(xy)\pi 1^{n)}(dy)\mu(dx)\leq\exp\{(b+1)te^{(b+1)t(n)}\}\int fd\mu .

Hence for every n\in N we may define T\downarrow^{n)}:=\overline{T}_{\pi_{t}^{(n)}} , t\in R_{+} , and N^{(n)}:=

\frac{1}{t(n)}[ \overline{T}_{\mu_{(n)}^{H}}-\overline{I}] ; and ( T\downarrow^{n)})_{t\geq 0} is a continuous operator semigroup on L^{1}(\mu)

with infinitesimal generator (N^{(n)}, L^{1}(\mu)) (cf. 1. 4. and 1. 5.).
Moreover, taking into account property c), we obtain for all f\in \mathscr{L}_{+}^{1}(\mu) :

\iint f(xy)\nu_{t}(dy)\mu(dx)\leq e^{(b+1)t}\int fd\mu .

Hence we may define T_{t} :=\overline{T}_{\nu t},t\in R_{+}:4 and (T_{t})_{t\geq 0} is a continuous opera-
tor semigroup on L^{1}(\mu) with infinitesimal generator (\overline{N^{H}}, D(\overline{N^{H}})) (observe
property b) and 1. 5.). Furthermore, by the Hille-Yosida theory, D(N)
and (N^{H}-cI)D(N) are dense in \mathscr{U}(G) and hence also in \mathscr{L}^{1}(\mu) (all

c>0) . Finally, by Lemma 4. 2. ( ii) we have for all f\in D(N) :

\overline{N^{H}}[f]=[N^{H}f]=\lim_{n\geq 1})N^{(n)}[f] in L^{1}(\mu) .

Hence the Trotter approximation theorem ([6], p. 5, Hilfssatz 1. 1. 5)
yields for all f\in \mathscr{L}^{1}(\mu) and t\in R_{+}:

(*) T_{t}[f]= \lim_{n\geq 1}T\downarrow^{n)}[f] in L^{1}(\mu) .

Let us fix t\in R_{+} . Since \pi 1^{n)} is concentrated on H. we have

T t^{n)}[1_{H}]=[\int(1_{H})_{y}\pi_{t}^{(n\rangle}(dy)]=[1_{H}] (all n\in N).

Thus (*) yields [1_{H}]=T_{t}[1_{H}]=[ \int(1_{H})_{y} \nu_{t}(dy)] . But \mu(H)>0 assures

the existence of some x\in H such that 1=1_{H}^{t}(x)= \int 1_{H}(xy)\nu_{t}(dy)=\nu_{t}(H) .

This proves property d).

4. 4. PR^{I}OPOSITION . There exist a continuous convolution semigroup (\lambda_{t})_{t\geq 0}

in \mathscr{M}^{1}(G)| and a measure \rho\in \mathscr{M}_{+}(G) with the following properties:
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a) \rho\leq\eta and \rho(H)=0 .
b) \lambda_{t}(H)=1 for all t\in R_{+} .
c) (\mu_{t})_{t\geq 0}=p((\lambda_{t})_{t\geq 0} ; \rho) .

PROOF. We define \rho :=1_{\beta H} . \sigma , \tau:=1_{H} . \sigma , and (\lambda_{t})_{t\geq 0} :=p((\nu_{t})_{t\geq 0} ; \tau) .
First of all \rho\leq\sigma\leq\eta (Lemma 3. 5.), and \rho(H)=0 , hence a). Since

(\eta-\sigma)+\tau=\eta-\rho\geq 0 , we have \lambda_{t}\in \mathscr{M}^{1}’(G) for all t>0 taking into account
Lemma 4. 3. and Proposition 2. 5.

