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\S 1. Introduction

The aim of this paper is to give new characterizations of Banach spaces
which are of stable type p and of SQ_{p} type (or of S_{p} type) by the properties
of \gamma_{p} summing operators (0<p\leqq 2) .

The \gamma_{D}-summing operator was introduced by Thang and Tien [23]. Let
E, F be Banach spaces and 0<p\leqq 2 . Denote by L(E, F) the set of all
bounded linear operators from E into F . Then an operator T in L(E, F) is
\gamma_{p}-summing if for each sequence \{x_{n}\}\subset E with \sum_{n}|<x_{n} , x’>|^{p}<\infty for all x’
\in E’\wedge the series \sum_{n}T(x_{n})\theta_{n}^{(p)} converges almost surely (a. s.) in F. where
\{\theta_{n}^{(p)}\} is a sequence of independent identically distributed real random
variables with the characteristic function (ch. f.)\exp(-|t|^{p}) , t\in R .
Denote by \Pi_{\gamma\rho}(E, F) the set of all \gamma_{D}-summing operators from E into F .

The \gamma_{p}-Radonifying operator was introduced by Linde, Mandrekar and
Weron [6] as follows. Let p be 1<p\leqq 2 and 1/p+1/p’=1 . Then an
operator T in L(L_{p}’, F) is \gamma_{p}-Radonifying if exp (-||T’,(x0||^{p}), x’\in F’ is
the ch . f . of a Radon measure on F where T’ is the adjoint of T Denote by
\Sigma_{p}(L_{p}’, F) the set of all \gamma_{p}-Radonifying operators from L_{p’} into F

The classification problem of type p-stable Banach spaces, 1<p\leqq 2 , was
studied by Chobanjan and Tarieladze [1], Kwapien [4], Linde, Mandrekar
and Weron [6], Linde, Tarieladze and Chobanjan [7], Mandrekar and
Weron [12], Mouchtari [15] and Thang and Tien [23]. The classifica-
tions by these authors are all based upon the properties of \gamma_{p}-Radonifying
operators. In this paper, we shall adopt the \gamma_{p}-summing operators for such
classifications. The reason why we use the \gamma_{p}-summing operators instead of
\gamma_{p}-Radonifying operators will become clear through the discussions in
Sections 3 and 4. Here we point out that \Pi_{\gamma\rho}(E, F) has the s0-called ideal
property, that is, if T\in\Pi_{\gamma\rho}(E, F) , then TS\in\Pi_{\gamma\rho}(G, F) for every Banach
space G and every S\in L(G, E) . But in general, for 1<p<2 , \Sigma_{p}(L_{p^{l}}, F)

does not have the ideal property even in the case G=L_{p’} . In the class-
ification of type p-stable Banach spaces, 1<p\leqq 2 , Mandrekar and Weron
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[12] introduced the technical conditions V_{p}(i) and V_{p}(ii) . From our
considerations, these conditions are clarified as follows. The Banach space
E satisfies the condition V_{p}(i) (resp. V_{p}(ii) ) if and only if every \gamma_{p}

-

Radonifying operator T : t_{p}arrow E (resp. L_{p}’[0,1]arrow E ) is \gamma_{p}-summing That
is to say, Mandrekar and Weron [12] required the property of \gamma_{p}-summing
operators (the ideal property) explicitely, besides the \gamma_{p}-Radonifying
operators.

In Sections 3 and 4, we shall investigate the relationship between
\gamma_{D}-summing operators and p-summing operators. The linear operator T:E
arrow F is said to be p -summing if for each sequence \{x_{n}\}\subset E with \sum_{n}|<x_{n} , x’>|^{p}

<\infty for all x’\in E’ it holds that \Sigma_{n}||T(x_{n})||p<\infty . Denote by \Pi_{p}(E, F)

the set of all p -summing operators from E into F . In [23], Thang and Tien
proved that if F dose not contain c_{0} , Then every r -summing operator T:E
arrow F is \gamma_{p}-summing where 1<r<p<2 . We shall show that this result
remains true without any additional assumption on F Remark that this
result is false in the case r=p. If E is of stable type p , then it follows easily
\Pi_{\gamma\rho}(G, E)=\Pi_{p}(G, E) for every Banach space G , as remarked by Thang and
Tien [23]. We shall prove the converse: E is of stable type p , 1<p<2 , if
and only if for each (one infinite dimensional) space L_{p}’, \Pi_{\gamma\rho}(L_{p}’, E)=\Pi_{p}(L_{p}’,

E) . For the case p=2, it is well known that \Pi_{\gamma_{2}}(L_{2}, E)=\Pi_{2}(L_{2}, E) if and
only if E is of stable cotype 2 (see Maurey [13]).