Since p ((\mu_{t})_{t\geq 0} ; -\sigma)=(\nu_{t})_{t\geq 0}=p((\lambda_{t})_{t\geq 0} ; -\tau) (Lemma 4. 3. and Cor-
ollary 2. 4.) and since \sigma-\tau=\rho , we conclude (\mu_{t})_{t\geq 0}=p(p((\lambda_{t})_{t\geq 0};-\tau);\sigma)

=p ((\lambda_{t})_{t\geq 0} ; \sigma-\tau)=p((\lambda_{t})_{t\geq 0} ; \rho) (Corollary 2. 4.). This proves c).

Moreover, by Lemma 2. 1. we have \lambda_{t}=e^{-t\tau(H)} \sum_{k\geq 0}\tau_{k}(t) , where

\tau_{0}(t) :=\nu_{t} and \tau_{k}(t) := \int_{0}^{t}\nu_{r}*\tau*\tau_{k-1}(t-r)dr for all k\in N (and t\in R_{+}).

But \nu_{t}(H)=1=\nu_{t}(G) (Lemma 4. 3.) and \tau(H)=\tau(G)\cdot, hence \tau_{k}(t)(H)=

\tau_{k}(t)(G) for all k\in Z_{+} by induction, and thus \lambda_{t}(H)=1 (all t\in R_{+}). This
proves b).

4. 5. COROLLARY. The following assertions are equivalent:
(i) \eta(GH)=0 .
(ii) \mu_{t}(H)=1 for all t\in R_{+} .

PROOF. “ (i)\Rightarrow(ii) ” In view of a) of Proposition 4. 4. we have
\rho=0 . Thus c) of Proposition 4. 4. yields \mu_{t}=\lambda_{t} for all t>0 . Hence the
assertion by b) of Proposition 4. 4.

“ ( _{ii})\Rightarrow(i ) ” Let V\in \mathscr{V}(e) . Then \eta ( G V)<\infty : hence \kappa:=1_{GV}\cdot \eta\in

\mathscr{M}_{+}(G) and \kappa\leq\eta . Let (\nu_{t})_{t\geq 0} :=p((\mu_{t})_{t\geq 0}j-\kappa) . By Proposition 2. 5.
we have \nu_{t}\in \mathscr{M}^{1}(G) for all t>0 . Moreover, (\mu_{t})_{t\geq 0}=p((\nu_{t})_{t\geq 0} ; \kappa) (Corol-

lary 2. 4.) and \mu_{t}\geq e^{-t\kappa(G)}\{\nu_{t}+\int_{0}^{t}\nu_{r}*\kappa*\nu_{t-r}dr\} (Lemma 2. 1. (iii)). This

yields first of all \nu_{t}(GH)\leq e^{t\kappa(G)}\mu_{t}(GH)=0 and hence \nu_{t}(H)=1 (all t>0).

Consequently, \nu_{r}*\kappa*\nu_{t-r}(GH)=\kappa(GH) if 0\leq r\leq t . Hence \kappa(GH)=

( \int_{0}^{1}\nu_{r}*\kappa*\nu_{1-r}dr)(GH)\leq e^{\kappa(G)}\mu_{1}( t H)=0 and thus \eta(GH\cap GV)=

\kappa ( G H)=0. Since V\in \mathscr{V}(e) was arbitrary and since \mathscr{V}(e) admits a count-
able basis this yields \eta(GH)=0 .

4. 6. THEOREM. Let (\mu_{t})_{t\geq 0} be a continuous convolution semigroup in
\mathscr{M}^{1}(G) with L\’evy measure \eta . Moreover, let H be a measurable subgroup of
G such that \mu_{t}(H)>0 for all t\in R_{+} . Then the following assertions are valid:

(i) There exist a unique continuous convolution semigroup (\lambda_{t})_{t\geq 0} in
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\mathscr{M}^{1}(G) and a unique measure \rho\in \mathscr{M}_{+}(G) with the following properties:
a) \lambda_{t}(H)=1 for all t\in R_{+} and \rho(H)=0 .
b) (\mu_{t})_{t\geq 0}=p((\lambda_{t})_{t\geq 0} ; \rho) .

(ii) \rho=1_{GH} . \eta ; and (\lambda_{t})_{t\geq 0}=p((\mu_{t})_{t\geq 0}j-1_{GH}. \eta) .
(iii) 1_{H} . \eta is the L\’evy measure of (\lambda_{t})_{t\geq 0}j and \eta

( G H)<\infty .
PROOF. The existence part of ( i) follows readily from Proposition

4. 4. The uniqueness part of ( i) obviously follows from assertion ( ii) .
Thus let \xi denote the L\’evy measure of (\lambda_{t})_{t\geq 0} . By Corollary 4. 5. we have
\xi(GH)=0 . By Proposition 2. 5. we have \eta=\xi+\rho . Since \rho(H)=0 this
yields 1 c H\cdot\eta=\rho and 1_{H} . \eta=\xi : hence (iii) and the first part of ( ii) are
proved. The second part of ( ii) now follows from property b) in ( i)
taking into account Corollary 2. 4.

4. 7. COROLLARY. In the situation of Theorem 4. 6. the following assertions
are valid :

(i) \int 1_{GH}fd\eta=\lim_{t\downarrow 0}\frac{1}{t}\int 1_{GH}fd\mu_{t} for all f\in \mathscr{C}(G) ; in particular

\eta(GH)=\lim_{t\downarrow 0}\frac{1}{t}\mu_{t}(GH) .

(ii) \int 1_{H}fd\eta=\lim_{t\downarrow 0}\frac{1}{t}\int 1_{H}fd\mu_{t} for all f\in \mathscr{C}(G) such that e\not\in supp(f) .
(iii) \eta(GH) is the least real number c such that \mu_{t}(H)\geq e^{-ct} for all

t\in R_{+} .

PROOF. In view of ( i) b) o_{-}f Theorem 4. 6. and of Lemma 2. 1. we
have for all t>0 :

(*) \mu_{t}=e^{-t\rho(G)}\{\lambda_{t}+\rho_{1}(t)+\rho(t)\}

where \rho_{1}(t):=\int_{0}^{t}\lambda_{r}*\rho*\lambda_{t-r}dr and where \rho(t)\in \mathscr{M}_{+}(G) such that ||\rho(t)||\leq

t^{2}\rho(G)^{2}e^{t\rho(G)} (cf. Corollary 2. 2. ( ii )). In view of ( i) and ( ii) of TheO-
rem 4. 6. we have \lambda_{r}*\rho*\lambda_{t-r}(GH)=\rho ( G H)=\eta ( G H) if 0\leq r\leq t ; hence
\rho_{1}(t) ( G H)=t\eta ( G H)=\rho_{1}(t)(G) . Thus \rho_{1}(t) is supported by C H (all
t>0) .

Now let f\in \mathscr{C}(G) . Then (*) (together with ( i ) a) of Theorem 4. 6.)
yields:

\int 1_{GH}fd\mu_{t}=e^{-t\rho(G)}\{\int fd\rho_{1}(t)+\int 1_{GH}fd\rho(t)\} .

Taking into account Corollary 2. 2. ( i) we conclude ( i) (since in \mathscr{M}_{+}(G)

pointwise convergence on \mathscr{U}(G) and on \mathscr{C}(G) respectively coincide).
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Moreover, in view of (*) , we have

\int 1_{H}fd\mu_{t}=e^{-t\rho(G)}\{\int fd\lambda_{t}+\int 1_{H}fd\rho(t)\} .

Since 1_{H}.\eta is the L\’evy measure of (\lambda_{t})_{t\geq 0} (by (iii) of Theorem 4. 6.) this
yields ( ii) .

Finally, (iii) follows from ( i) together with Lemma 1. 6. (iv) and
(vi).

4. 8. REMARK. Corollary 4. 7. ( i) shows that the auxiliary measure \sigma

constructed in Section 3 already equals 1 GH\cdot\eta .