In Section 5, we shall give new characterizations of Banach spaces
which are of stable type p and of SQ_{p} type, 1<p<2 , in terms of \gamma_{p}-summing
operators. It is shown that E is of stable type p and of SQ_{p} type, 1<p<2 ,
if and only if for each Banach space G , every dual p -nuclear operator T:G
arrow E is \gamma_{p}-summing. Here the term “ each Banach space G ” can be reqlaced
by “ one infinite dimensional space L_{p-}’

” By a result of Mouchtari [15], we
can conclude that E is of stable type p , 1<p\leqq 2 , if and only if for each (one
infinite dimensional) space L_{p} ,, every dual p-decomposable operator T:L_{p} ,

arrow E is \gamma_{p}-Radonifying. Here if we replace “
\gamma_{p}-Radonifying ” by “

\gamma_{p}
-

summing ” then we have more rich result as follows: E is of stable type p
and of SQ_{p} type, 1<p<2 , if and only if for each (one infinite dimensional)
space L_{p}’ , every dual p -decomposable operator T:L_{p}arrow E is \gamma_{p}-summing
This result depends on the ideal property of \Pi_{\gamma\rho}(L_{p}’, E) .

In section 6, we shall characterize Banach spaces which are of stable
type p and of S_{p} type, 1<p<2 , in terms of \gamma_{p}-summing operators and the
other operator ideals in the sense of Persson and Pietsch [17]. It is shown
that E is of stable type p and of S_{p} type, 1<p<2 , if and only if for each
Banach space G , every dual quasi-p-nuclear operator T : Garrow E is
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\gamma_{p}-summing, and, if and only if for each (one infinite dimensional) space L_{p’} ,

every dual quasi-p-nuclear operator T : L_{p’}-arrow E is \gamma_{p} summing. This
result remains true in the case where “ quasi-p-nuclear ” is replaced by
“p -summing ” Now we refer to the relation of our last result and the works
of Linde, Mandrekar and Weron [6] and Thang and Tien [23]. Linde,
Mandrekar and Weron [6] proved that E is of stable type p and of S_{p} type,
1<p<2 , if and only if for each (one infinite dimensional) separable space
L_{p’} , every dual p -summing operator T : L_{p}arrow E is \gamma_{p}-Radonifying. The case
L_{p}’=t_{p’} is due to Thang and Tien [23]. We shall remark that only in the
case L_{p’}=t_{p}’ , our result is in fact equivalent to those of Linde, Mandrekar
and Weron [6] and Thang and Tien [23].

Throughout the paper, we assume that all linear spaces are with real
coefficients.

\S 2. Notations and definitions

By E we denote a Banach space with the dual E’ A sequence \{x_{n}\} in
E is said to be weakly p-summable, \circ<p<\infty , if it holds that \Sigma_{n}|<x_{n} , x’>|^{p}

<\infty for all x’\in E’ Let F be another Banach space. As mentioned in
Section 1, an operator T in L(E, F) is p-summing if for each weakly
p -summable sequence \{x_{n}\} in E , we have \sum_{n}||T(x_{n})||^{p}<\infty ; and in
particular, if T is p -summing for all p>0 , then T is said to be completely
summing. Let p be 1\leqq p<\infty and 1/p+1/p’=1 . We say that an operator T
in L(E, F) is quasi-p-unclear if there exists a sequence \{x_{n}’\} in E’ with \sum_{n}

||x_{\acute{n}}||^{p}<\infty such that ||T(x)||\leqq(\Sigma_{n}|<x, x_{\acute{n}}>|^{p})^{1/p} for all x\in E:T is p -nuclear
if T is factorized by the bounded linear operators V:Earrow t_{\infty} , D:t_{\infty}arrow t_{p} and
W : t_{\vec{p}}Fr where D=(\alpha_{n}) is a diagonal operator with \Sigma_{n}|\alpha_{n}|^{p}<\infty ; and T
is of type N^{p} if T is factorized by the bounded linear operators V : Earrow t_{p}, ,

D : t_{p}arrow t_{1} and W : t_{1}arrow F , where D is of the same kind as above. The set of
all p-nuclear operators (resp. operators of type N^{p}) from E into F will be
denoted by N_{p}(E, F) (resp. N^{p}(E, F)). For the details of these operators,
we refer to [16] , [17] and [18].

Now let (\Omega, \Sigma, \mu) be a probability space and 1\leqq p<\infty . As usual, by
L_{p}(\Omega, \mu, E) , or L_{p}(E) , we denote a Banach space of all \mu -measurable
E -valued functions on \Omega which are strongly p-integrable. If E=R (real
line), then we write L_{p}(\mu) , or L_{p} , instead of L_{p}(\Omega, \mu, R) . We say that an
operator T in L(E’-L_{p}) is p-decomposable if there exists a function \psi in L_{p}

(\Omega, \mu, E) such that T(x\gamma=<\psi ( \cdot ), x’> for all x’\in E’- Kwapien [2]
proved that every p-summing operator from L_{p’} into E is dual p-dec0-
mposable (1<p<\infty) , and in particular, if E is reflexive, then every
operator of type N^{p} from E’ into L_{p} is p-decomposable (see Persson [16]).
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Persson [16] also proved that every p-decomposable operator from E’ into
L_{p} is p -nuclear.