5. Applications of the decomposition theorem

5. 1. PROPOSITION. Let G be a Polish group and H a measurable subgroup
of G. Moreover let (\mu_{t})_{t\geq 0} be a normal continuous convolution semigroup in

\mathscr{M}^{1}(G) with L\’evy measure \eta . Then the following assertions are valid:
(i) If \eta(GH)=\infty then \mu_{t}(xH)=0 and \mu_{t}(Hx)=0 for all x\in G and

t\in R_{+}^{*} .
(ii) If \eta ( G H)=0 then either

a) \mu_{t}(xH)=0 and \mu_{t}(Hx)=0 for all x\in G and t\in R_{+}^{*}: or
b) \mu_{t}(x{}_{t}H)=1 and \mu_{t}(Hy_{t})=1 for appropriate x_{t}\in G and y_{t}\in G

and for all t\in R_{+}^{*} .

PROOF. Let \nu_{t} :=\tilde{\mu}_{t}*\mu_{t} for all t\in R_{+} . Then (\nu_{t})_{t\geq 0} is a symmetric
continuous convolution semigroup in \mathscr{M}^{1}(G) with L\’evy measure \xi:=\eta+\tilde{\eta} .
Hence \xi(GH)=2\eta ( G H) .

Now we assume that \mu_{to}(x_{)}H)>0 for certain x_{)}\in G and t_{0}>0 . Then
\nu_{to}(H)=\tilde{\mu}_{to}*\mu_{to}((x_{\}}H)^{-1}(x_{1}H))\geq\mu_{t_{0}}(x_{)}H)^{2}>0 .

[Moreover 0< \nu_{to}(H)=\mu_{to}*\tilde{\mu}_{to}(H)=\int\mu_{to}(Hy)\mu_{to}(dy) yields \mu_{to}(Hy_{0})>0 for

some y_{0}\in G . Hence it suffices to consider left H-cosets only.]
Consequently, in view of Corollary 1. 9. ( i ) , we have \nu_{t}(H)>0 for all
t>0 . Taking into account Theorem 4. 6. (iii) we conclude \xi(GH)<\infty and
Hence \eta

( G H)<\infty . This proves ( i ) .
Let us assume in addition that \eta(GH)=0 and hence \xi(GH)=0 . Then

Corollary 4. 5. yields \nu_{t}(H)=1 for all t>0 . Consequently, in view of 1=

\nu_{t}(H)=\int\mu_{t}(xH)\mu_{t}(dx) , there exists some x_{t}\in G such that \mu_{t}(x_{t}H)=1 .

This proves ( ii) .

5. 2. REMARKS. 1. If G is a locally compact group (not necessarily with
a countable basis) and if H is a \underline{normal} subgroup then Proposition 5. 1. is
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due to A. Janssen ([8], Corollary 7).

2. Let G be a separable Banach space. Then Proposition 5. 1. is again
due to A. Janssen ([8], Theorem 10 and Corollary 11).

5. 3. Let (\mu_{t})_{t\geq 0} be a \underline{Gaussian}semigroup in \mathscr{M}^{1}(G)i . e . (\mu_{t})_{t\geq 0} is a non-
degenerate continuous convolution semigroup in \mathscr{M}^{1}(G) with L\’evy measure
\eta=0 , or equivalently, with \lim_{t\downarrow 0}\frac{1}{t}\mu_{t}(GV)=0 for all V\in \mathscr{V}(e) . Moreover,

let H be a measurable subgroup of G. Then the following assertions are
valid:

(i) If \mu_{t}(H)>0 for all t>0 then \mu_{t}(H)=1 for all t=0 .
[This follows immediately from Corollary 4. 5.]

(ii) Let tarrow\mu_{t} be norm continuous at some t_{0}>0 . Then either
\mu_{t}(H)=0 for all t>0 or \mu_{t}(H)=1 for all t>0 .
[This follows from ( i ) taking into account Corollary 1. 9. ( ii) .]

(iii) Let (\mu_{t})_{t>0} be symmetric. Then either \mu_{t}(xH)=0 and \mu_{t}(Hx)=0

for all x\in G and t>0 or \mu_{t}(H)=1 for all t>0 .
[This follows from Proposition 5. 1. ( ii) since \mu_{t}(x_{t}H)=1 implies \mu_{2t}(H)\geq

(\mu_{t}(x_{t}H))^{2}=1 for all t>0 .]

5. 4. REMARKS. 1. If H is a normal subgroup then assertion ( i) is the
result of T. Byczkowski and A. Hulanicki ([4], Theorem).

2. If G is a Lie group then assertion (iii) has been proved by completely
ly different methods in [11] (Theorem 5 ( i )).

5. 5. For \underline{symmetric}Gaussian semigroupswe can obtain further information
by applying the following concept: If \mu\in \mathscr{M}^{1}(G) then E(\mu) : =\{x\in G:\epsilon_{x}*\mu

\approx\mu\} is called the set of equivalent (left) translates of \mu . Then E(\mu) is a
measurable subgroup of G that is contained in every measurable subgroup H
of G such that \mu(H)=1 . Moreover, if \nu\in \mathscr{M}^{1}(G) , then E(\mu)\subset E(\mu*\nu) ;
and \nu(E(\mu))=1 implies \nu*\mu\approx\mu , hence E(\nu*\mu)=E(\mu) (cf. [7], Chapter
II) .

Now let (\mu_{t})_{t\geq 0} be a symmetric Gaussian semigroup in \mathscr{M}^{1}(G) . Then,
in view of assertion 5. 3. (iii), we have for every t>0 either \mu_{t}(E(\mu_{t}))=0 or
\mu_{t}(E(\mu_{t}))=1 ; and in the second case we have \mu_{s}(E(\mu_{t}))=1 and thus \mu_{t}\approx

\mu_{t+s} for all s\geq 0 .
Consequently, if we define h:= \inf\{t>0:\mu_{t}(E(\mu_{t}))=1\} , then

\mu_{t}(E(\mu_{t}))=1 for all t>h and \mu_{t}(E(\mu_{t}))=0 for all t<h . Moreover, if
H_{m} : =E(\mu_{t}) for a certain t>h , then H_{m}=E(\mu_{t}) for all t>h ; and H_{m} is the
least measurable subgroup H of G such that \mu_{t}(H)=1 for some and hence
for all t>0 (cf. [11], Theorem 5 ( ii )).
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5. 6. Let (\mu_{t})_{t\geq 0} be a \underline{\delta}-semistable continuous convolution semigroup in
\mathscr{M}^{1}(G) with coefficient ci . e . \delta is a continuous endomorphism of G and c\in

]0 , 1 [\cup]1 , \infty [ such that \delta(\mu_{t})=\mu_{ct} for all t>0 (cf. [12]). Then the L\’evy
measure \eta of (\mu_{t})_{t\geq 0} obeys the relation \delta(\eta)=c\eta .

Now let H be a measurable subgroup of G such that \delta^{-1}(H)\subset H if
c<1 and \delta^{-1}(H)\supset H if c>1 . Then \eta(GH)=0 or \eta(GH)=\infty .
[Let c<1 and \delta^{-1}(H)\subset H . Then c\eta ( G H)=\delta(\eta) ( G H)=\eta ( G\delta^{-1}(H))\geq

\eta(GH) : hence the assertion. The second case follows analogously.]
Hence the following assertions are valid:

(i) If \mu_{t}(H)>0 for all t>0 then \mu_{t}(H)=1 for all t>0 .
[By (iii) of Theorem 4. 6. we have \eta(GH)<\infty and hence \eta(GH)=0 .
Thus the assertion.by Corollary 4. 5.]

(ii) Let tarrow\mu_{t} be norm continuous at some h>0 . Then either
\mu_{t}(H)=0 for all t>0 or \mu_{t}(H)=1 for all t>0 .
[This follows from ( i ) taking into account Corollary 1. 9. ( ii) .]

(iii) If (\mu_{t})_{t\geq 0} is normal then we have a complete alternative in view of
Proposition 5. 1.