Following Kwapien [3], we say that E is of S_{p} type (resp. SQ_{p} type) if
E is isomorphic to a subspace (resp. a subspace of a quotient) of some L_{p} .

For 0<p\leqq 2 , we say that E is of stable type p if for each sequence \{x_{n}\}

in E , \sum_{n}||x_{n}||^{p}<\infty implies the series \sum_{n}x_{n}\theta_{n}^{(p)} converges a . s. , and E is of
stable cotype p , if, conversely the a . s . convergence of \sum_{n}x_{n}\theta_{n}^{(p)} implies
\sum_{n}||x_{n}||^{p}<\infty . It is well known that every Banach space is of stable type p
with p<1 and of stable cotype p with p<2 (see Maurey [13]).

\S 3. \gamma_{p}-summing operators and \gamma_{p}-Radonifying operators

In this section, we investigate the properties of \gamma_{p}-summing operators
comparing with \gamma_{p}-Radonifying operators. Let p be 1<p\leqq 2 and 1/p+1/p’=
1 . Denote by \{ e_{n}\} the sequence of canonical unit vectors in t_{p^{J}} . It is known
that a linear operator T:t_{p}arrow E is \gamma_{p}-Radonifying if and only if the series \sum_{n}

T(e_{n})\theta_{n}^{(p)} converges a . s . in E (see [6], Corollary 1 or [23], Lemma 1).
Since the sequence \{ e_{n}\} is weakly p-summable, it follows that every \gamma_{p}

-

summing operator from t_{p’} into E is \gamma\beta-Radonifying. But in general, the
converse is not true. Of course for the case p=2 , every \gamma_{2} -Radonifying
operator from t_{2} into E is \gamma_{2} -summing (see [23], Theorem 3).

First we prepare the following elementary lemma.

LEMMA 3. 1. Let T be a bounded linear operator from a Banach space
E into a Banach space F. Then for 1<p\leqq 2 , the following are equivalent.

(1) T is \gamma_{D}-summing.
(2) For each S\in L(t_{p},, E) , TS is \gamma_{p}-Radonifying.

PROOF. The assertion follows from the fact that for each weakly
p-summable sequence \{x_{n}\} in E , there exists an operator S in L(t_{p’}, E) such
that S(e_{n})=x_{n} for all n .

Let E be a Banach space and T be a bounded linear operator from E’
into L_{p} , 1<p\leqq 2 . Denote by N ( T) the cylindrical measure on E with the
ch . f . \exp(-||T(x\gamma||^{p}), x’\in E’ We say that N ( T) is Radon if N ( T) iS a
Radon measure on E . For 1<p<2 , it is easy to see that for an operator T
in L(E’t_{p}) , N(T) is Radon implies T is p -decomposable. In the case
where (\Omega, \mu) is a probability space and 1<p<2 , Linde [8] proved that for
an operator T in L(E’. L_{p}(\mu)) , N(T) is Radon implies T is P-dec0-
mposable, i . e . there exists a function \psi in L_{p}(\Omega, \mu, E) such that T(x9=<
\psi(\cdot) , x’> for all x’\in E’ In this case, if we define an operator S in L(L_{p}’ ,

E) by S(f)= \int\psi(\omega)f(\omega)d\mu(\omega) for all f\in L_{p}’ , then S is \gamma_{p}-Radonifying
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and T=S’.
Let E be a Banach space and 1<p\leqq 2 . Following Mandrekar and

Weron [12], we say that E satisfies the condition V_{p}(i) if for each T\in L

(E’t_{p}) , N ( T) is Radon implies N(ST) is Radon for all S\in L(t_{p}, t_{p}) : and
E satisfies the condition V_{p}(ii) if for each T\in L(E’L_{p}[0,1]) , N ( T) is
Radon implies N(ST) is Radon for all S\in L(L_{p}[0,1], t_{p}) . Of course every
Banach space satisfies the conditions V_{2}(i) and V_{2}(ii) . Then from the
observations above and Lemma 3. 1, we have the following.

COROLLARY 3. 2. For 1<p\leqq 2 , the following properties of a Banach
space are equivalent.

(1) E satisfifies the condition V_{p}(i) .
(2) Every \gamma_{p}-Radonifying operator from t_{p^{J}} into E is \gamma_{p}-summing.

COROLLARY 3. 3. For 1<p\leqq 2 , the following properties of a Banach
space E are equivalent.

(1) E satisfifies the condition V_{p}(ii) .
(2) Every \gamma_{p}-Radonifying operator from L_{p’}[0,1] into E is \gamma_{p}-summing.

Now we shall investigate the relationship between \gamma_{p}-summing and
p-summing operators. It is clear that for 0<p<1 , every p-summing
operator is \gamma_{p}-summing because every Banach space is of stable type p with
p<1 , and on the other hand, for 0<p<2 , every \gamma_{p}-summing operator is
p -summing because every Banach space is of stable cotype p with p<2 (see

[13] ) .

THEOREM 3. 4. Let 1<r<p<2 . Then every r-summing operator from
a Banach space E into a Banach space F is \gamma_{p}-summing.

PROOF. Let T be an r -summing operator from E into F . If S\in L(t_{p}’, E) ,

then TS is r -summing. Using Schwartz theorem [19] it follows that TS is
r -Radonifying. Denote by \gamma_{p} the canonical p -stable cylindrical measure on
t_{p} , with the ch . f . exp (-||x||^{p}) , x\in t_{p} . Since the cylindrical measure \gamma_{p} is of
type r with r<p, TS(\gamma_{p}) extends to a Radon measure on E , that is, TS is
\gamma\beta-Radonifying. Thus the assertion follows from Lemma 3. 1.

REMARK. Theorem 3. 4 was proved by Thang and Tien [23] under the
assumption that F does not contain c_{0} . For the case p=2 , every r-summing
operator is \gamma_{2} -summing because the cylindrical measure \gamma_{2} on t_{2} is of type r
with 0<r<\infty .

Let us recall that a Banach space E is p -Pietsch, \circ<p<\infty , provided that
every p -summing operator from E into a Banach space F is completely
summing. It is known (cf. [20]) that if E is of infinite dimension, then E
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is not (2+\epsilon)- Pietsch, \epsilon>0 , on the other hand, every Banach space is
p-Pietsch with 0<p<1 . If E’ is of stable type p , 1\leqq p\leqq 2 , then every factor
space of E is p -Pietsch, and in particular, L_{r’} and its factor space are
p Pietsch, 0<p<r\leqq 2 . For the details we refer to [14] and [20].

COROLLARY 3. 5. Suppose that E is p Pietsch, 1<p<2 . Then every
p-summing operator from E into a Banach space F is \gamma_{p} summing.

THEOREM 3. 6. Let 1<p<2 . Then the following properties of
Banach space E are equivalent.

(1) E is p-Pietsch.
(2) There is an r with p<r<2 such that every \gamma_{r}-summing operator

from E into a Banach space F is completely summing.

PROOF. Suppose that E is p -Pietsch. Then there is an r with p<r<
2 such that E is r -Pietsch (see [20], 16.1. Theorem). Since every
\gamma_{r}-summing operator is r -summing with r<2 , (2) holds. Conversely,
suppose that (2) holds. If T is p -summing operator from E into a Banach
space F. then by Theorem 3. 4, T is \gamma_{r}-summing with p<r<2 . From the
assumption (2), it fomlows that T is completely summing. Thus E is
p -Pietsch.

This completes the proof.

\S 4. Banach spaces of stable type p

In this section, we characterize the type p -stable Banach space E by \Pi_{\gamma\beta}

(L_{p}’, E)=\Pi_{p}(L_{p}’, E) , where L_{p’} is of infinite dimension (1<p<2 and 1/p+1/
p’=1) . In Section 3, we proved that if a Banach space G is p Pietsch, 1<
p<2 , then \Pi_{\gamma\rho}(G, E)=\Pi_{p}(G, E) for every Banach space E . The following
theorem says that this result is not true. even in the case where G is (p-\epsilon)

-Pietsch for all \epsilon>0 .

THEOREM 4. 1. Let 1<p<2 . Then the following properties of
Banach space E are equivalent.

(1) E is of stable type p.
(2) For each Banach space G, there holds \Pi_{\gamma\rho}(G, E)=\Pi_{p}(G, E) .
(3) For each (one infifinite dimensional) space L_{p}’ , there holds \Pi_{\gamma\rho}(L_{p}’ ,

E)=\Pi_{p}(L_{p}’, E) .

PROOF. The implications (1)\Rightarrow(2)\Rightarrow(3) are clear. We show that
(3)\supset(1) holds. Suppose that for some infinite dimensional space L_{p’} ,

The inclusion \Pi_{p}(L_{p’}, E)\subset\Pi_{\gamma\rho}(L_{p},, E) holds. Since L_{p} is of infinite
dimension, L_{p} contains a complemented subspace which is linearly isometric
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to t_{p} (cf. [11]). Hence the identity map: t_{\vec{p}}t_{p} is factorized by the bounded
linear operators J : t_{\vec{p}}L_{p} and P:L_{\vec{p}}t_{p} , where J is an isometric imbedding.
To prove (1), let T be a p-summing operator from t_{p’} into E. Then TJ’ : L_{p} ,

arrow E is p -summing. From the assumption (3) it follows that TJ’ is \gamma_{p}
-

summing and so is T=TJ’P’ (the ideal property). Thus the assertion
follows from [22], Proposition 3.