5. 7. PROPOSITION. For a continuous convolution semigroup (\mu_{t})_{t\geq 0} in
\mathscr{M}^{1}(G) the following assertions are equivalent:

(i) The semigroup (\mu_{t})_{t\geq 0} has a\underline{discrete}part.
(ii) There exist a one-parameter group (x_{t})_{t\in R} in G and a measure \kappa\in

\mathscr{M}_{+}(G) such that (\mu_{t})_{t\geq 0}=p((\epsilon_{x_{t}})_{t\geq 0} ; \kappa) .

PROOF. “ ( i)\Rightarrow(ii) ” There exists a one-parameter group (y_{t})_{t\in R} in
G such that \mu_{t}(\{y_{t}\})>0 for all t\geq 0 ([10], Lemma 2). Thus H:=\{y_{t} :
t\in R\} is a measurable subgroup of G such that \mu_{t}(H)>0 for all t\geq 0 .
Taking into account Theorem 4. 6., there exist a continuous convolution
semigroup (\lambda_{t})_{t\geq 0} in \mathscr{M}^{1}(G) and a measure \rho\in \mathscr{M}_{+}(G) such that \lambda_{t}(H)=1

for all t\geq 0 , \rho(H)=0 , and (\mu_{t})_{t\geq 0}=p((\lambda_{t})_{t\geq 0} ; \rho) .
Since the diffuse measures form a closed ideal in the Banach algebra

\mathscr{M}(G) we derive from Lemma 2. 1. ( ii) , (iii) that the convolution semi-
group (\lambda_{t})_{t\geq 0} has a discrete part too. But (\lambda_{t})_{t\geq 0} can be considered as a
continuousconvo1utionsemigroupin\mathscr{M}^{1}(\overline{H})and\overline{H}Po1ishgroup.Hencethereexistaone- parametergroupisa(x_{t})_{t\in}^{\frac{commutative}{Rin\overline{H}anda}}

measure \gamma\in \mathscr{M}_{+}(\overline{H}) such that \lambda_{t}=\epsilon_{x_{t}}*e(t\gamma) for all t\geq 0([10] , Corollary 2
of Lemma 2). Consequently, (\lambda_{t})_{t\geq 0}=p((\epsilon_{Xt})_{t\geq 0} ; \gamma) in \mathscr{M}(\overline{H}) and thus in

\mathscr{M}(G) . Finally, Corollary 2. 4. now yields (\mu_{t})_{t\geq 0}=p((\lambda_{t})_{t\geq 0} ; \rho)=

p((\epsilon_{Xt})_{t\geq 0} ; \gamma+\rho) .
“ ( ii)\Rightarrow(i ) ” immediately follows from Lemma 2. 1.
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5. 8. REMARK. If G is a locally compact group (not necessarily with
a countable basis) then this result has already been known ([10],
Theorem 2).

5. 9. COROLLARY. Every Gaussian semigroup (\mu_{t})_{t\geq 0} is diffuse.
PROOF. If (\mu_{t})_{t\geq 0} would have a discrete part then it would be of the

form described in Proposition 5. 7. ( ii) . Since the L\’evy measure of
(\epsilon_{x_{t}})_{t\geq 0} is zero, \kappa would be the L\’evy measure of (\mu_{t})_{t\geq 0} (Proposition 2. 5.).
Hence \kappa=0 (cf. 5. 3.) and thus (\mu_{t})_{t\geq 0}=(\epsilon_{Xt})_{t\geq 0} . But this is a contradic-
tion since Gaussian semigroups by definition are non-degenerate.