REMARK. As is shown in this proof, if a Banach space G contains a
complemented subspace which is linearly isometric to t_{p}’ , then E is of stable
type p, 1<p<2 , if and only if \Pi_{\gamma\rho}(G, E)=\Pi_{p}(G, E) . For the case p=1 , it
can be shown that E is of stable type 1 if and only if \Pi_{\gamma_{1}}(c_{0}, E)=\Pi_{1}(c_{0}, E) .
On the other hand, Theorem 4. 1 is false in the case p=2 . In fact, it is well
known that E has one of the properties (2) and (3) for p=2 if and only if
E is of stable cotype 2 (see [ 13]).

COROLLARY 4. 2. Suppose that L_{p} is of infifinite dimension, 1<p<2 . If
E is not of stable type p, then there are p-summing operators from L_{p’} into E
which are not \gamma_{p}-summing. In particular, L_{p’} is not p-Pietsch.

For the case p=2 , it is well known (cf. [1], [7]) that a Banach space E
is of stable type 2 if and only if for each T\in L(H, E) , T’ is 2-summing
implies T is \gamma_{2} -Radonifying, where H is an infinite dimensional Hilbert
space. The following theorem says that this result remains true in the case
where “ 2-summing ” is replaced by “ 2-nuclear ” Remark that every
2-nuclear operator is 2-summing, but in general, the converse is not true.

THEOREM 4. 3. The following properties of a Banach space E are
equivalent.

(1) E is of stable type 2.
(2) For each T\in L(H, E) , T’ is 2-nuclear implies T is \gamma_{2} -summing.
(3) N^{2}(H, E)\subset\Pi_{\gamma_{2}}(H, E) .

PROOF. Suppose that (1) holds. To prove (2), by Lemma 3. 1, it
is enough to show that for each T\in L(l_{2}, E) , T’ is 2-nuclear implies T
is \gamma_{2} -Radonifying. Let T : l_{2}arrow E be a bounded linear operator such that
T’ is 2-nuclear. Then T’ is factorized by the bounded linear operators
V_{-}.E’arrow l_{\infty} , D_{-}.l_{\infty}arrow l_{2} and W : l_{2}arrow l_{2} , where D=(\alpha_{n}) is a diagonal
operator with \Sigma_{n}|\alpha_{n}|^{2}<\infty . If we put S=DV then S’ is a bounded
linear operator from l_{2} into E’ such that \sum_{n}||S’(e_{n})||^{2}<\infty , where e_{n}

denotes the n-th unit vector in l_{2} . Since E’ is of stable type 2, the series
\Sigma_{n}S’(e_{n})\theta_{n}^{(2)} converges a . s. in E’ that is, S’ is \gamma_{2} -Radonifying and so is
T’–S’W’ (see [23]). Since E does not contain c_{0} , it follows that T
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: l_{2}arrow E is \gamma_{2} -Radonifying (see [7]). Thus (2) holds. On the other
hand, (2)\supset(3) is clear. Now suppose that (3) holds. To prove
(1), let \{x_{n}\} be a sequence in E such that \Sigma_{n}||x_{n}||^{2}<\infty . Then there is
an operator T in L(l_{2}, E) such that T(e_{n})=x_{n} for all n . Evidently, T
is an operator of type N^{2} . Let J be an isometric imbedding from l_{2} into
H Since TJ’\wedge\cdot Harrow E is of type N^{2} . by the assumption (3), it follows
that TJ’ is \gamma_{2} -summing and so is T_{C} Thus the series \Sigma_{n}x_{n}\theta_{n}^{(2)}=\Sigma_{n}T(e_{n})\theta_{n}^{(2)}

converges a . s . in E proving (1).

This completes the proof.

REMARK. As is shown in this proof, the property (2) is equivalent to
the fact that for each Banach space G and each- T\in L(G, E) , T’ is 2-nuclear
implies T is \gamma_{2} -summing. We note here that if H is a separable Hilbert
space, then for each Banach space E, every \gamma_{2} -summing operator from H
into E is of type N^{2} (see [5]).

\S 5. Banach spaces of stable type p and of SQ_{p} type

In this section, we shall give new characterizations of Banach spaces
which are of stable type p and of SQ_{p} type, 1<p<2 , in terms of \gamma_{D}-summing
operators. Throughout this section, let E be a Banach space, (\Omega, \mu) be a
probability space and 1<p<2 . As mentioned in Section 2, an operator T in
L(E’L_{p}(\mu)) is p -decomposable if there exists a function \psi in L_{p}(\Omega, \mu, E)

such that T(x0=<\psi(\cdot), x’>for all x’\in E’ Now suppose that L_{p}(\mu) is of
infinite dimension. Then there exists an isometric imbedding J from t_{p} into
L_{p} (cf. [11]). First we establish the following elementary lemma.

LEMMA 5. 1. Let T be a bounded linear operator from t_{p}’ , 1<p<2 ,

into E. Then the following are equivalent.
(1) \sum_{n}||T(e_{n})||^{p}<\infty .
(2) JT’ : E’arrow L_{p}(\mu) is p-decomposable.

PROOF. Suppose that (1) holds. Let I=\{n:T(e_{n})\neq 0\} . If I is a
finite set, then (2) clearly holds. If I is an infinite set, then we take a
positive constant C such that C=( \sum_{n}||T(e_{n})||^{p})^{-1/p} and define a Radon
probability measure \nu on E by \nu=\Sigma_{n\in I}\alpha_{n}\delta_{x_{n}} , where \alpha_{n}=C^{p}||T(e_{n})||^{p}, x_{n}=T

(e_{n})/C||T(e_{n})|| and \delta_{x},, is a Dirac measure of the point x_{n} . Then we have

||JT’(x’)||^{p}=||T’(x9||^{p}= \int_{E}|<x, x’>|^{p}d\nu(x), x’\in E’

and
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\int_{E}||x||^{p}d\nu(x)=\Sigma_{n}||T(e_{n})||^{p}<\infty .

Using Linde [9], Theorem 4, it follows that JT’ is p -decomposable. Thus
(2) holds. On the other hand, suppose that (2) holds. Then there is a
function \psi in Lp(\Omega, \mu, E) such that JT’(x\gamma=<\psi(\cdot), x’> for all x’\in E’ If
we put \sigma=\psi(\mu) , then \sigma is a Radon probability measure on E and there holds

||T’(x \gamma||^{p}=||JT’(x9||^{p}=\int_{E}|<x, x’>|^{p}d\sigma(x), x’\in E’ .

and

\int_{E}||x||^{p}d\sigma(x)<\infty .

Let \{\alpha_{n}\} be a sequence of positive real numbers such that \Sigma_{n}\alpha_{n}=1 . Define
a Radon probability measure \nu on E by \nu=\Sigma_{n}\alpha_{n}\delta_{x_{n}} , where x_{n}=T(e_{n})/(\alpha_{n})^{1/p} .
Then

\int_{E}|<x, x’>|^{p}d \nu(x)=\int_{E}|<x, x’>|^{p}d\sigma(x) , x’\in E’

Hence by Linde [9], Theorem 4, we have

\Sigma_{n}||T(e_{n})||^{p}=\int_{E}||x||^{p}d\nu(x)<\infty .

Thus (1) holds, and the proof is completed.

PROPOSITION 5. 2. Let 1<p<2 . Then every \gamma_{p}-summing operator from
L_{p}’(\mu) into a Banach space E is dual p-decomposable.

PROOF. The assertion easily follows from Kwapien [2], Theorem 2 and
the fact that every \gamma_{p}-summing operator is p-summing with p<2 .

COROLLARY 5. 3. Let 1<p<2 . Then every \gamma_{p}-summing operator from
L_{p’}(\mu) into E is of type N^{p}, and in particular, dual p-nuclear.

PROOF. The assertion follows from Proposition 5. 2 and Persson [16],
Theorem 2.

THEORER 5. 4. Let 1<p<2 . Then the following properties of a Banach
space E are equivalent.

(1) E is of stable type p and of SQ_{p} type.
(2) For each Banach space G and each T\in L(G, E) , T’ is p-nuclear

implies T is \gamma_{p}-summing.
(3) For each Banach space G, the inclusion N^{p}(G, E)\subset\Pi_{\gamma\rho}(G, E)
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holds.
(4) For each ( one infifinite dimensional) space L_{p}’(\mu) , T\in\Pi_{\gamma\rho}(L_{p}’, E)

if and only if T’\in N_{p}(E’-L_{p}) .
(5) For each (one infifinite dimensional) space L_{p}’(\mu) , there holds N^{p}

(L_{p}, E)=\Pi_{\gamma\rho}(L_{p}’, E) .
(6) For each (one infifinite dimensional) space L_{p}’(\mu) , T\in\Pi_{\gamma\rho}(L_{p}’, E)

if and only if T’ is p-decomposable.

To prove this theorem, we need the following

LEMMA 5. 5 (cf. [21]). Let 1<p<\infty . Then the following properties
of a Banach space E are equivalent.

(1) E is of SQ_{p} type.
(2) E’ is of SQ_{p’} type.
(3) For each T\in L(t_{p}’, E) , \Sigma_{n}||T(e_{n})||^{p}<\infty implies T is p-summing.