5. 10. COROLLARY. For a continuous convolution semigroup (\mu_{t})_{t\geq 0} in
\mathscr{M}^{1}(G) the following assertions are equivalent:

(i) The semigroup (\mu_{t})_{t\geq 0} is \underline{discrete} .
(ii) There exist a one-parameter group (x_{t})_{t\in R} in G and a discrete

measure \gamma\in \mathscr{M}_{+}(G) such that \mu_{t}=\epsilon_{x_{t}}*e(t\gamma)=e(t\gamma)*\epsilon_{Xt} for all t\in R_{+} .
(iii) There exist a one-parameter group (x_{t})_{t\in R} in G and a discrete

measure \gamma\in \mathscr{M}_{+}(G) such that (\mu_{t})_{t\geq 0}=p((\epsilon_{x_{t}})_{t\geq 0} ; \gamma) and x_{t}x=xx_{t} for all
x\in G with \gamma(\{x\})>0 and for all t\in R_{+} .
[Taking into account Proposition 5. 7. the proof is literally the same as the
proof of Theorem 3 in [10].]

Note Added in Proof.
There is a recent paper by H. Byczkowska and T. Byczkowski (ZerO-

one law for subgroups of paths of group valued stochastic processes. To
appear in Studia Math.) that contains a result similar to Theorem 4. 6; but
for symmetric convolution semigroups only.

References
[1] ARENDT, W., Chernoff, P. R., Kato, T. : A generalization of dissipativity and positive

semigroups. J. Operator Theory 8, 167-180 (1982).
[2] BAUER, H. : Wahrscheinlichkeitstheorie und Grundz\"uge der MaBtheorie. 3. Aufl. Berlin-

New York: De Gruyter 1978.
[3] BAXENDALE, P. : Brownian motions in the diffeomorphism group I. Compositio Math. 53,

19-50 (1984).
[4] BYCZKOWSKI, T., Hulanicki, A. : Gaussian measure of normal subgroups. Ann. Probab.

11, 685-691 (1983).
[5] BYCZKOWSKI, T., Zak, T. : Decomposition of convolution semigroups of probability

measures on groups. In: Probability Measures on Groups VII. Proceedings,
Oberwolfach 1983, pp. 23-35. Lecture Notes in Math. Vol. 1064. Berlin-
Heidelberg-New York-Tokyo: Springer 1984.

[6] HAZOD, W. : Stetige Faltungshalbgruppen und erzeugende Distributionen. Lecture
Notes in Math. Vol. 595. Berlin-Heidelberg-New York: Springer 1977.



Decomposition of convolution semigroups on Polish groups and zerO-One laws 255

[7] JANSSEN, A. : Zul\"assige Translationen von Faltungshalbgruppen. Dissertation, Dort-
mund 1979.

[8] JANSSEN, A. : ZerO-0ne laws for infinitely divisible probability measures on groups.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 60, 119-138 (1982).

[9] JANSSEN, A. : A survey about zer0-0ne laws for probability measures on linear spaces and
locally compact groups. In: Probability Measures on Groups VII. Proceedings,
Oberwolfach 1983, pp. 551-563. Lecture Notes in Math. Vol. 1064. Berlin-
Heidelberg-New York-Tokyo: Springer 1984.

[10] SIEBERT, E. : Diffuse and discrete convolution semigroups of probability measures on
topological groups. Rendiconti di Matematica Roma (2) Ser. VII, 1, 219-236
(1981).

[11] SIEBERT, E. : Absolute continuity, singularity, and supports of Gauss semigroups on a
Lie group. Monatsh. Math. 93, 239-253 (1982).

[12] SIEBERT, E. : Semistable convolution semigroups on measurable and topological groups.
Ann. Inst. H. Poincar\’e 20, 147-164 (1984).

[13] SIEBERT, E. : Jumps of stochastic processes with values in a topological group. Probab.
Math. Statist. 5, 197-209 (1985).

[14] YOSIDA, K. : Functional Analysis. 3rd ed. Berlin-Heidelberg-New York: Springer 1971.

Mathematisches Institut
der Universit\"at T\"ubingen


	Preliminaries
	1. Preparations on convolution ...
	2. Perturbations of convolution ...
	3. Construction of a measure
	4. Decomposition of a ...
	4. 6. ...

	5. Applications of the ...
	References