PROOF OF THEOREM 5. 4. Suppose that (1) holds. To prove (2), let
G be any Banach space and T be an operator in L(G, E) such that T’ is
p -nuclear. Since E is of SQ_{p} type, by Lemma 5. 5, E’ is of SQ_{p’} type. Using
Kwapien [3], Corollary 8, it follows that T is p-summing. But this implies
that T is \gamma_{p}-summing because E is of stable type p . Thus (2) holds. Since
every operator of type N^{p} is clearly dual p -nuclear, (2) implies (3). On the
other hand, (2)\supset(4) and (3)\supset(5) follow from Corollary 5. 3, and (5)
\Rightarrow(6) follows from Proposition 5. 2 and Persson [16], Theorem 2. It
remains to prove that (6) implies (1). Suppose that (6) holds. Since L_{p}

(\mu) is of infinite dimension, it contains a complemented subspace which is
linearly isometric to l_{p} (see [11]). Hence the identity map: t_{\vec{p}}l_{p} is
factorized by the bounded linear operators J : l_{p}arrow L_{p} and P:L_{\vec{p}}t_{p} , there J
is an isometric imbedding. Now let T be a bounded linear operator from l_{p’}

into E such that \Sigma_{n}||T(e_{n})||^{p}<\infty . Then by Lemma 5. 1, JT’ is p-dec0-
mposable. Hence it follows from the assumption (6) that TJ’ is
\gamma_{\beta}-summing, and so is T=TJ’ P ’ (the ideal property). This implies that E
is of stable type p (see Theorem 4. 1). Here we remark that every \gamma_{p}

-

summing operator is p -summing with p<2 . Thus by Lemma 5. 5, it follows
that E is of SQ_{p} type, proving (1).

This completes the proof.

REMARK. In Theorem 5. 4, we shall consider the case p=2 . Then it
can be shown in this case that E has the property (6) if and only if E is
isomorphic to a Hilbert space. In fact, if E has the property (6) for p=2 ,

then it is easy to see that E is of stable type 2 and of stable cotype 2. But
this means that E is isomorphic to a Hilbert space (see Kwapien [4]). On
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the other hand, E has one of the properties (2), (3), (4) and (5) for p=2 if
and only if E is of stable type 2 (see Theorem 4. 3).

\S 6. Banach spaces of stable type p and of S_{p} type

In this section, we characterize Banach spaces which are of stable type
p and of S_{p} type, 1<p<2 , in terms of \gamma_{p}-summing operators. The following
theorem is an analogue of a result due to Lindenstrauss and Pelczynski [10]
which characterizes subspaces of L_{p} .

THEOREM 6. 1. Let 1<p<2 . Then the following properties of
Banach space E are equivalent.

(1) E is of stable type p and of S_{p} type.
(2) If \{x_{n}\} and \{y_{n}\} are two sequences in E such that

\Sigma_{n}|<y_{n} , x’>|^{p}\leqq\Sigma_{n}|<x_{n}, x’>|^{p} for all x’\in E’

and \Sigma_{n}||x_{n}||^{p}<\infty , then the series \Sigma_{n}y_{n}\theta_{n}^{(p\rangle} converges a. s. in E.

PROOF. Since every Banach space is of stable cotype p with p<2 (cf.

[13] ) , the assertion follows from the criterion of Lindenstrauss-Pelczynski
[10] on imbedding of a Banach space into L_{p} .

REMARK. For the case p=2 , it can be easily shown that E has the
property (2) for p=2 if and only if E is of stable type 2.

The following result is due to Thang and Tien [23].

COROLLARY 6. 2. Let 1<p<2 . Then the following properties of a

Banach space E are equivalent.
(1) E is of stable type p and of S_{p} type.
(2) For each T\in L(t_{p}’, E) , T is \gamma_{p}-Radonifying if and only if T’ is

p-summing.

PROOF. (1)\Rightarrow(2) easily follows from Kwapien [3], Corollary 6.
Conversely, suppose that (2) holds. To prove (1), take two sequences
\{x_{n}\} and \{y_{n}\} in E as in (2) of Theorem 6. 1. Then there is an operator T
in L(t_{p}’, E) such that T(e_{n})=y_{n} for all n . Evidently, T’ is p-summing.
From the assumption (2), it follows that T is \gamma_{D}-Radonifying, that is, the
series \Sigma_{n}y_{n}\theta_{n}^{(p)}=\Sigma_{n}T(e_{n})\theta_{n}^{(p)} converges a . s . in E (see [6] or [23]). Thus
the assertion follows from Theorem 6. 1.

THEOREM 6. 3. Let 1<p<2 . Then the following properties of a Banach
space E are equivalent.

(1) E is of stable type p and of S_{p} type.
(2) For each Banach space G and each T\in L(G, E) , T’ is p-summing
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implies T is \gamma_{p}-summing.
(3) For each (one infifinite dimensional) space L_{p}’(\mu) , T\in\Pi_{\gamma\rho}(L_{p}’, E)

if and only if T’ is quasi-p-nuclear.
(4) For each (one infifinite dimensional) space L_{p’}(\mu) , if S and T are

bounded linear operators from L_{p’} into E such that

||S’(x\gamma||\leqq||T’(x\gamma|| for all x’\in E’-

then T’ is p-decomposable implies S is \gamma_{p}-summing.

PROOF. (1)\Rightarrow(2) follows from Kwapien [3], Corollary 6. On the
other hand, (2)\Rightarrow(3) follows from Corollary 5. 3, and (2)\Rightarrow(4) easily
follows from Persson [16], Theorem 1. It remains to prove that (3)\supset(1)

and (4)\supset(1) hold. Let \{x_{n}\} and \{y_{n}\} be two sequences in E such that

\Sigma_{n}|<y_{n} , x’>||^{p}\leqq\Sigma_{n}|<x_{n} , x’>|^{p} for all x’\in E’

and

\Sigma_{n}||x_{n}||^{p}<\infty .

Then there are operators S and T in L(t_{p}’, E) such that S(e_{n})=y_{n} and T
(e_{n})=x_{n} for all n . Evidently, S’ is quasi-p-nuclear, and there holds

||S’(x\gamma||\leqq||T’(x0|| for all x’\in E’

Now suppose that (3) holds. Since L_{p}(\mu) is of infinite dimension, it
contains a complemented subspace which is linearly isometric to l_{p} (cf. [11]).
Hence the identity map: t_{p}arrow t_{p} is factorized by the bounded linear operators
J : t_{p}arrow L_{p} and P:L_{p}arrow t_{p} , there J is an isometric imbedding. Since JS’ : E’
arrow L_{p} is quasi-p-nuclear, from the assumption (3) it follows that SJ’ is \gamma_{p}

-

summing and so is S=SJ’P’ Thus the series \sum_{n}y_{n}\theta_{n}^{(p)} converges a . s . in E ,
and (1) holds by Theorem 6. 1. Finally, suppose that (4) holds. Let J
and P be as above. Then by Lemma 5. 1, JT’ : E’arrow L_{p} is p -decomposable,
and there holds

||JS’(x\gamma||\leqq||JT’(x\gamma|| for all x’\in E’

From the assumption (4), it follows that SJ’ is \gamma_{p}-summing and so is S=SJ’
P’ By the same way as above, (1) holds.

This completes the proof.

REMARK. In [9], Linde proved that if S and T are bounded linear
operators from L_{p}, , l<p<2 , into a Banach space E such that

||S’(x9||=||T’(x\gamma|| for all x’\in E’-

\rfloor

, \vee\wedge

,
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then T’ is p-decomposable implies S’ is p-decomposable. This result says
that in (4) of Theorem 6. 3, the inequality can not be replaced by the
equality. In fact, it is shown in this case that this property is equivalent to
the fact that E is of stable type p and of SQ_{p} type (see Theorem 5. 4). On
the other hand, Theorem 6. 3 is false in the case p=2 . It is shown that E has
one of the properties (2), (3) and (4) for p=2 if and only if E is of stable
type 2. Finally, we refer to the relation of this reuslt and the works of
Linde, Mandrekar and Weron [6] and Thang and Tien [23]. By Lemma 3.
1 and Theorem 6. 3, we obtain that E is of stable type p and of S_{p} type, 1<
p<2 , if and only if every dual quasi-p-nuclear operator from l_{p’} into E is \gamma_{p}

-

Radonifying. This result extends that of Thang and Tien [23], and that of
Linde, Mandrekar and Weron [6] for the case L_{p},=l_{p}’ . They proved this
result in the case where “ quasi-p-nuclear ” is replaced by “ p -summing ”

Note that every quasi-p-nuclear operator is p ming, but in general, the
converse is not true.

By a result of Kwapien [4], it follows that a Banach space E is
isomorphic to a Hilbert space if and only if every dual 2-summing operator
from l_{2} into E is completely summing. In the following, we shall extend this
result to the general case 1<p\leqq 2 .

CoROLLARY 6. 4. Let 1<p<2 . Then the following properties of a
Banach space E are equivalent.

(1) E is of stable type p and of S_{p} type.
(2) For each Banach space G and each T\in L(G, E) , T’ is p-summing

implies T is completely summing.
(3) For each (one infifinite dimensional) space L_{p’} and each T\in L(L_{p}’ ,

E) , T’ is p-summing implies T is completely summing.

PROOF. Since every completely summing operator is \gamma_{p}-summing (see

Theorem 3. 4), the assertion follows from Theorem 6. 3.

REMARK. Corollary 6. 4 remains true in the case where “ p -summing ”

is replaced by “ quasi-p-nuclear ”-
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